
The Monad in Process-Relational Systems

Nick Rossiter & Michael Heather
Department of Computer Science and Digital Technologies

Northumbria University, NE1 8ST, UK
nick.rossiter1@btinternet.com; michael.heather@trinity.cantab.net

http://www.nickrossiter.org/process/

Abstract

The work described here builds on recent work presented on struc-
ture and process in the universe, inspired by the work of Whitehead
in Process & Reality. We develop a formal attempt, using the topos
and the monad, to replace the informal categories of Whitehead. The
internal structure of the topos is explored with particular emphasis on
the nature of the pasted pullback, including the conditions for a past-
ing to be valid and the inherent recursive nature of pullback structures.
A banking example is explored, leading to the nature of the external
processes acting upon the topos such as transactions. These processes
are represented by monads, giving a three-level closure on the activity.
The nature of monads is explored. The T-algebra enables changes to
be made in the monad structure, giving the potential for adaptabil-
ity. Monads, that have been strengthened by the Kleisli lift to the
Cartesian form, can be composed naturally, facilitating the construc-
tion of large-scale information systems with reliability, as required for
transactions in the banking world. The operation of the monad on
the topos is consistent with the process-relational philosophy.

1 Introduction

We take a metaphysical approach to information systems based on the process-
relational philosophy, inspired by the work of Whitehead in Process & Real-
ity (Whitehead, 1929). The process-relational philosophy considers that the

1



world can be thought of a collection of interrelated processes, rejecting the
Cartesian dualism of Descartes, and favouring the dynamic process (flux) of
Heraclitus. The philosophy has been established by a number of workers,
particularly in the area of social interaction. A contemporary of Whitehead,
Mary Follett, was working on the idea of a social community being viewed
as a process (Follett, 1919). Later workers such as Margaret Stout developed
an ontology, based on Follett’s administrative theory, described as a process
philosophy (Stout & Staton, 2011). An associated development was pro-
cess theology, as espoused by Robert Mesle (Mesle, 1993). Margaret Stout
developed a philosophy, applicable in a social context, to handle creativity,
Becoming, imagination and experience, extendable in a language context to
ontology or Being (Stout & Love, 2015).

Much of Follett’s philosophy is relevant to current requirements in com-
puter science and information systems. There are though two problems in
realising its potential. Firstly, Follett concentrated on the social side while
her contemporary Whitehead was working on the physical side, in particular
in metaphysics. Secondly the emphasis in information systems has been on
set theory, which provides adequately the static (Being) but is restricted to
process as function. Functions provide simple mappings but lack the ability
to convert the logical types across the static and process components in an in-
tegrated manner. This type of problem was a major difficulty for Russell and
Whitehead in their series on set theory Principia Mathematica (Whitehead
& Russell, 1910). A single-level approach is inadequate for the complexities
of information systems.

There is though a clear way forward. Much of Whitehead’s Process &
Reality can be considered as informal category theory preceding the later
developments in pure mathematics, starting in the 1940s by such workers as
Eilenberg and Mac Lane (Eilenberg & Moore, 1965) and resulting in what
we term EML category theory in the 1990s (Mac Lane, 1998). For instance
Whitehead’s category of prehension, or grasping, corresponds to the cat-
egorial adjunction. Other examples are that Whitehead’s category of the
ultimate corresponds to the topos and his category of existence to the Carte-
sian Closed Category. So by combining Whitehead’s metaphysics and Mac
Lane’s category theory, we can realise the process-relational philosophy in
theory, and in applications through implementations of category theory in
functional languages. In more detail we consider how the process-relational
philosophy, naturally arising from Process & Reality, can be considered for-
mally in category theory by the monad, which through process relates inputs

2



and outputs as an adjunction. The monad operates on a category, such as a
topos, over three-levels, providing the necessary closure of being defined as
unique up to natural isomorphism. The term monad is very ’old’ but was
made better known by Leibniz. We have made a comparison of the various
usages of the term, including its use today in mathematics and computer
science.

The fundamental categorical facilities identified for a Universe, whether
from any Universe of Discourse up to the Universe, are the Topos as a struc-
tural data-type and the monad as a process. The application of the monad to
a topos gives the operation of a process on data at the highest level, defined
as a unique solution up to natural isomorphism. We will demonstrate such an
application and explore its potential. The topos is a fundamental Cartesian
Closed Category (CCC), a category with limits and exponentials subobjects,
closed at the top with the terminal object. A CCC has an internal logic of
the typed λ-calculus, an identity functor and the interchangeability of lev-
els, with nodes being either objects or categories. A topos has additional
properties beyond a CCC ((Mac Lane, 1998), at p.106) including a subob-
ject classifier, the internal logic of Heyting, that is intuitionistic logic, and a
reflective subtopos category for recursive query closure. The Heyting lattice
is modelled in set theory by the typed λ−calculus.

The application of the topos to data was established in our earlier work
introducing the topos/monad approach (Rossiter, & Heather, 2015) and
bringing out the interoperable use of allegories for legacy relational systems
(Rossiter, & Heather, 2016). Structures developed as a topos include pasted
pullbacks, to represent relatedness, and recursion in which any juncture in
the structure is a pullback in its own right. The exact nature of the match,
in the pasting operation, is discussed later. Data normalisation is the stan-
dard technique for evaluating a data design, in particular to determine how
closely the logical design matches the physical world. A number of stages
have been developed for the set-theoretic relational model: 1NF (First Nor-
mal Form), 2NF, 3NF, BCNF, 4NF, 5NF. The last and most demanding
stage 5NF concerns us here, not just for its rigour but for its definition in
category theory terms, indicated by its alternative name of Project-Join Nor-
mal Form (PJNF). In set theoretic terms, the definition of 5NF is that the
structures resulting from the projections can be joined together to return the
original structure without loss or gain of information (Kent, 1983). Other less
powerful normalisation techniques are considered to be so set-based that any
categorial approach would be categorification. The Cocartesian dual to the

3



topos may offer further insights into the data structuring process; a structure
that is closed at both the top and the bottom suffers from the closed world
assumption (CWA).

The use of the allegories of Freyd (Freyd & Scedrov, 1990) as a basis for
data structures was attempted (Rossiter, & Heather, 2016) but rejected be-
cause of their lack of naturality as set-based relations; the allegories will have
use though in interoperability as a wrapper for legacy relational databases.
Internal queries on a topos are handled by the subobject classifier, which
may be Boolean (0 or 1) or the more general double powerobject. Both
forms were illustrated in an earlier paper (Rossiter, & Heather, 2016). The
provision of examples of Heyting intuitionistic logic for an application re-
mains an objective. Internal queries are more akin to data searches, such as
through Google, but do not provide a well-defined process capability.

