

The Monad in Process-Relational
Systems

Nick Rossiter
Visiting Fellow

Computing Science and Digital Technologies
Northumbria University

Whitehead 11, Azores (July 2017)

Acknowledgements

● Michael Heather
● Michael Brockway

Process-Relational Philosophy 1

● Whitehead's Process and Reality introduces many of the
concepts of metaphysics.

● Later workers, including Robert Mesle, Margaret Stout and
Mary Follett, have used the ideas of Whitehead to formulate the
process-relational philosophy.

● Such a philosophy has been applied in a social context to
handle creativity, Becoming, imagination and experience.

● In a language context, the same philosophy has been applied to
ontology or Being.

Process-Relational Philosophy 2

● The process-relational philosophy considers that the world can
be thought of a collection of interrelated processes,

– rejecting the Cartesian dualism of Descartes, and

– favouring the dynamic process (flux) of Heraclitus.
● Such a philosophy satisfies current requirements in computer

science and information systems but has often been difficult to
achieve.

Problems in Computing Science

● The basis of much of computer science is set theory,

– provides adequately the static (Being)

– but is restricted to process as function.
● Further, handling the logical types across the static and process

components in an integrated manner is very difficult in practice,
a problem encountered by Russell and Whitehead in their
series on set theory, Principia Mathematica.

● A single-level approach is inadequate for the complexities of
information systems.

Process and Reality

● Much of Whitehead's Process and Reality can be considered as
informal category theory

– preceding the later developments in pure mathematics,
starting in the 1940s by such workers as Eilenberg and Mac
Lane (EML Category Theory)

● For instance Whitehead's category of prehension, or grasping,
corresponds to the categorial adjunction.

● Other examples are that Whitehead's category of the ultimate
corresponds to the topos and his category of existence to the
Cartesian Closed category.

Process-relational and Category
Theory

● In this paper we consider how the process-relational philosophy,
naturally arising from Process and Reality, can be considered
formally in category theory by the monad, which relates inputs
and outputs through adjointness.

● The monad operates on a category, such as a topos, over
three-levels, providing the necessary closure of being defined
as unique up to natural isomorphism.

● The term monad is very 'old' but was made better known by
Leibniz. We have made a comparison of the various usages of
the term, including its use today in mathematics and computer
science.

The Topos – Structural Data-type

● Is a Cartesian Closed Category (CCC)
– Products; Closure at top; Connectivity (exponentials); Internal Logic of λ

calculus; Identity; Interchangeability of levels

● If we add:
– Subobject classifier

– Internal logic of Heyting (intuitionistic)

– Reflective subtopos (query closure)

● We get a Topos

Structural Examples

● Student Marks
– Simple (single pullback)

● Bank Transactions
– Simple (single pullback)

– Simple pasted (2 pasted squares, 3 pullbacks)

– Complex (5 pasted squares, 10 pullbacks)

– Complex structure (5 pasted squares, not valid
pullback)

Pullback - Single Relationship
Student Marks

Pullback - Single Relationship
Constraints

● SX
R
 M (Student X

Result
 Mark)

● Logic of adjointness: ꓱ ┤Δ ┤V
– Δ selects pairs of S and M in a relationship in

context of R

– Such that ꓱ ┤Δ and Δ ┤V

– Termed by Lawvere as a hyperdoctrine
● Projections π are from product, left and right (dual π*)
● Inclusions ι are into sum S+M+R, left and right (dual ι-1)

● S, M, R are categories, with internal pullback structure, giving
recursive pullbacks

Recursive Pullbacks

A node of a
pullback may
itself
be a pullback

Each node in the pullback for Student over Marks in context of Result
is itself a pullback, giving a recursive structure

Pullback - Single Relationship:
Bank Transactions by Procedure and Account

Pullback - Single Relationship
Details

● P X
T
 A (Procedure X

Transaction
Account)

– Procedure is type of transaction: e.g. standing
order, direct debit, ATM cash withdrawal

– Account can belong to many users

– Transaction is item for transfer of funds according to
ACID requirements

● P, A,T are categories, with internal pullback structure, giving
recursive pullbacks

Pullback - Two Pasted Relationships:
Bank Transactions by User/Account

Three
Pullbacks
Pb1, Pb2,
Pb2 X Pb1

U is user
A is account
T is transaction

Usually written in
horizontal (landscape)
form. Vertical layout
enables deep nested
structures to be
represented more readily

Pasting condition for Pb2 X Pb1: ι
l

' = π
r
after Freyd's Pasting Lemma

For our purposes, a pasted pullback is only a valid pullback if all inner and outer
diagrams are pullbacks
Pasting is associative (order of evaluation is immaterial) but not commutative
(relationship A:B 1:N is not same as A:B N:1)

Pullback – x10 Natural
Bank Account Transactions

U

 1:N

C company, B branch, U user, A account, P procedure, T transaction

10 pullbacks: Pb1, Pb2, Pb3, Pb4
Pb2 X Pb1, Pb3 X Pb2, Pb4 X Pb3
Pb3 X Pb2 X Pb1, Pb4 X Pb3 X Pb2
Pb4 X Pb3 X Pb2 X Pb1

For our purposes, a pasted pullback
is only a valid pullback if all inner and
outer diagrams are pullbacks

