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PROBLEMS OF INTEROPERABILITY
IN INFORMATION SYSTEMS

The use of first order predicate logic in many information systems may be justified through its com-
pleteness. However the work of Gödel shows that such systems are undecidable if they rely on formal
systems of number and/or sets. For interoperability dyadic higher-order logic is required, which is
neither complete nor decidable if based on sets. Category theory appears to be naturally suited to
handling interoperability. However pure category theory is still axiomatic so is also neither complete
nor decidable. Applied category theory based on cartesian closed categories for process is natural
and appears to be both complete and decidable. Gödel’s theorems therefore do not apply. Composed
adjunctions appear particularly well-suited for modelling interoperability, with composition of distinct
functors for mapping across a number of levels and of endofunctors for business process interoperabil-
ity. The development of a tool based on categorial principles written in Haskell may be a way forward.

1. INHERENT DIFFICULTY OF INTEROPERABILITY

Interoperability has proved to be a severe problem for information systems. Many av-
enues have been explored, as can seen by looking at the recent publication Enterprise Interoper-
ability [2], including service-orientated interoperability, enterprise interoperability architecture,
model-driven approaches to interoperability, methods, models, languages and tools for enter-
prise interoperability, semantics and ontology-based interoperability, interoperability of decision
models, inter-organisational interoperability, interoperability of manufacturing enterprise ap-
plication, business models interoperability and standards for interoperability. The plethora of
approaches in itself suggests that none has had universal success outside of carefully controlled
semi-automated local conditions. The root of the problem may lie in the mathematical basis
for most information systems: set theory. This method has worked well in the past when the
systems under examination were in general closed and the logic was that of a closed Boolean
world. Today applied science has shifted down into things like nanotechnology and across into
intangibles like information science and how humans behave, none of which is any longer within
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the easy ambit of classical physics. Society and medical science are concerned not just with
interoperating parts of a system but with the relationship between parts and the system as
a whole and with interoperability between systems through increasing globalisation, including
between parts of one system and parts of another system. The major difference is that these
systems have to be treated as open [20] and therefore not conveniently accessible by first order
predicate logic.

1.1. THE RESULTS OF GÖDEL

A highly desirable feature required for free and open systems theory is exactness. As we
shall see below exactness can be formally defined but may be informally interpreted as ’cer-
tainty’. Probably the most rigorous path by which to approach certainty in logical foundations
is through the work of Kurt Gödel that became a watershed in 20th century logic. There are
two key concepts in Gödel’s work which are components of ’certainty’ and these are complete-
ness and decidability. Gödel’s 1929 doctoral thesis established that first-order predicate logic
is complete [4], that is internally consistent. This was followed the next year by his famous
theorem of undecidability that applies to any system depending on axiom and number 2. Gödel
made three major contributions to logic that are very pertinent to the scientific method of the
twentieth century. These are:

1. The system of first-order predicate (but not intuitionistic [7, 8, 9]) logic is complete [4, 5].

2. Any formal system of number and/or sets derived from axioms is undecidable [6].

3. The independence of the continuum hypothesis [1].

For such systems, cybernetic principles suggest a logic that permeates all three ‘dimen-
sions’ of formal mathematics, empirical science and applied philosophy as enunciated by Husserl
([12] p.159) where just one or two on their own without all three together are insufficient.
Husserl wrote around the turn of the twentieth century at the time when the logistical ap-
proach to mathematics was in vogue. Mathematics and logic had just been merged by Frege
and the fine detail was being hammered out rigorously by Whitehead (1861-1947) and Russell
(1872-1970) in their Principia Mathematica [23] in the belief that logic underpinned mathe-
matics and there was really no more to mathematics than logic. It was at that same time
around the 1900s, as Husserl [12] was sowing the seeds of post-modernism, that David Hilbert
(1862-1943) was advancing the cause of the formalist approach that mathematics was wholly
regulated by the manipulation of formulae irrespective of their meaning or interpretation. To
this end he was presenting a formal Programme (with 23 research problems) of mechanical
logico-mathematics for the modern world. Difficulties were there from the outset like Russell’s’
paradox to raise doubts on the sufficiency of both Frege’s axioms and Hilbert’s programme but
it was left to Gödel in the early 1930s [5, 6, 7] by his two theorems of undecidability to disprove
the hope that any mechanistic axiomatic system of logico-mathematical principles (as Gödel
referred to them) based on number or sets could ever be found. Husserl was also proved right
because there were two of his ’dimensions’ missing - the science and the philosophy.