The first application used was of student marks in a university context,
which was adequate from the data structure viewpoint but limited from a
data process angle. A more interesting application from the process perspec-
tive is banking, including the handling of transactions. This was first studied
by us in ANPA 27 (Rossiter, Heather, & Sisiaridis, 2006).

Monadic design is a novel technique for handling the dynamic aspects
of an application. Aspects to be investigated are the adjointness, inherent
in the approach, the flavours of monad which are most suited to process
applications and the T-algebra for modifying the adjunction. The intention
in this paper is therefore to introduce a further application, banking, which
provides a more suitable test for an external process of a monad on a topos
data structure. The mechanism of pasting is to be investigated in detail
and the relationship of the topos to database normalisation is to be clarified.
Monadic design will be developed for the topos.

2 Pullback: Single Relationship

The topos has limits and the pullback is a limit. Figure 1 shows for the
student application, introduced in (Rossiter, & Heather, 2015), a simple
pullback of assessment : S×R M, the product of Student and Mark in the
context of Result. The relationship between the product S×R M and R is
adjoint, with the following logic condition holding: ∃ a ∆ a ∀. The functor
∆ selects pairs of S and M in a relationship in the context of R, such that ∃ is
left adjoint to ∆ and ∀ is right adjoint to ∆, with a consequential facility for

4



consistent logical operation. A diagram with such adjointness was termed
by Lawvere as a hyperdoctrine in the early days of EML category theory
(Lawvere, 1969). The existential functor ∃ records the decision for each
student (under the free functor F ) of a specific mark. The diagonal ∆ sorts
student and marks as a component of the underlying functorG. The universal
functor ∀ produces the final mark list generated by F . This shows the fine
structure of the adjointness F a G. Other arrows are interpreted as follows.
Projections π are from the product onto its constituents, left πl and right πr,
with dual arrows left π∗l for student capability and achievement and right π∗r
for quality of work respectively. Inclusions ι are into the sum S + M + R
from its constituents, left ιl for candidature and right ιr for marking, with
dual arrows ι−1l and ι−1r respectively.

Figure 1: Pullback for a Single Relationship S×R M; S Student, M marks,
R Result

S,M,R are each categories, with an optional internal pullback struc-
ture, giving a recursive pullback structure with potential unlimited depth,
as shown in Figure 2. These diagrams show the objects present in each of
the categories with the potential for each of the objects to be itself a cat-
egory, as in a recursive structure. The categories shown at this level, the
bottom of the data structure, are of the Dolittle type with a mapping from
the data in the left-hand pullback object, a product, to equivalent data in the
right-hand pushout object, a coproduct (Heather, 2005). Such diagrams are
also called Bicartesian squares (Banach, 1994) or pulation squares ((Adámek,
2005) pp.205-206). The top and bottom objects are apparently the same, be-
ing the identifier for the data structure. However, we agree with Lambek &
Scott ((Lambek & Scott, 1986) pp.65-68) that they are different in purpose,

5



with the top object being the intension (definition) and the bottom object
the extension (values). Everything is related implicitly in a + context; the
relationship in a × context is stronger with explicit connections. Relatedness
in Heyting logic is expressed by the condition: C×A ≤ B is isomorphic with
C ≤ A⇒ B. Such a view of relatedness is not available in set theory.

SX

id

S+

id

πl
π∗l

πr
π∗r

ıl

ı−1l

ır
ı−1r

∆

∃

∀

�
�
�
��

@
@
@
@R

@
@
@
@@R

�
�

�
��	

�
�
�
���

@
@

@
@@I

�
-

-

@
@

@
@I

�
�

�
�	(a)

MX

no

M+

no

πl
π∗l

πr
π∗r

ıl

ı−1l

ır
ı−1r

∆

∃

∀

�
�
�
��

@
@
@
@R

@
@
@
@@R

�
�
�

��	

�
�
�
���

@
@
@

@@I

�
-

-

@
@
@
@I

�
�
�
�	(b)

RX

id×R+ no

R+

id×R+ no

πl
π∗l

πr
π∗r

ıl

ı−1l

ır
ı−1r

∆

∃

∀

�
�
�
��

@
@
@
@R

@
@
@
@@R

�
�
�

��	

�
�
�
���

@
@
@

@@I

�
-

-

@
@
@
@I

�
�
�
�	(c)

Figure 2: Internal Structure of Categories: a) The Pullback in S. SX is
id×S+ id, S+ is name+SX

address. b) The Pullback in M. MX is no×M+ no,
M+ is title+MX

date, c) The Pullback in R. RX is (id×R+no)×R+ (id×R+no),
R+ is decision +RX

board.

Figure 2(a) gives the full candidate record with, for each student, id being
their identifier or key and name and address being other details held. SX , an
explicit relationship, is the product of the intensional id with the extensional
id in the context of S+. The id may be typed by name or as a surrogate num-
ber; a number is more appropriate for anonymous marking. The coproduct
S+, an implicit relationship, is the sum of the intensional key, the extensional
key and the remaining attributes with their intensional/extensional values,
all in the context of SX . The arrow ∃ picks out a student’s details from
their id; the arrow ∀ picks out details for all students and ∆ establishes the
identity for a student from their records. The arrows πl and πr are projection
arrows from the product SX to the intensional and extensional identifiers re-
spectively. The arrows ιl and ιr are inclusion arrows from the intensional and
extensional identifiers respectively to S+. All the family of π and ι arrows
are deterministic (1:1). In general pullback diagrams, the π and ι arrows
express properties of the relationship. Here, with diagrams of the Dolittle
type, such arrows are always 1:1 – an entry in the product and coproduct
is always associated with one entry in the intension and extension, and vice

6



versa.
Figure 2(b) gives the full marks record. For each mark, no is the mark as

an integer, title is the module title, date is the date of the assessment. MX , an
explicit relationship, is the product of the intensional no with the extensional
no in the context ofM+. M+ is the sum of the intensional key, the extensional
key and the remaining attributes with their intensional/extensional values,
all in the context of MX . The product MX is the classification system with
πr giving a list of classifiers in the extension. The arrow ∃ picks out the use
of a mark from a particular no, the arrow ∀ picks out details for all no used
and ∆ establishes a mark awarded from the marking records.

Figure 2(c) gives the full results record. For each result, id and no have
already been defined, decision is the final grade as awarded by the board. The
combination of id and no forms the key RX as (id×R+ no)×R+ (id×R+ no),
representing the product of intensional id×R+ no and extensional id×R+ no
in the context of R+. The coproduct R+ is ((mark+RX

no)+RX
decision), the

sum of the intensional key, the extensional key and the remaining attributes
with their intensional/extensional values, in the context of RX . With two
attributes as the key, we have maintained the same Dolittle structure with
the top and bottom attributes being the intension and extension respectively
and the family of π and ι arrows all being deterministic. The arrow ∃ picks
out the details of a result for a particular student and mark; the arrow ∀
picks out details for all student-mark combination and ∆ establishes a valid
student-mark pair from the records of results.

