The Monad in Process-Relational Systems

Nick Rossiter
Visiting Fellow
Computing Science and Digital Technologies
Northumbria University

Whitehead 11, Azores (July 2017)
Acknowledgements

- Michael Heather
- Michael Brockway
Process-Relational Philosophy 1

- Whitehead's Process and Reality introduces many of the concepts of metaphysics.
- Later workers, including Robert Mesle, Margaret Stout and Mary Follett, have used the ideas of Whitehead to formulate the process-relational philosophy.
- Such a philosophy has been applied in a social context to handle creativity, Becoming, imagination and experience.
- In a language context, the same philosophy has been applied to ontology or Being.
The process-relational philosophy considers that the world can be thought of a collection of interrelated processes,

- rejecting the Cartesian dualism of Descartes, and
- favouring the dynamic process (flux) of Heraclitus.

Such a philosophy satisfies current requirements in computer science and information systems but has often been difficult to achieve.
The basis of much of computer science is set theory,
- provides adequately the static (Being)
- but is restricted to process as function.

Further, handling the logical types across the static and process components in an integrated manner is very difficult in practice, a problem encountered by Russell and Whitehead in their series on set theory, Principia Mathematica.

A single-level approach is inadequate for the complexities of information systems.
Process and Reality

- Much of Whitehead's Process and Reality can be considered as informal category theory
 - preceding the later developments in pure mathematics, starting in the 1940s by such workers as Eilenberg and Mac Lane (EML Category Theory)

- For instance Whitehead's category of prehension, or grasping, corresponds to the categorial adjunction.

- Other examples are that Whitehead's category of the ultimate corresponds to the topos and his category of existence to the Cartesian Closed category.
Process-relational and Category Theory

- In this paper we consider how the process-relational philosophy, naturally arising from Process and Reality, can be considered formally in category theory by the monad, which relates inputs and outputs through adjointness.

- The monad operates on a category, such as a topos, over three-levels, providing the necessary closure of being defined as unique up to natural isomorphism.

- The term monad is very 'old' but was made better known by Leibniz. We have made a comparison of the various usages of the term, including its use today in mathematics and computer science.
The Topos – Structural Data-type

• Is a Cartesian Closed Category (CCC)
 – Products; Closure at top; Connectivity (exponentials); Internal Logic of λ calculus; Identity; Interchangeability of levels

• If we add:
 – Subobject classifier
 – Internal logic of Heyting (intuitionistic)
 – Reflective subtopos (query closure)

• We get a Topos
Structural Examples

- **Student Marks**
 - Simple (single pullback)

- **Bank Transactions**
 - Simple (single pullback)
 - Simple pasted (2 pasted squares, 3 pullbacks)
 - Complex (5 pasted squares, 10 pullbacks)
 - Complex structure (5 pasted squares, not valid pullback)
Pullback - Single Relationship
Student Marks
Pullback - Single Relationship Constraints

- \(SX_R M \) (Student \(X \) \(R \) \(M \)) (Student X Result Mark)

- Logic of adjointness: \(\exists \Delta \vdash V \)
 - \(\Delta \) selects pairs of \(S \) and \(M \) in a relationship in context of \(R \)
 - Such that \(\exists \Delta \vdash \Delta \vdash V \)
 - Termed by Lawvere as a hyperdoctrine

- Projections \(\pi \) are from product, left and right (dual \(\pi^* \))

- Inclusions \(\iota \) are into sum \(S + M + R \), left and right (dual \(\iota^{-1} \))

- \(S, M, R \) are categories, with internal pullback structure, giving recursive pullbacks
Recursive Pullbacks

A node of a pullback may itself be a pullback.

