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Abstract

The focus of system theory to date is mainly
local, developing the complex self-organising
characteristics of intraconnection but with
interconnection to an independent environ-
ment. Now with the increasing importance
of interoperation of global systems the spot-
light has to be broadened on to non-local
activities in system theory and the role of
systems that are not just open but also free.
Non-locality requires closer attention to fun-
damental definitions which can no longer rely
on local assumptions found currently in Gen-
eral Information Theory. Category theory
recommended by Robert Rosen as a mod-
ern tool for living systems is found to have
a formal expressive power as process be-
yond modelling for exploring the fundamen-
tal non-local concept of adjointness needed
to understand advanced systems.

1 Introduction

The pursuit of wealth to satisfy the needs of the day
has to be expressed in today’s currency. The same is
true for the wealth of ideas including the great princi-
ples of systems theory. In our work we are concerned
with interoperating information systems but these are
just instances of the much wider need for systems the-
ory to keep up with our current technological age.
Much today is concerned with globalisation whether
technical, economic, political or social and for systems
theory it is the concept of a free and open system that
is paramount for globalisation. Information systems
share many of the characteristics and needs of other
modern and postmodern network science [Watts and
Strogatz 1998 which enshrines a concept of freeness
and openness such as life, consciousness and intelli-
gence, biology and medicine [Klir 1993], quantum phe-
nomena in nanotechnology, etc. The large global sys-
tems needing much improved understanding include
pandemics, prediction of earthquakes, world energy
management policy and climate change but it is the
same characteristics of freeness and openness that are
needed for narrower but complex research like embry-
onic stem cell research, microtubule dynamics [Gr-
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ishchuk et al 2005], chaotic carriers for broadband
[Argyris et al 2005], pollution control, hazardous sub-
stance tracking, genetically-modified crop seed prop-
agation and other biological engineering [Endy 2005,
etc. These are of immediate significance but other
research of long-term vital importance to the human
race is how to harness sufficient power to bring us
up to a Type I civilization able to control geophysi-
cal forces as in Kardashev’s classification [Kardashev
1964]. No doubt in due course advanced systems the-
ory will be needed to attain the higher Types II and
III civilization '. The pervasive theme is one of natu-
ralness.

Natural entities are always easier to recognise than
to define and the notion of a system is notoriously diffi-
cult. There is a reluctance in the literature for writers
to attempt any kind of definition — even an informal
one. There is certainly a dearth of formal definitions
whether in words or symbols of the nature of a system
as a whole. The interest usually is in defining in infor-
mal terms various advanced system components like
feedback and special attractors. However fully rigor-
ous definitions are needed if progress is to be made in
understanding global systems.

Second-order cybernetics makes explicit what was
implicit in the work of the founding fathers that the
observer is part of the system. The rider to this is
that components modelling the system should be dis-
tinguishable from the components of the system itself
[Heylighen and Joslyn 2001]. These issues bring to the
fore the question of uncertainty which has led to the
development of General Information Theory (GIT)
drawing on facets of Al, databases, neural nets and
fuzzy set theory but also recognising the need for a
constructive approach [Klir 2003].

The basis for this development was still classical re-
lying on methods derived fundamentally from Shan-
non’s theory of information. That is limited to inten-
sional and syntactical nature of information and not
(as Shannon regretted) to meaning. As it is also set
based, it is also limited to local conditions. Natural
systems however and global systems are non-local.
The classical cybernetics or system paradigm deals

! Already there are signs of this in risk management for
asteroid collision with the design of gravitational tractors
for towing asteroids [Lu and Love 2005].



with a system in an environment. With global sys-
tems the environment is itself a system of interacting
systems. Problems like Russell’s paradox immediately
appear. A solution proposed by Robert Rosen (who
perhaps in his lifetime progressed further than any-
one else in formally representing the nature of life and
living systems) was to recommend a shift from set the-
ory to category theory - - “the natural habitat for dis-
cussing . .. specific modelling relations” ([Rosen 1991]
p-153). We are pursuing here Rosen’s prescription and
find that it is more perceptive than his comments at
first sight suggest. Category theory may go further in
resolving the questions raised in second-order cyber-
netics and the problem of the model itself.