3 Banking Examples

3.1 Pullback: Single Relationship

We now introduce the Banking example, which is a more suitable subject for
illustrating the action of process on a topos. The simple pullback is shown in
Figure 3, defined as P×T A, that is the product of Procedure and Account
in the context of Transaction, with P the category Procedure, A the category
Account, and T the category Transactions. An Account can belong to many
users; the Procedure is the type of the transaction, for example: standing
order, direct debit, ATM cash withdrawal; the transaction is a transfer of
funds according to data processing requirements. P,A,T are categories,
with internal pullback structure, giving recursive pullbacks as required, as in

7



Figure 2 for the student example.

Figure 3: Pullback - Single Relationship: Bank Transactions T by Procedure
P and Account A

3.2 Pullback: Two Pasted Relationships

In pasted pullbacks two relations are joined together to form a square. An
additional category is introduced for User (customer) of U. Each user may
have multiple accounts across the banking network: there is a many-to-many
(N:M) relationship between U and A. The second pullback is the product
of the subproduct of the first pullback P×T A with U in the context of A,
as shown in Figure 4. The resulting relationship is of account transactions
by user. For the purpose of discussion, the pullbacks can be labelled Pb1 for
the first square P×T A and Pb2 for the second square (P×T A)×A U). By
standard EML category theory ((Mac Lane, 1998) pp.71-72) if the squares
Pb1 and Pb2 are valid pullbacks, then the whole outer square is also a pull-
back Pb2×Pb1. We therefore have three pullback diagrams in a valid pasted
relationship.

The vertical stacking of the pasted pullbacks, one above the other, in
portrait form is suited to practical applications which could involve 5-10
relationships in a deep nested structure. In category theory text books,
pasted structures are usually written in horizontal (landscape) form as in
Figure 5, which is logically identical to that in Figure 4.

The aim of pasting in topology is to ‘glue together’ two continuous func-
tions to create another continuous function. The specific pasting condition

8



Figure 4: Pullback: Two Pasted Relationships: Bank Transactions by User,
in Portrait Layout

for the pullback Pb2 × Pb1 is that ι′l = πr after Freyd’s Pasting Lemma
(Freyd & Scedrov, 1990).

Figure 5: Pullback: Two Pasted Relationships: Bank Transactions by User,
in Conventional Landscape Layout

To make the application more realistic we add two further categories,
those of B for Branch and C for (banking) Company. Branch:User is also a
N:M relationship as each Branch has many Users and each User has many
Branches but Company:Branch is a 1:N relationship: each Company has
many Branches, each Branch is within one Company. The overall relationship
is (((P×T A)×A U)×U B) with C in the context of B giving the pullback
diagram shown in Figure 6. The representation of N:M and 1:N relationships
is the same in terms of pullback structures, giving a useful symmetry in data
design.

Figure 6 involves six categories: C company, B branch, U user, A ac-

9



Figure 6: Pullback: Three Pasted Relationships: Bank Transactions by
User by Company Branch

count, P procedure, T transaction, and ten pullbacks: Pb4, P b3, P b2, P b1;
Pb4 × Pb3, P b3 × Pb2, P b2 × Pb1; Pb4 × Pb3 × Pb2, P b3 × Pb2 × Pb1,
Pb4 × Pb3 × Pb2 × Pb1. The relations within a banking system are shown
in more conventional form in Figure 7(a) where each single-headed arrow
represents a 1:N (one-to-many) relationship and each double-headed arrow
represents a N:M (many-to-many) relationship.

For our purposes, a pasted pullback is only a valid pullback if all inner
and outer diagrams are pullbacks. There are some theorems in EML category
theory ((Mac Lane, 1998) pp.71-72) which enable some deductions to be
made based on partial knowledge: for example, with the diagram in Figure
5, if the inner diagrams are pullbacks then the outer diagram is a pullback,
as stated earlier, and if the outer diagram and the right-hand diagram are
pullbacks then the left-hand diagram is a pullback. Such deductions could
be facilitated in any practical system but are a distraction from developing
a simple robust solution.

As an example of an invalid pullback, consider the diagram in Figure 8
where the relationship diagram has been modified to that in Figure 7(b).
There are seven valid pullbacks in the diagram: Pb4, P b3, P b2, P b1; Pb3 ×
Pb2, P b2 × Pb1; Pb3 × Pb2 × Pb1, but not all squares are pullbacks, for

10



Figure 7: Relations within a Banking System corresponding to (a) Figure 6
and (b) to Figure 8. C is company, B branch, U user, A account, P procedure,
T transaction.

Figure 8: Invalid Pullback Diagram, corresponding to Relations in Figure
7(b)

11



example Pb4 × Pb2. Therefore the whole diagram is not a valid pullback.
For any valid pullback, the logic of adjointness holds for the outer square and
all inner squares. Therefore for Figure 6 with its ten valid pullback diagrams,
the logic ∃ a ∆ a ∀ holds across every diagram. An example of this logic is
shown in Figure 9 for the outer square.

Figure 9: Adjointness Holds for all Pullbacks: ∃ a ∆ a ∀

4 Pasting Pullbacks: Discussion

To summarise, in a pasted diagram, all pullbacks as inner or outer squares
must commute for the diagram to be a valid pullback as a whole. The struc-
ture is recursive in that a pullback node may itself be a pullback diagram.
Two aspects are worthy of further discussion: how does the pullback dia-
gram relate to data normalisation in conventional data structuring and can
the pasting condition be expressed in other forms, drawing out the nature of
the ’=’ condition?

4.1 Normalisation

In set theoretic terms, the definition of 5NF is that the structures resulting
from the projections can be joined together to return the original structure

12



without loss or gain of information (Kent, 1983). Looking at the simple
pullback diagram, as in Figure 3, the projections are the π arrows, πl and πr,
and the join arrow is the diagonal ∆. PJNF holds through the adjointness
in every pullback: ∃ a ∆ a ∀. The arrows ∃ and ∀ involve the projections
through the compositions: ∃ = ιl ◦ πl = ιr ◦ πr and ∀ = ιl ◦ πl = ιr ◦ πr. In
more complex data structures, the same logic applies. For instance in Figure
9 with six pullback squares (including undrawn inner ones), PJNF will hold
if the whole structure and all inner squares are pullbacks with the logic:
∃ a ∆ a ∀. Surprisingly pullbacks have rarely been used in normalisation
studies, an exception being the work of Levene & Vincent (Levene & Vincent,
2000) who briefly mention the pullback inference rule, following from the
interaction between functional dependencies ∃ and inclusion dependencies ι.

