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Process-Relational Philosophy 1

● Whitehead's Process and Reality introduces many of the 
concepts of metaphysics. 

● Later workers, including Robert Mesle, Margaret Stout and 
Mary Follett, have used the ideas of Whitehead to formulate the 
process-relational philosophy. 

● Such a philosophy has been applied in a social context to 
handle creativity, Becoming, imagination and experience. 

● In a language context, the same philosophy has been applied to 
ontology or Being.  



  

Process-Relational Philosophy 2

● The process-relational philosophy considers that the world can 
be thought of a collection of interrelated processes, 

– rejecting the Cartesian dualism of Descartes, and 

– favouring the dynamic process (flux) of Heraclitus. 
● Such a philosophy satisfies current requirements in computer 

science and information systems but has often been difficult to 
achieve. 



  

Problems in Computing Science

● The basis of much of computer science is set theory, 

– provides adequately the static (Being)

– but is restricted to process as function. 
● Further, handling the logical types across the static and process 

components in an integrated manner is very difficult in practice, 
a problem encountered by Russell and Whitehead in their 
series on set theory, Principia Mathematica. 

● A single-level approach is inadequate for the complexities of 
information systems. 



  

Process and Reality

● Much of Whitehead's Process and Reality can be considered as 
informal category theory

– preceding the later developments in pure mathematics, 
starting in the 1940s by such workers as Eilenberg and Mac 
Lane (EML Category Theory) 

● For instance Whitehead's category of prehension, or grasping, 
corresponds to the categorial adjunction. 

● Other examples are that Whitehead's category of the ultimate 
corresponds to the topos and his category of existence to the 
Cartesian Closed category. 



  

Process-relational and Category 
Theory

● In this paper we consider how the process-relational philosophy, 
naturally arising from Process and Reality, can be considered 
formally in category theory by the monad, which relates inputs 
and outputs through adjointness. 

● The monad operates on a category, such as a topos, over 
three-levels, providing the necessary closure of being defined 
as unique up to natural isomorphism. 

● The term monad is very 'old' but was made better known by 
Leibniz. We have made a comparison of the various usages of 
the term, including its use today in mathematics and computer 
science. 



  

The Topos – Structural Data-type

● Is a Cartesian Closed Category (CCC)
– Products; Closure at top; Connectivity (exponentials); Internal Logic of λ 

calculus; Identity; Interchangeability of levels 

● If we add:
– Subobject classifier

– Internal logic of Heyting (intuitionistic)

– Reflective subtopos (query closure)

● We get a Topos



  

Structural Examples

● Student Marks
– Simple (single pullback)

● Bank Transactions
– Simple (single pullback)

– Simple pasted (2 pasted squares, 3 pullbacks)

– Complex (5 pasted squares, 10 pullbacks)

– Complex structure (5 pasted squares, not valid 
pullback)



  

Pullback - Single Relationship 
Student Marks



  

Pullback - Single Relationship
Constraints

● SX
R
 M (Student X

Result
 Mark) 

● Logic of adjointness: ꓱ ┤Δ ┤V
– Δ selects pairs of S and M in a relationship in 

context of R

– Such that  ꓱ ┤Δ and Δ ┤V

– Termed by Lawvere as a hyperdoctrine
● Projections π are from product, left and right (dual π*)
● Inclusions ι are into sum S+M+R, left and right (dual ι-1)

● S, M, R are categories, with internal pullback structure, giving 
recursive pullbacks 



  

Recursive Pullbacks

A node of a 
pullback may 
itself 
be a pullback

Each node in the pullback for Student over Marks in context of Result
is itself a pullback, giving a recursive structure



  

Pullback - Single Relationship:
Bank Transactions by Procedure and Account 



  

Pullback - Single Relationship
Details

● P X
T
 A (Procedure X

Transaction 
Account )

– Procedure is type of transaction: e.g. standing 
order, direct debit, ATM cash withdrawal

– Account can belong to many users

– Transaction is item for transfer of funds according to 
ACID requirements

● P, A,T are categories, with internal pullback structure, giving 
recursive pullbacks 



  

Pullback - Two Pasted Relationships:
Bank Transactions by User/Account

Three 
Pullbacks
Pb1, Pb2,
Pb2 X Pb1

U is user
A is account
T is transaction

Usually written in
horizontal (landscape)
form. Vertical layout 
enables deep nested
structures to be 
represented more readily

Pasting condition for Pb2 X Pb1: ι
l

' = π
r 
after Freyd's Pasting Lemma  

For our purposes, a pasted pullback is only a valid pullback if all inner and outer
diagrams are pullbacks
Pasting is associative (order of evaluation is immaterial) but not commutative 
(relationship A:B 1:N is not same as A:B N:1) 



  

Pullback – x10 Natural
Bank Account Transactions

U

   1:N

C company, B branch, U user, A account, P procedure, T transaction

10 pullbacks: Pb1, Pb2, Pb3, Pb4
Pb2 X Pb1, Pb3 X Pb2, Pb4 X Pb3
Pb3 X Pb2 X Pb1, Pb4 X Pb3 X Pb2
Pb4 X Pb3 X Pb2 X Pb1

For our purposes, a pasted pullback
is only a valid pullback if all inner and 
outer diagrams are pullbacks 

N:M and 1:N are
handled by same 
pullback structure



  

Invalid Pullback

Invalid as 
not all squares
are pullbacks 

For instance
Pb4 X Pb2 is not 
a pullback



  

Adjointness Holds for all Pullbacks

ꓱ ┤Δ ┤Ɐ for this outer pullback and all other 9 inner 
pullbacks



  