1.1 Connectivity and Activity

The basic concept recognised for a system is normally
the internal connectivity of the components of the sys-
tem. The concept of a complex whole consisting of in-
traconnecting parts goes back at least to the classical
Greek word systéema which (although more common in
later Greek) is found occasionally in the work of the
early philosophers. Plato uses the word to describe
a government institution and Aristotle applied it to
a literary composition. Intraconnectivity is geometric
and difficult to formalise in algebraic terms. By its
axioms set membership consists of independent ele-
ments and therefore a system cannot be conveniently
represented in terms of first-order set theory.

The biologist and founder of modern systems theory
Ludwig von Bertalanffy 2 sought to refute the argu-
ment that ‘the definition of systems as sets of elements
standing in interrelation is so general and vague that
not much can be learned from it’ ([Bertalanffy 1968]
p.37) by putting forward the formalisation of a system
as a finite sequence of differential equations
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for some quantity Q ([Bertalanffy 1968] p.55). An
application example for an open system is cited below.

In this he ([Bertalanffy 1968] p.86) seems inspired
by the 'new ontology’ of Nikolai Hartmann as a the-
ory of categories to be replaced ‘by an exact system
of logico-mathematical laws. General notions as yet
expressed in the vernacular would acquire the unam-
biguous and exact expression possible only in math-
ematical language’. However it is only now with the
development of formal category theory that the power
of this replacement of the vernacular with the mathe-
matical can be fully realised. It can also make patent
many latent assumptions in the theory of differential
equations.

A system is to be treated as a complex structure as
for instance in Peter Checkland’s definition:

2 According to von Bertalanffy ([Bertalanffy 1968] p.9)
the term system is synonymous with ‘natural philoso-
phy’ (Leibniz); ‘coincidence of opposites’ (Nicholas of
Cusa); ‘mystic medicine’ (Paracelsus); dialectic (Hegel and
Marx); physical gestalten (Kohler); organic mechanism
(Whitehead).

A system is a model of a whole entity; when
applied to human activity, the model is char-
acterised fundamentally in terms of hierar-
chical structure, emergent properties, com-
munication, and control ([Checkland 1981]
p.318).

The major components of complexity are openness
and freeness but the distinctive characteristic is ‘nat-
ural activity’ like self-organisation, a concept first in-
troduced by William Ross Ashby [Ashby 1947] and
still of great importance as intra-activity but now
joined by the phenomena of anticipation [Klir 2002]
and interactivity between systems to be found in
global interoperability. We may classify systems from
current interests as in the table of Figure 1. However,
these terms have been found difficult to formalise.

The transition from connectivity to activity involves
a type change and therefore requires a formal sys-
tem with an inbuilt facility to cross between levels.
Thus intraconnectivity between components cannot
give rise to interactivity between those components
without some non-local integrity coming into play.
This is a related problem to that found in Russell’s
paradox which has yet to be resolved theoretically de-
spite attempts by Spencer Brown with his Laws of
Form and Russell with his type theory?.

system natural rela- | locality
tionship

closed intra-connectivity | local

open inter-connectivity | local

self-organised intra-activity non-local

free inter-activity non-local

Figure 1: Key Elements in the Definition of a System

1.2 Open System

The property of openness was early recognised [Berta-
lanffy 1950; Bertalanffy 1950b]. The simplest defini-
tion of an open system is one that can be accessed.
([Skyttner 1996] p.38) considered that an open sys-
tem depends on an environment where it can exchange
matter, energy and information whereas a closed sys-
tem is open for input of energy only. The concept of
open is normally defined inductively on the open in-
terval. But this has taken some time to crystallise.
For the last fifty years (([Jeffreys and Jeffreys 1956
preface to first edition) the ‘Bible’ reference text on
the use of mathematics in the physical sciences has
some difficulty with openness relying on example in
lieu of rigorous derivation. Sir Harold and Lady Jef-
freys ([Jeffreys and Jeffreys 1956) present it with some
diffidence # as: ‘A region is closed if all its boundary

3Russell himself described his own type theory as ‘not
really a theory but a stopgap’ in the preface to the first
American edition of ([Spencer Brown 1969] pp.xiii-xiv).