It should be emphasised that the pullback is not categorification of the
set-theoretic approach to normalisation of 5NF, as in earlier work with cat-
egory theory and databases (Johnson & Rosebrugh, 2002). The form 5NF
was a belated move by set-theoretic adherents to find a viable approach to
normalisation after many earlier attempts had been only partially successful.
The pullback follows basic category theory principles and is a natural choice
for an effective data structure.

4.2 The Pasting Condition

The Pasting Condition is ι′l = πr, that is the left-inclusion of the outer
square equals the right-projection of the inner square. On the surface this
looks rather set theoretic, where the ’=’ would be without context, but in
EML category theory the ’=’ is defined naturally as unique up to natural
isomorphism, through the adjointness inherent in the pullback category.

Moreover any pullback can be represented as an equalizer (ncatlab, 2018),
as in Figure 10, which is equivalent to Figure 3. In the equalizer diagram the
product of P and A in the context of T, P×T A, maps onto the product
P×A which in turn maps onto T where the two paths, ιl ◦ πl and ιr ◦ πr,
converge.

Equalizer diagrams can also be constructed for pasted pullbacks, as in
Figure 11, which is equivalent to Figure 4. In the equalizer diagram the
product of P×T A and U in the context of A, (P×T A)×A U, maps onto
the product (P×T A)×U which in turn maps onto T where the two paths,
ιl ◦ πl ◦ π′l and ιr ◦ ι′r ◦ π′r, converge.

13



P×T A P×A

ιl ◦ πl

ιr ◦ πr
T-

-

-

Figure 10: Pullback in Figure 3 Represented as an Equalizer

(P×T A)×A U (P×T A)×U

π′l

ι′r ◦ π′r

ιl ◦ πl

ιr

T-
-

-

Figure 11: Pasted Pullback in Figure 4 Represented as an Equalizer

5 External Process

The concept of process is underpinned by metaphysics, as defined in the
writing of authors such as Alfred North Whitehead, in his book Process
& Reality (Whitehead, 1929). For any entity in the universe, the actions
possible upon it and the rules for such actions are a critical part of the whole
system. First we look at the technical features within category theory for
representing process. We next look at the requirements for the real world
and review the facilities of the theory that appear to be most relevant.

5.1 Process in Category Theory

An internal process is a morphism (arrow) within a topos, such as p : A −→
B, where the process p takes object A to object B in the same topos. Such
arrows play a natural role in the category construction. An external process
is activity on a topos E, taking it to another topos E′, such as provided by
a functor F with F : E −→ E′. Both E,E′ must conform to the natural
rules for topos construction. Constraints on the transition between E and
E′ are enforced through adjointness between F (E −→ E′) and its dual G
(E′ −→ E), such that F a G and the 4-tuple < F,G, η, ε > exists where
η is the unit of adjunction η : 1E −→ GFE, ε is the counit of adjunction
ε : FGE ′ −→ 1E′ and E, E ′ are objects in categories E and E′ respectively.
The pair of adjoint functors F a G may be written as T and the dual G a F
as S.

14



Figure 12: Multiple ’Cycles’ GFGFGF (T 3) for adjointness < F,G, η, ε >

The cycle T can be enhanced by performing it three times, T 3, to achieve
closure. Such a construction is termed a monad, with its dual S3 a comonad.
The functors and their constraints are illustrated in Figure 12. The monad
is a generalisation of the single-level monoid, which has a single operation,
binary multiplication M × M −→ M , and the identity 1 −→ M , for an
object M .

5.2 Real-world Requirements

The process is represented in information systems by the transaction, which
has been the subject of intense study because of its criticality to applications
such as banking and internet-based commerce. However, the concept is a
very general one, applying for instance to drafting where a transaction may
last several days as a technical drawing is modified from one consistent state
to another, or maybe months, as a legal document is modified similarly.
The notion of transaction in a categorial context was developed in earlier
ANPA papers, more generally at ANPA 31 (Heather & Rossiter, 2011), and
in considerable detail at ANPA 27 (Rossiter, Heather, & Sisiaridis, 2006).
The principles of the transaction are summarised as ACID: Atomicity, Con-
sistency, Isolation, Durability. Atomicity ensures that the process, however
complicated, is viewed as a single arrow. Consistency ensures that all rules
have to be satisfied before the transition is made. Isolation ensures that any
intermediate results in the process are not revealed. Durability ensures that

15



once a transaction is performed, the results persist until changed by another
transaction. The transaction is a logical technique for controlling the real
world.

5.3 Applicability of the Three Cycles

A transaction is viewed naturally as three ‘cycles’ of adjointness (Rossiter,
Heather, & Sisiaridis, 2006). The first cycle performs the actual work re-
quired; the second checks for any errors or inconsistencies resulting from the
first cycle; the third cycle consolidates the changes made provisionally in the
first cycle and checked in the second cycle. The ’cycles’ are not separate
stages; all three cycles are performed as a single snap: the prehension, or
grasping, of Whitehead (Whitehead, 1929). This single snap satisfies the
atomicity and isolation requirements. The second cycle satisfies the consis-
tency requirement, through review against the rules. The third cycle satisfies
the durability requirement, through consolidating the results. If adjointness
does not hold in any cycle, the transaction is abandoned. We now look at
the application of the monad in more detail.

T 3 T 2

TT 2

µ

Tµ

µT µ

(a)

-

-
??

IT T 2

TT
=

ηT

= µ

TI

T

Tη

=

=

(b)

-

-
?? ?
�

�

Figure 13: (a) Associative Law for Monad < T, η, µ >; (b) Left and Right
Unitary Laws for Monad < T, η, µ >

5.4 Technical Details of the Monad Approach

For a monad, the diagrams for the associative laws and unitary laws are
shown in Figure 13. These diagrams provide the formal basis for the ap-

16



S S2

S3S2

δS

δ

δ Sδ

-

-
??

(a)

S S

S2IS
εS

=

= δ

S

SI

=

Sε

=

(b)

�

�
?? ?

-

-

Figure 14: (a) Associative Law for Comonad < S, ε, δ > (b) Left and Right
Unitary Laws for Comonad < S, ε, δ >

proach. Figure 13(a) shows the relationship between T 3, T 2 and T where T
is the endofunctor GF : X −→ X, X being any category. An endofunctor
is a functor with the same source and target. A pair of adjoint functors F
and G is an endofunctor as the source of F : X −→ Y is X and the target
of G : Y −→ X is also X. The unit or identity of the monad is η : 1 −→ T
from Figure 13(b) and the multiplication of the monad is µ : T 2 −→ T from
Figure 13(a). We therefore write the monad T as the object < T, η, µ >, with
the category X, on which the monad is based, omitted as it is inferred from
the functors involved. However, it is not wrong to write the monad as the
object < X, T, η, µ > where the nature of X has a bearing on the arguments
being made. Further it is often useful to say on which category the monad
is based.