1.2. BASIS FOR SET THEORY OF WHITEHEAD AND RUSSELL

2Gödel treated natural numbers and sets as equivalent because of the arithmetisation of sets [18]
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We cannot apply Gödel’s results properly without understanding logical foundations on
which they are based. Gödel started with Russell and Whitehead’s system [25]. The logico-
mathematical basis for scientific reasoning is not clearly defined in mainstream work. If there
is any consensus it is to be found within the tradition of Whitehead and Russell [25]. However,
there is not even a standard version of these principles. For an analytical exposition of the
principles of [25] it seems best to rely on the version given by Kurt Gödel. Because of the
significance for all mathematical work and particularly because of applied mathematics for the
rest of the twentieth century that rested on this foundation for reasoning itself, it is important
to be aware of the nature of these principles consisting of formal axioms and rules of inference.
Much if not all twentieth century mathematical models in science and engineering are postulated
on them. They are nowhere uniquely defined but a typical list is given by Gödel himself as the
starting point of his own work. He claims to rest on the propositions established by Whitehead
and Russell denoted as *1 and *10 in their Principia Mathematica. Gödel reduced these to just
eight axioms accompanied by four rules of inference ([4] p.67; [5] p.105).

The four rules of inference are:

1. The inferential schema: from the truth of p ∧ p −→ q, there may be inferred q.

2. The rule of substitution for propositional and predicate variables.

3. The inference for universal quantification of predicates.

4. Individual free or bound variables may be replaced subject to scoping.

Whitehead and Russell themselves however point out that there are many implied as-
sumptions along the way such as the meaning of truth and falsehood and indeed the Principia
is subject to tentative qualifications throughout the original work and even more equivocation
and variance is introduced in the later second [25] and abbreviated edition [27].

A crucial principle in Whitehead and Russell’s system of logic [25] is the Closed World
Assumption with only the two Boolean possible outcomes. The upshot of these foundational
axioms is that inference is defined only in terms of this Closed World Assumption. It means that
negation, conjunction and disjunction are not independent. Although not mentioned by Gödel
because he treats as given the assumptions of [25] nevertheless there are these fundamental
definitions of true and false which are assumed by Whitehead and Russell. The first edition of
the Principia Mathematica tells us we have to accept the concepts of truth, falsehood and the
assumptions of the logical sum, logical product, complementarity and implication ([23] 1st ed.
p.6). The later writings suggest that these four principles of deduction enumerated in [23] could
be represented alternatively by five propositions ([21] p.149-150) although they do not explicitly
correspond to those of Gödel. The second edition of [25] recognises that the four assumptions
could be collapsed into one principle with the use of the Schaeffer stroke where p | q is true if
p is true or q is true or p ∧ q is true, which is now further developed in the NAND operation.
Whitehead & Russell [25] define as ‘material implication’ the concept ¬p∨q. The Closed World
Assumption or to give it its older Latin tag tertium non datur (there’s no third way) is relied
on by the Principia and those who depend on its inference schema to define inference itself
that is the assertion of implication p −→ q from ¬p ∨ q. Scientific models therefore that draw
scientific inferences are assuming the Closed World Assumption with all its ramifications.

2. HIGHER-ORDER LOGIC FOR INTEROPERABILITY

As we have already seen to justify the use of scientific models because they work only holds
where they are close to a first order model (which will then satisfy first order predicate logic)
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and problems arising from Gödel’s theorems of undecidability can be avoided. The scientific
method of the last three centuries has actually achieved this by experimental verification. It
is to be noted that this only holds locally and it is the completeness of first order predicate
logic that gives such models their generality. For higher order and open systems experimental
verification only holds locally without any guarantee of wider validity. Rather curiously the
current prime promise to meet the requirements was developed by Alfred North Whitehead.
This is process philosophy [26]. It appears that while Whitehead and Russell were collaborating
on the Principia they had their doubts about fundamental entities [10]. This leads to a formal
philosophy, but a metaphysics not a model, the common approach in theoretical computer
science including artificial intelligence, which suffers from Gödel uncertainty.