Pasting Pullbacks – Discussion 1

● All diagrams commute
● All diagrams, inner or outer, are pullbacks

– In pure maths, the condition is relaxed a little
● Not appropriate for applied 

● Structure is recursive
– A pullback node may be a pullback structure in its 

own right

– No limit to recursion



  

Pasting Pullbacks – Discussion 2

● Pasting condition appears to be: 

–  ι
l

' = π
r     

(left-inclusion of outer square = right-

projection of inner square) 

– Discussed further later



  

Pasting Pullbacks – Discussion 3

● Pasted structure 
– is a Cartesian Closed Category (CCC) with 

products, terminal object and exponentials

– is a topos as a CCC with subobject classifier and 
internal Heyting Logic 

● The subobject classifier provides an internal 
query language



  

The Pasting Condition 1

● ι
l
' = π

r
     (left-inclusion of outer square = right-

projection of inner square
– Looks rather set theoretic

● But any pullback can be represented as an 
equalizer (ncatlab)



  

Equalizer for Pullback

Maps relation onto product onto context via 2 paths through pullback



  

The Pasting Condition 2

Similarly for a pasted pullback, the equaliser is

Equals in sets is undefined as context is not defined

Equaliser in categories, as a limit, is fully defined up to natural isomorphism



  

External Process

● Metaphysics (Whitehead)
● Transaction (universe, information system)
● Activity

– Can be very complex but the whole is viewed as 
atomic – binary outcome – succeed or fail

– Before and after states must be consistent in terms 
of rules

– Intermediate results are not revealed to others

– Results persist after end



  

Transaction in Category Theory

● In earlier work (ANPA 2010) we used 
adjointness to represent a transaction
– Employing multiple cycles to capture ACID

● The aim now is to abstract this work using the 
monad, which we earlier described as the way 
forward

● The monad is an extension of the monoid to 
multiple levels
– Monoid: M X M → M, 1 → M (binary multiplication, 

unit)



  

Multiple 'Cycles' to represent 
adjointness

● Three ‘cycles’ GFGFGF: 

– Assessing unit η in L and counit ε in R to ensure overall 
consistency 

– 'Cycles' are performed simultaneously (a snap, not each 
cycle in turn)

η: 1L  GF(L) ε: FG(R)  1R

η

ε

F -| G



  

Promising Technique - Monad
● The monad is used in pure mathematics for 

representing process
– Has 3 'cycles' of iteration to give consistency

● The monad is also used in functional 
programming to formulate the process in an 
abstract data-type
– In the Haskell language the monad is a first-class 

construction
● Haskell B Curry transformed functions through currying in 

the λ-calculus
● The Blockchain transaction system for Bitcoin and more 

recently other finance houses uses monads via Haskell
– Reason quoted is it's a simple, reliable and clean technique 

 



  

Monad/Comonad Overview

● Functionality:
– Monad

● T3 → T2 → T (multiplication)
● 3 'cycles' of T, looking back 

– Comonad (dual of monad)
● S → S2 → S3 (comultiplication)
● 3 'cycles' of S, looking forward 

● Objects:
– An endofunctor on a category X 



  

Using the Monad Approach

● A monad is a 4-cell <1,2,3,4>
– 1 is a category X

– 2 is an endofunctor (T: X → X, functor with same 
source and target)

– 3 is the unit of adjunction η: 1
X
 → T (change, looking 

forward) 

– 4 is the multiplication μ: T X T → T (change, looking 
back)

● A monad is therefore <X, T, η, μ> (or <T, η, μ> or <T, η, GεF> or 
in usage T)



  

The Comonad

● The dual of the monad
● A comonad is a 4-cell <1,2,3,4>

– 1 is a category X

– 2 is an endofunctor (S: X → X, functor with same 
source and target, S is dual of T)

– 3 is the counit of adjunction ε: S → 1
X
 (change, 

looking back) 

– 4 is the comultiplication δ: S → S X S  (change, 
looking forward)

● A comonad is therefore <X, S, ε, δ> (or <S, ε, δ> or 
<S, ε, FηG> or in usage S) 



  

Monad is often based on an 
adjunction

● The transaction involves GF, a pair of adjoint 
functors F -| G
– F: X → Y

– G: Y → X

● GF is an endofunctor as category X is both 
source and target

● So T is GF (for monad)
● And S is FG (for comonad)



  

Process: Operating on a Topos

● The operation is simple:
– T: E → E'

● where T is the monad <GF, η, GεF> in E, E', the 
topos, with input and output types the same

● The extension (data values) will vary but the 
intension (definition of type) remains the same

● Closure is achieved as the type is preserved



  

Composability is the Key

● Compose many monads together to give the 
power of adjointness over a whole wide-ranging 
application

● In banking (Bitcoin) the reliability obtained from 
composing processes over a wide-range of 
machines (distributed data recovery) justifies 
the move to Category Theory

● There is a problem though in EML Category 
Theory:
– Monads do not compose naturally



  

Haskell and Monads

● Kleisli Category of a Monad
– Transforms a monad into a monadic form more 

suitable for implementation in a functional language
● Used in Haskell rather than the pure mathematics form of 

Mac Lane

● Strengthens the monad for composability
– As in the Cartesian Monad, with products

● A practical application of the pure maths has 
exposed problems in the maths

● Solution has come from another pure 
mathematician Kleisli



  

Kleisli Lift

● Define a natural transformation:

– τ
A,B

: A X TB → T (A X B) where A,B are objects in X 

and T is the monad such that the following diagram 
commutes 

There is a problem
with distributivity
In EML



  

Summary of Progress/Look forward

● Topos has been established as data-type of 
choice

● Monad shows potential for processing the topos 
● Advent of Haskell gives an experimental test-

bed
● Next application area is music (Music as a 

Composition of Cartesian Monad over a Topos, 
ANPA 38, Hampshire, UK, August 2017)
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