4Even switching the notation between their second and
third editions but then unable to apply the notation con-
sistently ([Jeffreys and Jeffreys 1956] p.19-20).



points are members of it, open if all it points are in-
terior points’. However these concepts are bound up
with the question of continuity.

The best that classical analysis can provide as a
basis for openness is the Dedekind cut which is al-
ways available between nests of intervals in any dense
field of numbers ([Jeffreys and Jeffreys 1956] pp.1-2)
5. The critical weakness of Dedekind openness is that
it is a section of a pre-defined field and a very poor
basis therefore for properties of openness like emer-
gence, creativity and non-locality. For the Dedekind
is always local.

In topology it is a little clearer. [Kelley 1955
(pp-37-39) proves that a set is open if and only if it
contains a neighbourhood of each of its points where
a set U in the topological space (X, ) is a neighbour-
hood of a point z if and only if U contains an open
set to which z belongs. Every open set is a neighbour-
hood of each of its points. Each neighbourhood of a
point contains an open neighbourhood of the point.
A topology & has the intersection of any two of its
members as a member of & as well as the union of the
members of each subfamily of §. The members of the
topology & are called open relative to &, or $-open,
or if only one topology is under consideration, simply
open sets. The members of the topology & are called
open relative to & or $- open ([Kelley 1955] p.37-39).
Notice this relative topology. A system is open to its
environment but in the same way it may be open to
more than one environment. Furthermore a system is
integrated with and part of its environment(s).

We have previously explored the use of $-open rel-
ative topology as a natural theory for neural nets
[Heather and Rossiter 1991]. However topology is lim-
ited by its reliance on set theory and cannot really
represent the integration that is essential for proper-
ties like emergence. Topology goes some way in this
direction in products of compact spaces with the the-
orem of Tychonoff ([Kelley 1955] p.143) which is the
subject of recent research for fuzzy topological spaces
with intuitionistic logic [Coker et al 2004]. This logic
is important for open systems. The origin in the basic
theory is that the complement of an open set is closed
but the complement of a closed set may also be closed
and not open ®. A category theory explanation but
still for sets is given by [Mac Lane and Moerdijk 1991]
at p.50-57. Out of this gap comes intuitionistic logic
escaping from the axiom of excluded middle.

The general power of topology and in particular the
concept of openness was perhaps best appreciated by
the Bourbaki group in France and their pursuit of non-
locality led to the Grothendieck Universe as a universe
of universes. However confined to set theory, this uni-
verse cannot quite attain to non-locality 7. An open
system’s counterpart is ¢nterconnectivity but because

5 As a section between ordered subsets the Dedekind cut
and more elaborate version such as rough sets [Klir 2003]
turn out to be but special cases of adjointness, the all-
encompassing connectivity and activity described below.

6A fuller explanation from topology is at ([Kelley 1955]
pp.44-45).

"Category theory suggests that an adequate model of

of the rather impoverished mathematical tools avail-
able for open systems. As just noted for there is no
general theory on offer. Open systems are treated ei-
ther informally or with piecemeal theory.

There is strong evidence that present technology is
fast outstripping available theory, as for instance in
the documentation of standards. The ISO family of
standards intends an open system to mean intensional
openness with its description of an open system as
one that can be externally connected ®. Nevertheless
external and internal connections are linked enabling
change at one place to affect happenings elsewhere.
This extension-intension-extension non-locality needs
a strong typing formalism to do it justice. Even more
sophisticated thinking in system theory is exhibited at
congresses of the International Federation for Systems
Research where these ideas can only be expressed in-
formally. Take for instance the understanding of an
open system:

Each and every model of system behaviour is
a subjective interpretation carried out by an
agent with cognitive capabilities in an envi-
ronment ([Fredriksson and Gustavsson 2002]
p.664).