Category theory provides a formal post-modern mathematics, bringing together algebra,
geometry and topology. It is fully formal in its logico-mathematical representation so far as
it is based on the empirical scientific principles for the particular category known as cartesian
closed and embodies this philosophy of process as understood by Whitehead. Category theory
achieves and goes beyond the post-modern mathematics sought by the Bourbaki French School
of Mathematics [16].

3. ADJOINT FUNCTORS FOR SCIENTIFIC BASIS

To escape the clutches of Gödel undecidability and to underpin our conceptual ideas, it is
necessary to advance to cartesian closed categories beyond the category of sets to represent the
relationship between different systems as adjoint functors. There are two particularly useful for-
mal constructions for adjunctions in interoperability, both involving composition: the first that
of distinct functors giving 2-cells, the second that of endofunctors giving monads. The former
[19] represents the composition across a number of levels, for example composing data naming
in turn with metadata and metameta data so that the adjoint relationship is represented across
four levels of category, that is three levels of mapping, from data values to data abstractions
such as aggregation and inheritance. The latter [11] represents the process or behaviour of a
system, like in transactions, as an endofunctor in three cycles to give monads and comonads as
described by Mac Lane ([15] p.137-142). The two constructions are complementary: the first
handling principally the data structures and their values and methods, the latter the behaviour
of the data objects. It is interesting that three levels are involved in each construction: in
limit constructions in category theory three levels are often used. The monadic structure has
particular robustness with respect to Gödel’s theorems. Monadic higher-order functions are
complete and decidable unlike dyadic higher-order ones.

3.1. COMPOSED ADJUNCTIONS: DISTINCT FUNCTORS

The application shown in Figure 1 involves the composition of adjunctions, that is an
expression is derived in which two or more adjunctions are adjacent to each other. It is part
of the power of category theory that adjunctions can be composed in the same way as other
arrows.

The data functor (level pair) type change F maps target objects and arrows in the category
A to image objects in the category B for each type of system. This mapping provides at the
meta-meta level the data for each kind of system, that is to say how each abstraction is to be
represented. We also label the functor pair F̄ relating for each system the constructions in B
with the names in a particular application in C and ¯̄F relating for each system the names in
C with the values in a particular application in D The remaining functors G, Ḡ and ¯̄G are the
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duals of F , F̄ and ¯̄F respectively. G for a given system relates the data modelling facilities
provided by a system in B to the universal collection of abstractions defined in A. Ḡ relates
the schema definition in C to the constructs available in the system defined in B. ¯̄G for a given
D relates a data value type to its property name as defined in the schema C. It will be noted
that in Figure 1 all the mappings are two-way and that compositions naturally emerge.

A B C D
F F̄ ¯̄F

G Ḡ ¯̄G

@@ @@

@@ @@

@@

@@

Figure 1: Composition of Adjunctions

Then we may have six adjunctions (if the conditions are satisfied):
F a G, F̄ a Ḡ, ¯̄F a ¯̄G, F̄F a GḠ, ¯̄FF̄ a Ḡ ¯̄G, ¯̄FF̄F a GḠ ¯̄G
These adjunctions give the following isomorphisms:
D( ¯̄FF̄Fa, d) ∼= C(F̄Fa, ¯̄Gd) ∼= B(Fa, Ḡ ¯̄Gd) ∼= A(a, GḠ ¯̄Gd)
where a is an object in A and d an object in D. Each equivalent expression represents the
collection of arrows from source to target so D( ¯̄FF̄Fa, d) represents the collection of arrows
from ¯̄FF̄Fa to d in category D.