Each node in the pullback for Student over Marks in context of Result is itself a pullback, giving a recursive structure.
Pullback - Single Relationship: Bank Transactions by Procedure and Account
Pullback - Single Relationship Details

- $P \times_T A$ (Procedure $X_{\text{Transaction}}$ Account)
 - Procedure is type of transaction: e.g. standing order, direct debit, ATM cash withdrawal
 - Account can belong to many users
 - Transaction is item for transfer of funds according to ACID requirements

- P, A, T are categories, with internal pullback structure, giving recursive pullbacks
Pullback - Two Pasted Relationships: Bank Transactions by User/Account

Three Pullbacks
Pb1, Pb2, Pb2 X Pb1

(P X_A U) X_A U

\(\pi_l' \quad \pi_r' \)

\(\pi_l \quad \pi_r \)

\(P \quad T \)

\(U \quad A \)

U is user
A is account
T is transaction

Usually written in horizontal (landscape) form. Vertical layout enables deep nested structures to be represented more readily

Pasting condition for Pb2 X Pb1: \(i_l = \pi_r \) after Freyd's Pasting Lemma

For our purposes, a pasted pullback is only a valid pullback if all inner and outer diagrams are pullbacks
Pasting is associative (order of evaluation is immaterial) but not commutative (relationship A:B 1:N is not same as A:B N:1)
Pullback – x10 Natural Bank Account Transactions

C company, B branch, U user, A account, P procedure, T transaction

10 pullbacks: Pb1, Pb2, Pb3, Pb4
Pb2 X Pb1, Pb3 X Pb2, Pb4 X Pb3
Pb3 X Pb2 X Pb1, Pb4 X Pb3 X Pb2
Pb4 X Pb3 X Pb2 X Pb1

For our purposes, a pasted pullback is only a valid pullback if all inner and outer diagrams are pullbacks

N:M and 1:N are handled by same pullback structure
Invalid Pullback

Invalid as not all squares are pullbacks

For instance Pb4 X Pb2 is not a pullback

\[(\text{Pb4} \times \text{Pb2}) \neq \text{a pullback}\]
Adjointness Holds for all Pullbacks

\[\exists \Delta \forall \text{ for this outer pullback and all other 9 inner pullbacks} \]
Pasting Pullbacks – Discussion 1

- All diagrams commute
- All diagrams, inner or outer, are pullbacks
 - In pure maths, the condition is relaxed a little
 - Not appropriate for applied
- Structure is recursive
 - A pullback node may be a pullback structure in its own right
 - No limit to recursion
Pasting Pullbacks – Discussion 2

- Pasting condition appears to be:
 - $i'_i = \pi_r$ (left-inclusion of outer square = right-projection of inner square)
 - Discussed further later
Pasting Pullbacks – Discussion 3

- Pasted structure
 - is a Cartesian Closed Category (CCC) with products, terminal object and exponentials
 - is a topos as a CCC with subobject classifier and internal Heyting Logic

- The subobject classifier provides an internal query language
The Pasting Condition 1

- $i' = \pi_r$ (left-inclusion of outer square = right-projection of inner square)
 - Looks rather set theoretic
- But any pullback can be represented as an equalizer (ncatlab)
Equalizer for Pullback

Maps relation onto product onto context via 2 paths through pullback
The Pasting Condition 2

Similarly for a pasted pullback, the equaliser is

\[(P X_T A) \times_A U \rightarrow (P X_T A) \times U \rightarrow A\]

Equals in sets is undefined as context is not defined

Equaliser in categories, as a limit, is fully defined up to natural isomorphism
External Process

• Metaphysics (Whitehead)
• Transaction (universe, information system)
• Activity
 - Can be very complex but the whole is viewed as atomic – binary outcome – succeed or fail
 - Before and after states must be consistent in terms of rules
 - Intermediate results are not revealed to others
 - Results persist after end
Transaction in Category Theory

• In earlier work (ANPA 2010) we used adjointness to represent a transaction
 – Employing multiple cycles to capture ACID

• The aim now is to abstract this work using the monad, which we earlier described as the way forward

• The monad is an extension of the monoid to multiple levels
 – Monoid: \(M \times M \rightarrow M, \ 1 \rightarrow M \) (binary multiplication, unit)
Multiple 'Cycles' to represent adjointness