For a comonad, the dual of the monad, the diagrams for the associative
laws and unitary laws are shown in Figure 14. Figure 14(a) shows the rela-
tionship between S, S2 and S3 where S is the endofunctor FG : Y −→ Y, Y
being any category. The counit or identity of the comonad is ε : S −→ 1 from
Figure 14(a) and the comultiplication of the comonad is δ : S −→ S2 from
Figure 14(b). We therefore write the comonad S as the object < S, ε, δ > or
< Y, S, ε, δ >.

Figure 15 shows the two triangular identities for the monad in the cate-
gory X, derived by applying the interchange law to Figure 13(b). Through
commutativity Figure 15 defines the arrow GεF : GFGF −→ GF . This

17



IXGF GFGF GFIX
ηGF GFη

GF

= =GεF

- �

?

@
@
@
@
@
@
@
@
@
@@R

�
�

�
�

�
�
�

�
�
��	

Figure 15: The Monad in the category X: Triangular Identities defining ε

arrow is the multiplication of Figure 13, that is µ : T 2 −→ T . Therefore we
can rewrite the monad < T, η, µ > as < T, η,GεF > for an alternative view,
based on the units and counits of adjunction, η and ε respectively.

5.5 Historical and Present Usage of the Monad Term

According to Hippolytus (170 − 235 AD), the worldview was inspired by
the Pythagoreans, who called the first thing that came into existence the
monad, from which came the dyad, triad, tetrad, etc. (Bunsen et al. 1854).
Gnosticism is a modern term for a multitude of Jewish religious ideas and
systems from the first and second century AD, with the highest God, Supreme
Being or the One, termed the Monad. The Syrian-Egyptian school depicts
creation as coming from a primal monadic source, finally resulting in the
creation of the material universe.

The monad entered metaphysics as the Monadology of Leibniz, written
from 1712-1714 as Principes de la nature et de la grâce fondé en raison, which
has since been published in various forms and languages (Leibniz, 1714).
Leibniz allows just one type of element in the building of the universe, which
is given the name monad or entelechy, and described as a simple substance,
which has no parts, hence indivisible. Monads are elementary particles with
blurred perceptions of one another and have been described as eternal, in-
decomposable, individual, subject to their own laws, un-interacting, each
reflecting the entire universe in a pre-established harmony; monads are cen-
tres of force; substance is force, while space, matter, and motion are merely
phenomenal. Like atoms, monads are irreducible but differ in their complete

18



mutual independence, and in their following of a preprogrammed set of in-
structions peculiar to itself, so that a monad ‘knows’ what to do at each
moment. Each monad is like a little mirror of the universe.

The monad term is also used in music, where it is a single note, with
a dyad being 2 notes, a triad 3 notes, etc., and in biology where it is a
unicellular organism.

In functional programming, the monad is an increasingly popular con-
struction as an abstract data type, with promising developments in the
language Haskell (Haskell, 2017; Lipovača, 2011), named after Haskell B
Curry, who developed the transformation of functions through currying in
the λ−calculus. The monad in Haskell is formally classified as an exten-
sion of the monad developed in category theory, involving the notion of
a strong monad (Moggi, 1989; Mulry, 2013). Such a monad is defined in
higher-order category theory as a bicategory construction. In more concrete
terms a strong monad is defined as a (categorial) monad with strengthening
with respect to products and idempotency. The strengthening with products
leads to the concept of a Cartesian monad where, if the underlying categories
are pullbacks, the monad T preserves pullbacks and µ and η are Cartesian,
then the monad is Cartesian. Such a construction facilitates the use of T in
transformations where a Cartesian type is expected. The strengthening with
idempotency provides resilience as further operations are performed. So with
the underlying category for the monad X being Cartesian with the object
A × B, there is a natural transformation τA,B from the Cartesian operation
(A×TB) to T (A×B) such that strengthening with the identity I is immate-
rial, consecutive applications of strength commute, and strength commutes
with monad unit and multiplication (Moggi, 1991). Further details of the
Cartesian monad are found later in this paper in Section 7, in the work by
Mulry (Mulry, 2013) and in Appendix C of Leinster’s book Higher Operads,
Higher Categories (Leinster, 2004).

Category theory is regarded as a unifying force so might be able to pro-
vide an insight into all of the above notions of the monad. The notion of
unit applies to all the various usages and this is continued into the categorial
version with the unit in the monad definition < T, η, µ > of η : 1 −→ T and
the counit in the comonad definition < S, ε, δ > of ε : S −→ 1. The monad
of Leibniz is similar to the categorial version in respect of their following a
preprogrammed set of instructions with each monad being a little mirror of
the universe. However, there is a major difference – Leibniz’s monad is a
particle and the categorial monad is a process – emphasising the set-based

19



nature of Leibniz’s work. The use of the term monad in music appears to
reflect the physical reality of a single note. From a more constructive point
of view, musical units, and hence monads, might also include chords and
other logical combinations of notes. An application of the categorial monad
to music is under active consideration. The use of the term monad for a uni-
cellular organism has lapsed, maybe because the general term was confusable
with its use for specific unicellular organisms, the Monas. The comparison
between the monad of functional programming and that in category theory is
the most useful: this shows that the Cartesian monad selected for functional
programming is indeed the type of monad needed for information systems as
the underlying Haskell category has products, in particular pullbacks, which
form the basis of our structural approach.

6 Process on a Topos

The monad and comonad processes are applied to a topos, defining the struc-
ture of the data, to perform the transactions. The design of the processes ia
therefore termed Monadic Design. We write the process on a topos as:

T : E −→ E′

where T is the Cartesian monad < T, η, µ > for a category E with endo-
functor T , that is GF : E −→ E, unit of adjunction η : 1 −→ T and unit of
multiplication µ : T 2 −→ T .

The source topos is E and the target topos is E′, with the topos based
on pullbacks, including the pasted types, as described in Section 3. The
type (intension) of the source and target is the same but the data values
(extension) will vary. Closure is achieved as the type is preserved.

For the running bank example, the Cartesian monad T is the banking
system transaction, the source information system is E and the target infor-
mation system is E′. There may be more than one adjunction for a monad
T , based on a category E. For instance < F,G, η, ε > may be one adjunc-
tion for E −→ E′ with another of < FA, GA, ηA, εA > for A −→ E, where
A is a subcategory of E. So a variety of adjunctions may be handled by a
single monad, over various subcategories of a particular category. This gives
flexibility in handling different data-sets with the same underlying structure.

For the process there will also be a comonad:

20



S : E′ −→ E

where S is the Cartesian comonad < S, ε, δ > for a category E′ with
endofunctor S, that is FG : E′ −→ E′, counit of adjunction ε : S −→ 1,
counit of multiplication δ : S −→ S2.