N:M and 1:N are
handled by same
pullback structure

Invalid Pullback

Invalid as
not all squares
are pullbacks

For instance
Pb4 X Pb2 is not
a pullback

Adjointness Holds for all Pullbacks

ꓱ ┤Δ ┤Ɐ for this outer pullback and all other 9 inner
pullbacks

Pasting Pullbacks – Discussion 1

● All diagrams commute
● All diagrams, inner or outer, are pullbacks

– In pure maths, the condition is relaxed a little
● Not appropriate for applied

● Structure is recursive
– A pullback node may be a pullback structure in its

own right

– No limit to recursion

Pasting Pullbacks – Discussion 2

● Pasting condition appears to be:

– ι
l

' = π
r

(left-inclusion of outer square = right-

projection of inner square)

– Discussed further later

Pasting Pullbacks – Discussion 3

● Pasted structure
– is a Cartesian Closed Category (CCC) with

products, terminal object and exponentials

– is a topos as a CCC with subobject classifier and
internal Heyting Logic

● The subobject classifier provides an internal
query language

The Pasting Condition 1

● ι
l
' = π

r
 (left-inclusion of outer square = right-

projection of inner square
– Looks rather set theoretic

● But any pullback can be represented as an
equalizer (ncatlab)

Equalizer for Pullback

Maps relation onto product onto context via 2 paths through pullback

The Pasting Condition 2

Similarly for a pasted pullback, the equaliser is

Equals in sets is undefined as context is not defined

Equaliser in categories, as a limit, is fully defined up to natural isomorphism

External Process

● Metaphysics (Whitehead)
● Transaction (universe, information system)
● Activity

– Can be very complex but the whole is viewed as
atomic – binary outcome – succeed or fail

– Before and after states must be consistent in terms
of rules

– Intermediate results are not revealed to others

– Results persist after end

Transaction in Category Theory

● In earlier work (ANPA 2010) we used
adjointness to represent a transaction
– Employing multiple cycles to capture ACID

● The aim now is to abstract this work using the
monad, which we earlier described as the way
forward

● The monad is an extension of the monoid to
multiple levels
– Monoid: M X M → M, 1 → M (binary multiplication,

unit)

Multiple 'Cycles' to represent
adjointness

● Three ‘cycles’ GFGFGF:

– Assessing unit η in L and counit ε in R to ensure overall
consistency

– 'Cycles' are performed simultaneously (a snap, not each
cycle in turn)

η: 1L  GF(L) ε: FG(R)  1R

η

ε

F -| G

Promising Technique - Monad
● The monad is used in pure mathematics for

representing process
– Has 3 'cycles' of iteration to give consistency

● The monad is also used in functional
programming to formulate the process in an
abstract data-type
– In the Haskell language the monad is a first-class

construction
● Haskell B Curry transformed functions through currying in

the λ-calculus
● The Blockchain transaction system for Bitcoin and more

recently other finance houses uses monads via Haskell
– Reason quoted is it's a simple, reliable and clean technique

Monad/Comonad Overview

● Functionality:
– Monad

● T3 → T2 → T (multiplication)
● 3 'cycles' of T, looking back

– Comonad (dual of monad)
● S → S2 → S3 (comultiplication)
● 3 'cycles' of S, looking forward

● Objects:
– An endofunctor on a category X

Using the Monad Approach

● A monad is a 4-cell <1,2,3,4>
– 1 is a category X

– 2 is an endofunctor (T: X → X, functor with same
source and target)

– 3 is the unit of adjunction η: 1
X
 → T (change, looking

forward)

– 4 is the multiplication μ: T X T → T (change, looking
back)

● A monad is therefore <X, T, η, μ> (or <T, η, μ> or <T, η, GεF> or
in usage T)

The Comonad

● The dual of the monad
● A comonad is a 4-cell <1,2,3,4>

– 1 is a category X

– 2 is an endofunctor (S: X → X, functor with same
source and target, S is dual of T)

– 3 is the counit of adjunction ε: S → 1
X
 (change,

looking back)

– 4 is the comultiplication δ: S → S X S (change,
looking forward)

● A comonad is therefore <X, S, ε, δ> (or <S, ε, δ> or
<S, ε, FηG> or in usage S)

Monad is often based on an
adjunction

● The transaction involves GF, a pair of adjoint
functors F -| G
– F: X → Y

– G: Y → X

● GF is an endofunctor as category X is both
source and target

● So T is GF (for monad)
● And S is FG (for comonad)

Process: Operating on a Topos

● The operation is simple:
– T: E → E'

● where T is the monad <GF, η, GεF> in E, E', the
topos, with input and output types the same

● The extension (data values) will vary but the
intension (definition of type) remains the same

● Closure is achieved as the type is preserved

Composability is the Key

● Compose many monads together to give the
power of adjointness over a whole wide-ranging
application

● In banking (Bitcoin) the reliability obtained from
composing processes over a wide-range of
machines (distributed data recovery) justifies
the move to Category Theory

● There is a problem though in EML Category
Theory:
– Monads do not compose naturally

Haskell and Monads

● Kleisli Category of a Monad
– Transforms a monad into a monadic form more

suitable for implementation in a functional language
● Used in Haskell rather than the pure mathematics form of

Mac Lane

● Strengthens the monad for composability
– As in the Cartesian Monad, with products

● A practical application of the pure maths has
exposed problems in the maths

● Solution has come from another pure
mathematician Kleisli

Kleisli Lift

● Define a natural transformation:

– τ
A,B

: A X TB → T (A X B) where A,B are objects in X

and T is the monad such that the following diagram
commutes

There is a problem
with distributivity
In EML

Summary of Progress/Look forward

● Topos has been established as data-type of
choice

● Monad shows potential for processing the topos
● Advent of Haskell gives an experimental test-

bed
● Next application area is music (Music as a

Composition of Cartesian Monad over a Topos,
ANPA 38, Hampshire, UK, August 2017)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