- Three ‘cycles’ GFGFGF:
 - Assessing unit η in L and counit ε in R to ensure overall consistency
 - 'Cycles' are performed simultaneously (a snap, not each cycle in turn)

\[\eta : 1_L \rightarrow GF(L) \quad \varepsilon : FG(R) \rightarrow 1_R \]
Promising Technique - Monad

• The monad is used in pure mathematics for representing process
 - Has 3 'cycles' of iteration to give consistency

• The monad is also used in functional programming to formulate the process in an abstract data-type
 - In the Haskell language the monad is a first-class construction
 • Haskell B Curry transformed functions through currying in the λ-calculus
 • The Blockchain transaction system for Bitcoin and more recently other finance houses uses monads via Haskell
 - Reason quoted is it's a simple, reliable and clean technique
Monad/Comonad Overview

- **Functionality:**
 - **Monad**
 - \(T^3 \rightarrow T^2 \rightarrow T \) (multiplication)
 - 3 'cycles' of T, looking back
 - **Comonad** (dual of monad)
 - \(S \rightarrow S^2 \rightarrow S^3 \) (comultiplication)
 - 3 'cycles' of S, looking forward

- **Objects:**
 - An endofunctor on a category X
Using the Monad Approach

- A monad is a 4-cell \(<1,2,3,4> \)
 - 1 is a category \(X \)
 - 2 is an endofunctor (\(T: X \to X \), functor with same source and target)
 - 3 is the unit of adjunction \(\eta: 1_X \to T \) (change, looking forward)
 - 4 is the multiplication \(\mu: T \times T \to T \) (change, looking back)

- A monad is therefore \(<X, T, \eta, \mu> \) (or \(<T, \eta, \mu> \) or \(<T, \eta, G\varepsilon F> \) or in usage \(T \))
The Comonad

- The dual of the monad
- A comonad is a 4-cell <1,2,3,4>
 - 1 is a category X
 - 2 is an endofunctor (S: X → X, functor with same source and target, S is dual of T)
 - 3 is the counit of adjunction ε: S → 1_X (change, looking back)
 - 4 is the comultiplication δ: S → S X S (change, looking forward)
- A comonad is therefore <X, S, ε, δ> (or <S, ε, δ> or <S, ε, FηG> or in usage S)
Monad is often based on an adjunction

- The transaction involves GF, a pair of adjoint functors $F -| G$
 - $F: X \rightarrow Y$
 - $G: Y \rightarrow X$
- GF is an endofunctor as category X is both source and target
- So T is GF (for monad)
- And S is FG (for comonad)
Process: Operating on a Topos

• The operation is simple:
 - \(T: E \rightarrow E' \)
 • where \(T \) is the monad \(<GF, \eta, G\varepsilon F>\) in \(E, E' \), the topos, with input and output types the same

• The extension (data values) will vary but the intension (definition of type) remains the same

• Closure is achieved as the type is preserved
Composability is the Key

- Compose many monads together to give the power of adjointness over a whole wide-ranging application
- In banking (Bitcoin) the reliability obtained from composing processes over a wide-range of machines (distributed data recovery) justifies the move to Category Theory
- There is a problem though in EML Category Theory:
 - Monads do not compose naturally
Haskell and Monads

- **Kleisli Category of a Monad**
 - Transforms a monad into a monadic form more suitable for implementation in a functional language
 - Used in Haskell rather than the pure mathematics form of Mac Lane
- **Strengthens the monad for composability**
 - As in the Cartesian Monad, with products
- **A practical application of the pure maths has exposed problems in the maths**
- **Solution has come from another pure mathematician Kleisli**
Kleisli Lift

- Define a natural transformation:

 \[\tau_{A,B} : A \times TB \to T(A \times B) \]

 where \(A, B \) are objects in \(X \) and \(T \) is the monad such that the following diagram commutes:

 ![Diagram]

There is a problem with distributivity in EML.
Summary of Progress/Look forward

• Topos has been established as data-type of choice
• Monad shows potential for processing the topos
• Advent of Haskell gives an experimental test-bed
• Next application area is music (Music as a Composition of Cartesian Monad over a Topos, ANPA 38, Hampshire, UK, August 2017)