We can define these in more detail with their units and counits of adjunction as follows:

< F, G, ηa, εb >: A −→ B (1)

ηa is the unit of adjunction 1a −→ GFa and εb is the counit of adjunction FGb −→ 1b

< F̄ , Ḡ, η̄b, ε̄c >: B −→ C (2)

η̄b is the unit of adjunction 1b −→ ḠF̄ b and ε̄c is the counit of adjunction F̄ Ḡc −→ 1c

< ¯̄F , ¯̄G, ¯̄ηc, ¯̄εd >: C −→ D (3)

¯̄ηc is the unit of adjunction 1c −→ ¯̄G ¯̄Fc and ¯̄εd is the counit of adjunction ¯̄F ¯̄Gd −→ 1d

< F̄F, GḠ, Gη̄aF • ηa, ε̄c • F̄ εcḠ >: A −→ C (4)

Gη̄aF •ηa is the unit of adjunction 1a −→ GḠF̄Fa and ε̄c•F̄ εcḠ is the counit of adjunction
F̄FGḠc −→ 1c

The unit of adjunction is a composition of ηa : 1a −→ GFa with Gη̄aF : GFa −→ GḠF̄Fa
The counit of adjunction is a composition of F̄ εcḠ : F̄FGḠc −→ F̄ Ḡc with ε̄c : F̄ Ḡc −→

1c

We have retained the symbol • indicating vertical composition as distinct from normal
horizontal composition indicated by the symbol ◦ [13].

< ¯̄FF̄ , Ḡ ¯̄G, Ḡ¯̄ηbF̄ • η̄b, ¯̄εd • ¯̄F ε̄d
¯̄G >: B −→ D (5)

Ḡ¯̄ηbF̄ • η̄b is the unit of adjunction 1b −→ Ḡ ¯̄G ¯̄FF̄B and ¯̄εd • ¯̄F ε̄d
¯̄G is the counit of

adjunction ¯̄FF̄ Ḡ ¯̄Gd −→ 1d

The unit of adjunction is a composition of η̄b : 1b −→ ḠF̄ b with Ḡ¯̄ηbF̄ : ḠF̄ b −→ Ḡ ¯̄G ¯̄FF̄ b
The counit of adjunction is a composition of ¯̄F ε̄d

¯̄G : ¯̄FF̄ Ḡ ¯̄Gd −→ ¯̄F ¯̄Gd with ¯̄εd : ¯̄F ¯̄Gd −→
1d.

< ¯̄FF̄F, GḠ ¯̄G, GḠ¯̄ηaF̄F •Gη̄aF • ηa, ¯̄εd • ¯̄F ε̄d
¯̄G • ¯̄FF̄ εdḠ

¯̄G >: A −→ D (6)
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The unit of adjunction is a composition of:
ηa : 1a −→ GFa with Gη̄aF : GFa −→ GḠF̄Fa with GḠ¯̄ηaF̄F : GḠF̄Fa −→ GḠ ¯̄G ¯̄FF̄Fa

The counit of adjunction is a composition of:
¯̄FF̄ εdḠ

¯̄G : ¯̄FF̄FGḠ ¯̄Gd −→ ¯̄FF̄ Ḡ ¯̄Gd with ¯̄F ε̄d
¯̄G : ¯̄FF̄ Ḡ ¯̄Gd −→ ¯̄F ¯̄Gd with ¯̄εd : ¯̄F ¯̄Gd −→ 1d

The advantage in deriving these compositions is that we have the ability to represent the
mappings in either abstract form to increase understanding or in detailed form to facilitate the
development of a tool. The overall composition gives a simple representation for conceptual
purposes; the individual mappings enable the transformations to be followed in detail at each
stage and provide a route for implementation. The uniqueness of the components means that
an adjunction can be resolved where there is a component missing.

If a further level E is added to Figure 1 with the adjoint <
¯̄̄
F ¯̄FF̄F a GḠ ¯̄G

¯̄̄
G >, categori-

cally the five levels are equivalent to the four levels above because composition is natural. The
practical consequence is that a fifth level is equivalent to an alternative fourth level. So there
is ultimate closure at a fourth (metameta) level.