Fredriksson and Gustavsson have no established
theory to draw on in order to integrate formally these
concepts of ‘subjective interpretation’ and ‘agent with
cognitive capability’. Alternatively those who want to
use formal language have to take it example by ex-
ample to define particular open systems. An instance
of this is the open system definition given by Anatol
Rapoport ([Rapoport 1986] p.176).

das n '
dtl = Zaijaci +ci(i = 1,2,...,71)
=1

This is a special case of a monomolecular chemi-
cal reaction modelled by a system of linear differential
equations with constant coefficients, where x; is the
mass of substance ¢. Openness is derived from non-
zero values of the ¢; (representing the input or output
of matter, energy or, in other contexts, of informa-
tion). The system is closed if all ¢; = 0.

This equation describes the change in mass of a
particular mass x; from the sum of some weighting
of the mass measured from an origin ¢; which may
be dynamic arising from an additional loss of energy,
mass or information. This seems the best that classi-
cal analysis can do to represent the effect of openness
which itself is but the first step on the path of ‘free-
ness’ needed for a progression of naturality in the table
of Figure 1, leading to inanimate global systems and
animate living systems.

2 Category of Systems

The system theory for the 21st century needs to make
formal these natural concepts of intraconnectivity, in-
terconnectivity, intra-activity, interactivity, locality

non-locality might be possible for the universe of universes
of universes [Rossiter and Heather 2005].
8ISO/IEC 7498-1:1994(E) (p.3).



and non-locality. The theory needs to be realisable,
that is, able to be constructed in the real world. This
is where category theory is now available as a con-
structive mathematics providing a formal definition of
naturalness for applicable categories. It is then pos-
sible to escape the constraint of locality in both time
and space. Consequently reliance cannot be entrusted
to axiomatic methods whether to the axioms of set
theory or even to an axiomatic version of category
theory after the manner that it is employed as a mod-
elling tool in pure mathematics. Fortunately applied
mathematics has the concept of process pioneered by
Bergson and promoted by Alfred North Whitehead
[Pearson and Mullarkey 2002]. Like much of applied
mathematics, process category theory is technolog-
ically driven and generally awaits fuller exposition.
The arrow of category theory [Manes and Arbib 1975]
formalises for the first time the very eminent prin-
ciple of constancy in change enunciated by Heraclites
and Parmenides some two thousand five hundred years
ago. The constancy is provided by the arrow with a
common source and target.

2.1 Intraconnectivity

Such an arrow is normally referred to as where source
and target are indistinguishable. Collections as enti-
ties can then be identified as such objects, and opera-
tions as arrows between objects. There may be many
possible arrows between identity arrows as objects in

Figure 2.
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Figure 2: The Limit of Intraconnectivity between
Identity Objects

It is a triumph of 20th century category theory to
have shown that a unique limiting arrow may exist for
all these possible arrows. It is known as the equaliser
9 and marked as the central arrow in Figure 2. These
arrows represent the resulting intraconnectivity of a
local system.

Figure 3(a) is a triangle where the apex as drawn
represents the general entity or finite sequence of en-
tities. Inaccessible entities are not part of the system
by definition of the system. There is an ordering be-
tween entities given by the direction of arrows. This
means that the arrow limit between two entities is
also a limit of all possible paths between the entities.
Each curvilinear arrow may be composite, that is in-
traconnect any number of (finite) identity objects as
the curvilinear polygon of Figure 3(b). This polygon
may be represented in an abstract form of the trian-
gle with an apex representing general identity objects
or a sequence of such. Identity arrows are omitted

9Although not defined formally in this way by ax-
iomatic categorists.

from Figure 3 and each arrow depicted represents the
limit of a family of arrows (as in Figure 2). Recall
too that this is process category theory. The polygon
or triangle is not Euclidean nor in fact embedded in
any mathematical space whatever. The limit arrow is
drawn as a straight line to indicate a geodesic accord-
ing to the variational principles of mechanics.

P —_—
. A
'ﬁ' H
<.
)] ib)

Figure 3: General Intraconnextivity Represented by a
Triangle

But moving up a level there is a grand limiting ar-
row for all these limits existing as an identity functor
characterising the type and therefore the system as a
category. Because of the existence of limits and all
possible connectivities, this is classified by axiomatic
categorists as a cartesian closed category. This closure
corresponds to the local condition in the last column
of Figure 1.