Categories of algebras can be defined over the monad and comonad.
From the algebraic perspective, there are two approaches employing the
monad/comonad as the underlying categories. The category of algebras over
a monad is traditionally called its Eilenberg-Moore category (Eilenberg &
Moore, 1965) ((Mac Lane, 1998) at pp. 139-142). Dually, the Eilenberg-
Moore category of a comonad is its category of coalgebras. The subcategory
of free algebras is traditionally called the Kleisli category of the monad, as is
its dual the subcategory of co-free co-algebras of the comonad ((Mac Lane,
1998) at pp. 147-148). The Kleisli category of a monad transforms a monad
into a form more suitable for implementation in a functional language such
as Haskell. Compared to the EML form of Mac Lane, Kleisli strength gener-
alises the notion of commutativity and guarantees that products lift to the
corresponding Kleisli categories (Mulry, 2013). From the point of view of
products, the monads developed to Kleisli strength are applicable in a much
wider range of computing applications. Kleisli categories are discussed in
more detail in Section 7.

6.1 The T-algebra

The T-algebras are one of the algebraic forms resulting from the work of
Eilenberg and Moore (Eilenberg & Moore, 1965). Such algebras facilitate
changing the definition of a monad and therefore permitting fundamental
changes to the operand of our process. For any category X, which in our
case is a topos E, the T-algebra produces a new consistent state of adjunction
for a modified intension.

In more detail, applying the T-algebra to a topos E, in the monad with ad-
junction< GF, η, µ >, yields a new monad adjunction< GTF T , ηT , GT εTF T >:
E −→ ET; that is a new monad adjunction F T a GT is defined to accommo-
date the changed category ET. A T-algebra is < e, h > where e is an object
in E. The structure map of the algebra is h : Te −→ e such that the diagrams
in Figure 16 commute. Beck’s Theorem provides rules on which categorial
transformations in the T-algebra X −→ XT are valid (Beck, 2003). This is

21



sometimes called PTT (Precise Tripleability Theorem).

(a)

T 2e

Te
h

Th

µe

Te

e

h

(b)

e
ηe

Te

1

e

h

-

-
? ?

-
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

?

Figure 16: T-algebra: (a) Associative Laws, (b) Unitary Laws

7 Application

The categorial monadic approach is being used for the Blockchain (Mered-
ith, 2015), a transaction system, adopted by Bitcoin, for keeping hundreds or
even thousands of copies of each transaction record, using multiple transac-
tion logs. The monadic design pattern provides a broad range of transactional
semantics with composition the key to scaling any system. The blockchain
approach is drawing interest from the established banking industry, where a
blockchain is viewed as a shared, encrypted ‘ledger’ that cannot be manip-
ulated, offering promise for secure transactions (Phys Org, 2015). Meredith
indicates that compositionality is the key to reliability but offers few details
on how this is achieved in the monad. Compositionality is a cornerstone
of category theory, defined as a minimum up to some level of isomorphism.
In monad/comonad definitions there is the choice of the Mac Lane (EML)
or Kleisli algebras as introduced above in Section 6. It is the approach ow-
ing to Heinrich Kleisli that has elevated compositionality to a higher level,
through the Kleisli lift, described for instance by Mulry (Mulry, 2013). In
the diagram in Figure 17, H is a monad < H, η, µ > in X and K is a monad
< K, γ, ρ > in Y. The Kleisli categories, representing the free algebras, are
XH and YK. The Kleisli lift of functor F is the functor F̄ : XH −→ YK such
that the diagram in Figure 17 commutes. Associated with this diagram is

22



the definition of the lifting natural transformation λ : FH −→ KF in Figure
18, derived through applying the interchange law to the component functors
and natural transformations in the two monads defined above.

XH

X
F

F̄

IH

YK

Y

IK

-

-

6 6

Figure 17: Kleisli Lifting of Functor F : X −→ Y to F̄ : XH −→ YK

F
Fη

ρF

KF

(F̄C)
λ

FH

γF

Fµ

(F̄D)

FHH

KKF

λH

Kλ

KFH

-
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

?

-

-

?

?

Figure 18: Kleisli Lifting of Functor F to F̄ : the lifting natural transforma-
tion λ : FH −→ KF

So far the Kleisli lift applies to any category, giving what is termed Kleisli
prestrength. We now need to consider the Kleisli lifting of a bicategory,
one involving a product of two categories. This is essential if the products
are to be well defined for compositional purposes as indicated in Section 6.
The lifting gives rise to what is termed Kleisli strength, forming the basis
of the Cartesian monad, a term introduced earlier in our overview of the

23



Haskell programming language in Section 5.5. The terms Cartesian monad
and strong monad encountered in the literature are for our purposes inter-
changeable. The enhanced compositionality is achieved firstly by defining
a natural transformation τA,B : A × TB −→ T (A × B) for objects A,B,C
in the category X with monad < T, η, µ > such that the diagram in Figure
19 commutes. A further natural transformation λTA : I × TA −→ TA is
also defined, as shown in the commuting diagram in Figure 20, to reinforce
the interchange laws employed in Figure 18. Both the diagrams defining the
Cartesian monad involve the Cartesian product, the most relevant for infor-
mation systems, but the theory is actually more general covering the tensorial
(outer) product A⊗B, which may have more relevance for studies involving
vectors. Further diagrams are required when the product is tensorial, rather
than Cartesian, involving multiplication through the arrow µA×B and asso-
ciativity though the arrow τA,B×C . A major advantage of Kleisli strength
monads is that they can, in general, be composed naturally, unlike monads
of weaker strength. Such composability increases reliability and scalability,
both of which are vital for large scale information systems. Kleisli strength
facilitates the discovery of distributive laws.

A×B 1A × ηB
A× TB

ηA×B

T (A×B)

τA,B

-
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

?

Figure 19: Cartesian Monad: Diagram defining the natural transformation
τA,B

Meredith (Meredith, 2015) envisages that the monadic design patterns,
providing a broad range of transactional semantics, would have a front-end
data sublanguage of the applied π−calculus, a compositional process calculus
developed for concurrent programming by Milner (Milner, 1999). However,
other presentational techniques from category theory are available, such as

24



I × TA τI,A
T (I ×A)

λTA

TA

T (λA)

-
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

?

Figure 20: Cartesian Monad: Diagram defining the natural transformation
λTA

bigraphs, and should also be evaluated before a choice is made.
In the functional programming language Haskell, monadic design patterns

are employed. The design pattern for a category C is H =< H, η, µ >
where H is the monad with type constructor H, η is a return function,
µ : HHA −→ A is a join function. In more conventional monad terminology
H is the endofunctor, η the unit of adjunction and µ the multiplication
(Mulry, 2013). If the monad is of the Maybe type, there are facilities for
exception handling. To facilitate monad composition, the monad is lifted into
a Kleisli category, with the power of a strong monad or a Cartesian monad. A
monad composition operator, also known as the Kleisli composition operator,
is available for composing one monad with another naturally (Diehl, 2013).