3.2. COMPOSED ADJUNCTIONS: ENDOFUNCTORS

A monad is sometimes described as a triple, comprising an endofunctor say T , the unit
of the monad η and the multiplication of the monad µ : T 2 −→ T :

Monad =< T, η, µ > (7)

A pair of adjoint functors is an endofunctor: in this case the source category of F , L, is
also the target category of G. So for the endofunctor T as the pair of adjoint functors GF ,
F : L −→ R and G : R −→ L:

Monad =< GF,1L −→ GF, GFGF −→ GF > (8)

where 1L −→ GF is the unit (η) of the monad and GFGF −→ GF is the multiplication (µ).
The monad gives the left-hand perspective. There is also a dual comonad which gives the

right-hand perspective. A comonad is a triple, comprising an endofunctor say S, the counit of
the comonad ε and the comultiplication of the comonad δ : S −→ S2:

Comonad =< S, ε, δ > (9)

A pair of adjoint functors is an endofunctor: in this case the source category of G, R,
is also the target category of F . So for the endofunctor S as the pair of adjoint functors FG,
G : R −→ L and F : L −→ R:

Comonad =< FG,FG −→ 1R, FG −→ FGFG > (10)

where FG −→ 1R is the counit (ε) of the comonad and FG −→ FGFG the comultiplication
(δ).

The diagram in Figure 2 assists with interoperability as follows. There is a unique solution,
ensuring reproducibility, through the adjointness F a G. The displacement in the left category
1L of η and in the right category 1R of ε are given by the monad and comonad respectively.
If there is no displacement in the left- or right-categories, that is η maps onto ⊥ and > maps
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Figure 2: After three cycles GFGFGF from left-hand category and three cycles FGFGFG
from right-hand category: η and δ map onto other than ⊥, > maps onto other than ε and µ

onto ε, then the relationship is the special case of equivalence between F and G and the two
categories are isomorphic. Determinism is measured through the arrow µ : T 2 −→ T (looking
back). Closure is achieved through the third cycle with Tµ (GFGεF ) comparing the second
and third cycles from the viewpoint of the third cycle (again looking back) and δS (FGFηG)
comparing the second and third cycles from the viewpoint of the second cycle (looking forward).
If GFGεF maps onto idT 3 and idS2 maps onto FGFηG then the relationship is the special
case of equivalence between F and G and the left- and right-categories are ‘synchronised’ 3.
Anticipation is measured through the arrow δ : S −→ S2 (looking forward). This arrow as a
free functor is non-deterministic.

4. PRACTICAL SIGNIFICANCE

In terms of the various levels of interoperability recognised by the EU and their working
parties, composed adjunctions with distinct functors deliver semantic interoperability by re-
lating data values to metameta data. Composed adjunctions for endofunctors provide a route
through to the more challenging enterprise interoperability [14] by delivering a description of
process. Dynamic composition of services has been proposed [17] as a way forward for interop-
erability and this would benefit from a categorial approach.

To apply categorical techniques it should not be necessary for users to have an under-
standing of category theory. Rather the goal should be to develop tools, based on category

3Consentient is the term used from the process perspective by Whitehead ([24] ch III, 2nd ed, Scientific
Relativity, Article 7, p.31-32).
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theory, that assist users in providing interoperability between systems. A tool based on sound
mathematical principles is more likely to provide the basis for a standard [11]. As Egyedi noted
([3] p.562):

[We] explored why standard-compliant products often do not interoperate and what
solutions are possible. Although the problem usually lies in the way standards are
implemented, most of the underlying factors are located earlier in the standard-
ization chain, namely either in a weakness in the standards ideas, the standards
process or the standard specification.

Such tools could be written in any language but in practice some languages are more suit-
able than others. Simple functional languages are hardly sufficient for the multi-level category
theory but functional languages with multi-level capabilities such as the ability to represent
higher order logic as a basic construction look much more promising. In this respect Haskell
may be a strong contender, particularly as it has the monad construction already available as
a first-class structure [22]. However, first the ‘Gödel-freeness’ of Haskell has to be carefully
examined.
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under the chairmanship of Guy Doumeingts and Ricardo Gonçalves. We gratefully acknowledge
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Mengelberg, read and approved by Gödel after some accommodation.Subsequent minor additions by Jean
van Heijenoort (p.59 collected works 1 p.59, Feferman) (1986).
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[7] GÖDEL, KURT, Zum intuitionistischen Aussagenkalkül, Anzeiger der Akademie der Wissenschaftischen
in Wien 69 (1932): 65-66.Reprinted with additional comment in Gödel, K., Zur intuitionistischen Arithmetik
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Collected Works I publications 1929-1936, Oxford, p.286-295; Translators Bauer-Mengelberg, Stefan, &
Heijenoort, Jean van, (1986).
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