A system as a category may then be drawn as in
Figure 4 where the large circular arrow is the identity
functor identifying the type of system. The triangle
represents the curvilinear polygon just mentioned.

Figure 4: Identity Functor as the Intension of a
Category-System

The system is therefore one large arrow i.e. process.
All the internal arrows, triangles, polygons, etc are
just components of this one arrow. The large arrow
is the intension and the internal arrows are the sys-
tem’s extension. This then leads to interconnectiv-
ity between systems, that is a functor arrow between
identity functors as the arrow marked F' in Figure 6.

2.2 Interconnectivity

Where the two systems i.e. system-categories are to
be distinguished there will be a functor arrow of some
value other than an identity arrow. It may be noted
that:

1. These two systems are of different types because
they are distinguishable categories; nevertheless



the concept of system (like that of a category) is
not distinguishable up to natural isomorphism.

2. This functor between the two categories is con-
ceptually the same as the internal arrows between
two identity arrows above

3. It is possible to repeat the abstraction to one
higher level (a natural transformation) but no
higher. This third level is that of interactivity
to be dealt with below.

4. Because this is a self-closing type theory it avoids
Russell’s paradox. Furthermore as it is non-
axiomatic we also avoid Gédel’s Theorem of Un-
decidability.

However the functor between system-categories is
more subtle than the simple description of the functor
given above. For if we examine the fine structure of
the arrow we find that in our cartesian closed cate-
gory it can be resolved into the two functor arrows F'
and G, a relationship exhibiting the characteristic of
adjointness [Lawvere 1969]. It is from this property
that the openness of open systems arises leading to
the further property of freeness and the formal notion
of naturality [Rossiter and Heather 2002]. Figure 6
is itself a formal diagram of a more informal drawing
by Rosen for system modelling (([Rosen 1991] Figure
7F.1) reproduced here in Figure 5. The category the-
ory version is not a model and therefore avoids the
modelling problem mentioned earlier.

Decoding

Implication

Natural Formal 3
System System

Encoding

Figure 5: Adjointness from Rosen

2.3 Interactivity

Adjointness operates at every level but its typical sig-
nificance is better shown at the level of Figure 6. The
functor arrow from left to right can be resolved into
two functors in opposing directions as in the diagram.
The functor labelled F' is the free functor and G is the
underlying functor. Given any two of the left-hand
category-system L, the right-hand category-system R,
F and @, the other two out of the four are uniquely
determined. This is an interconnectivity that gives
rise to an interoperability written as the adjointness
F - G where:

<Y

N

-

G

Figure 6: Interconnectivity between two Identity
Functors leading to Interactivity between Category-
Systems

1, < GF if and only if FIG < 1gr

Thus given the left-hand category-system L (ex-
pressed here in its intensional form of the identity
functor 1yp,) it is possible always to choose an ap-
propriate F' that generates any arbitrary right-hand
category-system R (here 1r) as desired. This is the
significance and operation of the free functor F. The
uniqueness arises from a naturality in the respective
ordering of the two category-systems and their inter-
operability. This provides a formal definition of natu-
ralness.

In the diagram of Figure 6 naturalness means there
is only one solution for the respective triangles in the
left- and right-hand category systems to match. Al-
ternatively the right-hand category may be thought
of as a definition of a free and open category-system
where the freedom is provided by the choice of func-
tor F' and determined by the right-adjointness of the
co-free functor G. This effectively does the job of the
axiom of choice without the need for any assumption.
Self-organisation of a category-system (intra-activity)
arises when the category-system pair in Figure 6 are
indistinguishable. The result could be viewed as the
diagram in Figure 4 but with the enriched interpreta-
tion as an intension-extension relationship.

3 Conclusion

To sum up in a single word, a system is held together
by adjointness — implicit for the pioneers of the lo-
cal system in its environment but now made explicit
in system-categories where Robert Rosen has led us.
Adjointness defines naturality. Natural systems are
free and open whereas in the 21st century cybernetic
control needs to be in human hands whether at the
macroscale of global environmental change and pan-
demics or at the microscale of biological nanoengineer-
ing and self-organising organs from stem cells in exact
medicine. There is everywhere the need today to ad-
vance free and open systems theory.
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