Returning to our banking example we can see that composition of pro-
cesses is readily available if our monads are Cartesian, with the Kleisli lift.
So for two monads T =< T, η, µ > and U =< U, γ, ρ >, we can write UT for
the composite process, where say T is the banking transaction with checks
for its feasibility and U is a task establishing remote mirror facilities, as in
distributed data recovery systems, for recording the results persistently. Such
compositionality could be enforced over large distributed systems by involv-
ing many individual monads. So monads can be used either in the small
individually in a local environment or, through composition, in the whole
universe of the information system. The efficacy of the monad approach can
be proven through category theory, thereby increasing the reliability and ro-
bustness of a system, where every transaction is critical. Further the monad

25



can be directly implemented in the programming language Haskell, enabling
experimental results to be derived. An approach has therefore been devel-
oped that is consistent with the process-relational philosophy, guaranteeing
integrity in an experimental environment, with the monad as process and
topos as relation.

8 Summary

The combination of the topos, as the underlying data-type, and the monad, as
the process or transformer, appears to satisfy the requirements of information
systems. The topos is based on pullbacks, which can be nested recursively
or pasted together for complex relationships. The bottom level of Dolittle
diagrams holds both the intension and extension for the data held. Data nor-
malisation arises naturally through the rules of pullback construction. The
subobject classifier of a topos facilitates internal queries on the information
system. The monad is defined as three components for operations on a cat-
egory: an endofunctor that is often an adjunction, the unit of adjunction
and the unit of multiplication. There are two main approaches for applying
the monad as an algebra: Eilenberg-Moore (EML) and Kleisli. The Kleisli
approach finds favour, with its lift to Cartesian monads handling products,
providing compositionality across a succession of monads and a route for
experimental implementation in Haskell. The categorial features employed
of monad and topos correspond to process and relation respectively in the
process-relational philosophy.

9 Acknowledgements

We am very grateful to Michael Brockway of Department of Computer Sci-
ence and Digital Technologies, Northumbria University, for helpful discus-
sions on the theory of pasted pullbacks and monads.

References

Adámek, Jĩŕı, Herrlich, Horst, Strecker, George E. (2005). Abstract and con-
crete categories, John Wiley (1990). Recent edition at http://katmat.
math.uni-bremen.de/acc.

26

http://katmat.math.uni-bremen.de/acc
http://katmat.math.uni-bremen.de/acc


Banach, R. (1994). Regular relations and Bicartesian Squares, Theoret-
ical Computer Science 129(1) 187-192. https://doi.org/10.1016/

0304-3975(94)90086-8

Beck, Jonathan Mock. (2003). Triples, Algebras and Cohomology, Reprints
in Theory and Applications of Categories, Columbia University PhD
thesis, 2: 159, MR 1987896, originally published 1967. http://www.

tac.mta.ca/tac/reprints/articles/2/tr2abs.html

Bunsen, Christian Karl Josias, Freiherr von; Hare, Julius Charles & Bernays,
Jacob. (1854). Hippolytus and his Age, published Longman, Brown,
Green, & Longmans, London 577 pp.

Diehl, Stephen. (2013). Monads made difficult. http://www.stephendiehl.
com/posts/monads.html

Eilenberg, Samuel, & Moore, John C. (1965). Adjoint functors and triples,
Illinois J Math 9(3) 381-398. http://projecteuclid.org/euclid.

ijm/1256068141.

Follett, M P. (1919). Community is a process, Philosophical Review 28
576588. http://economics.arawakcity.org/node/95

Freyd, Peter, & Scedrov, Andre. (1990). Categories, Allegories. Mathematical
Library 39 North-Holland.

λ−Haskell: an advanced, purely functional programming language. (2017).
https://www.haskell.org/

Heather, Michael, & Rossiter, Nick. (2005). Logical Monism: The
Global Identity of Applicable Logic, Advanced Studies in Mathe-
matics and Logic 2 39-52. http://nickrossiter.org.uk/process/

advstudiesmathsmonism.pdf

Heather, Michael, & Rossiter, Nick. (2011). The Process Category of Re-
ality, ANPA 31, Cambridge 224-262. http://nickrossiter.org.uk/

process/anpa0911.pdf

Johnson, M & Rosebrugh, R. (2002). Sketch data models, relational schema
and data specifications. Electron Notes Theor Comput Sci 61 51-63.
http://www.mta.ca/~rrosebru/articles/sdmrsds.pdf

27

https://doi.org/10.1016/0304-3975(94)90086-8
https://doi.org/10.1016/0304-3975(94)90086-8
http://www.tac.mta.ca/tac/reprints/articles/2/tr2abs.html
http://www.tac.mta.ca/tac/reprints/articles/2/tr2abs.html
http://www.stephendiehl.com/posts/monads.html
http://www.stephendiehl.com/posts/monads.html
http://projecteuclid.org/euclid.ijm/1256068141
http://projecteuclid.org/euclid.ijm/1256068141
http://economics.arawakcity.org/node/95
https://www.haskell.org/
http://nickrossiter.org.uk/process/advstudiesmathsmonism.pdf
http://nickrossiter.org.uk/process/advstudiesmathsmonism.pdf
http://nickrossiter.org.uk/process/anpa0911.pdf
http://nickrossiter.org.uk/process/anpa0911.pdf
http://www.mta.ca/~rrosebru/articles/sdmrsds.pdf


Kent, William. (1983). A Simple Guide to Five Normal Forms in Relational
Database Theory, Communications of the ACM 26(2) 120-125. http:
//www.bkent.net/Doc/simple5.htm

Lambek, J, & Scott, P J. (1986). Introduction to Higher
Order Categorical Logic, Cambridge. https://github.

com/Mzk-Levi/texts/blob/master/LambekJ.,ScottP.J.

IntroductiontoHigherOrderCategoricalLogic.pdf

Lawvere, F W, (1969), Adjointness in Foundations, Dialectica 23 281-296.

Leinster, Tom. (2004). Higher Operads, Higher Categories, London Mathe-
matical Society Lecture Note Series 298, Cambridge.

Leibniz G W. (1714). Monadologie; translated by Nicholas Rescher, 1991.
The Monadology: An Edition for Students. University of Pittsburgh
Press. Ariew and Garber 213, Loemker 67, Wiener III.13, Woolhouse
and Francks 19. Online translations: Jonathan Bennett’s translation;
Latta’s translation; French, Latin and Spanish edition, with facsimile of
Leibniz’s manuscript at the Wayback Machine (archived July 4, 2012);
further editions établie par E Boutroux, Paris LGF 1991; Lamarra, A,
Contexte GènGètique et Première Réception de la Monadologie, Revue
de Synthese 128 311-323 (2007).

Levene, Mark, & Vincent, Millist W. (2000). Justification for inclusion de-
pendency normal form, IEEE Transactions on Knowledge and Data
Engineering 12(2), pp. 281-291. http://eprints.bbk.ac.uk/196/1/

Binder1.pdf

Lipovača, Miran. (2011). Learn You a Haskell for Great Good!, A Beginner’s
Guide, William Pollock, San Francisco.

Mac Lane, Saunders. (1998). Categories for the Working Mathematician, 2nd
ed, Springer.

Meredith, Lucius Greg. (2015). Monadic design patterns for the Blockchain,
DEVCON1, Ethereum Developer Conference, Gibson Hall, London, 9-
13 Nov. https://www.youtube.com/watch?v=uzahKc_ukfM&feature=
youtu.be

Mesle, C Robert. (1993). Process Theology: A Basic Introduction.

28

http://www.bkent.net/Doc/simple5.htm
http://www.bkent.net/Doc/simple5.htm
https://github.com/Mzk-Levi/texts/blob/master/Lambek J., Scott P.J. Introduction to Higher Order Categorical Logic.pdf
https://github.com/Mzk-Levi/texts/blob/master/Lambek J., Scott P.J. Introduction to Higher Order Categorical Logic.pdf
https://github.com/Mzk-Levi/texts/blob/master/Lambek J., Scott P.J. Introduction to Higher Order Categorical Logic.pdf
http://eprints.bbk.ac.uk/196/1/Binder1.pdf
http://eprints.bbk.ac.uk/196/1/Binder1.pdf
https://www.youtube.com/watch?v=uzahKc_ukfM&feature=youtu.be
https://www.youtube.com/watch?v=uzahKc_ukfM&feature=youtu.be


Milner, Robin. (1999). Communicating and Mobile Systems: The
π−calculus, Cambridge.

Moggi, Eugenio. (1989). Computational Lambda-Calculus and Monads, Pro-
ceedings of the Fourth Annual Symposium on Logic in Computer Science
1423.

Moggi, Eugenio, (1991). Notions Of Computation And Monads, Information
And Computation 93 5592.

Mulry, Philip. (2013). Notions of Monad Strength, Banerjee, A, Danvy,
O, Doh, K-G, Hatcliff, J, (edd.) David A. Schmidts 60th Birthday
Festschrift, EPTCS 129, 6783, doi:10.4204/EPTCS.129.6. https://

arxiv.org/pdf/1309.5132.pdf

ncatlab. (2018). Pullback as an Equalizer. https://ncatlab.org/nlab/

show/pullback

Phys Org. (2015). Bitcoin’s ‘blockchain’ tech may transform banking. http:
//phys.org/news/2015-12-bitcoin-blockchain-tech-banking.

html

Rossiter, B N, Heather, M A, & Sisiaridis, D. (2006). Process as a World
Transaction, Proceedings ANPA 27 Conceptions, 122-157. http://

nickrossiter.org.uk/process/anpa064.pdf

Rossiter, Nick, & Heather, Michael. (2015). Formal Natural Philoso-
phy: Top-down Design for Information & Communication Technolo-
gies with Category Theory, ANPA 35, Explorations, Grenville J Croll,
Nicky Graves Gregory (edd.), 155-193. http://nickrossiter.org.uk/
process/anpa-2015-a5-Latex.pdf

Rossiter, Nick, & Heather, Michael. (2016). Abstract Relations and
Allegorical Categories, ANPA 36, Explorations II, Anton L.
Vrba (ed.) 103-134. http://nickrossiter.org.uk/process/

Rossiter-ANPA-PROC-36updated.pdf

Stout, Margaret, & Staton, Carrie M. (2011). The Ontology of Process
Philosophy in Follett’s Administrative Theory, Administrative Theory
& Praxis, 33(2) 268-292. http://www.tandfonline.com/doi/abs/10.
2753/ATP1084-1806330206?journalCode=madt20

29

https://arxiv.org/pdf/1309.5132.pdf
https://arxiv.org/pdf/1309.5132.pdf
https://ncatlab.org/nlab/show/pullback
https://ncatlab.org/nlab/show/pullback
http://phys.org/news/2015-12-bitcoin-blockchain-tech-banking.html
http://phys.org/news/2015-12-bitcoin-blockchain-tech-banking.html
http://phys.org/news/2015-12-bitcoin-blockchain-tech-banking.html
http://nickrossiter.org.uk/process/anpa064.pdf
http://nickrossiter.org.uk/process/anpa064.pdf
http://nickrossiter.org.uk/process/anpa-2015-a5-Latex.pdf
http://nickrossiter.org.uk/process/anpa-2015-a5-Latex.pdf
http://nickrossiter.org.uk/process/Rossiter-ANPA-PROC-36updated.pdf
http://nickrossiter.org.uk/process/Rossiter-ANPA-PROC-36updated.pdf
http://www.tandfonline.com/doi/abs/10.2753/ATP1084-1806330206?journalCode=madt20
http://www.tandfonline.com/doi/abs/10.2753/ATP1084-1806330206?journalCode=madt20


Stout, Margaret, & Love, Jeannine M. (2015). Relational Process On-
tology, A Grounding for Global Governance, Administration & Soci-
ety 47(4) 447-481. http://journals.sagepub.com/doi/pdf/10.1177/
0095399713490692

Whitehead, Alfred North, & Russell, Bertrand. (1910). Principia Mathemat-
ica 1 Cambridge University Press.

Whitehead, Alfred North. (1929). Process and Reality: An Essay in
Cosmology.. Macmillan, New York; corr.ed., eds. David Ray Grif-
fin and Donald W. Sherburne, New York: Free Press (1978).
https://monoskop.org/images/4/40/Whitehead_Alfred_North_

Process_and_Reality_corr_ed_1978.pdf

30

http://journals.sagepub.com/doi/pdf/10.1177/0095399713490692
http://journals.sagepub.com/doi/pdf/10.1177/0095399713490692
https://monoskop.org/images/4/40/Whitehead_Alfred_North_Process_and_Reality_corr_ed_1978.pdf
https://monoskop.org/images/4/40/Whitehead_Alfred_North_Process_and_Reality_corr_ed_1978.pdf

	Introduction
	Pullback: Single Relationship
	Banking Examples
	Pullback: Single Relationship
	Pullback: Two Pasted Relationships

	Pasting Pullbacks: Discussion
	Normalisation
	The Pasting Condition

	External Process
	Process in Category Theory
	Real-world Requirements
	Applicability of the Three Cycles
	Technical Details of the Monad Approach
	Historical and Present Usage of the Monad Term

	Process on a Topos
	The T-algebra

	Application
	Summary
	Acknowledgements

