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Outline of Presentation 1

● Taking on the challenge of a testing application 
for the Cartesian monad (categorical)  approach 
to universal design
– Monad = process, operating on a topos

– Topos = structure, Cartesian (product)

● Look at previous work using category theory 
with music



  

Outline of Presentation 2

● The need for natural application
– Music is a composition of notes, with rules

– Category theory is a composition of arrows, with rules

Use top levels of category theory
● With closure over three levels

– Maximise expressiveness in data structuring
● With topos and recursive intension/extension layers 

– Capture the process of performing music
● With monad, operating within the topos



  

Earlier Work in Music with Category 
Theory and Nets 1

● Henry Klumpenhouwer/David Lewin (1991-
2002)
– K-nets and L-nets

– Transformations from one pitch class to another

– Graphical technique, using isographs

– Classical harmony based on Z12



  

Earlier Work in Music with Category 
Theory and Nets 2

● Guerino Mazzola (2002) 
– The Topos of Music 

– Develops functorial denotators, based on K-nets
● Digraphs, graphical structures with edges from one node 

(pitch class) to another 
● Digraphs permit loops

– Provides detailed exposition of theory of music
● Useful for underlying musical structures

– Rather disjoint treatment of title



  

Earlier Work in Music with Category 
Theory and Nets 3

● Guerino Mazzola and Moreno Andreatta (2006)

– Develop denotators idea
● Again pitch classes initially based on Z12

● Vertices are pitch classes; edges are transpositions 
● Digraph  is constructed
● Extend pitch classes with a 4-tuple for articulation: <onset, 

pitch, loudness, duration>
● Use powerobjects to represent chords
● Paths are maintained through the music

– Work appears to be based on the Eilenberg-Moore category: the 
pullback of the category of presheaves on the Kleisli category 
along the Yoneda embedding (not cited as such)



  

Earlier Work in Music with Category 
Theory and Nets 4

● Alexandre Popoff, Carlos Agon, Moreno 
Andreatta, Andrée Ehresmann (2016a)
– Developed generalised PK-nets (poly-K)

● Giving more flexibility in structure of nodes
– Variable cardinalities
– Labelling flexible for different genre

● Defining a natural transformation between functors to 
achieve the flexibility

● Shortly after (2016b), they introduced the REL 
category for relationships within nodes, 
replacing SET



  

Feelings on Earlier Work

● Sound advance in basic musical structures

● But some of the work appears to be categorification

– Direct 1:1 translation from set (graph) theory
● And there may be more natural methods for

– Composition

– Data structuring with topos

– Process or communication
● That on denotators in 2006 (Guerino Mazzola and Moreno 

Andreatta) with apparent use of the Eilenberg-Moore category comes 
closest to the ideas presented here

● And the PK-nets or denotators could be used as a representation at an 
underlying level for the score, helping higher-level workers  



  

The Aim is a Topos – Structural 
Data-type

● Based on Locally Cartesian Closed Category 
(LCCC) [Descartes]
– relationships within a product (pullbacks, limits) 

– connectivity (exponentials) 

– internal logic (λ-calculus)

– identity (from the limit)

– interchangeability of levels (object to category-object) 

– hyperdoctrine (adjointness between quantifiers and the 
diagonal)



  

The Aim is a Topos – Structural 
Data-type 2

● If we add:
– definition of relationships within a coproduct 

(colimits) 

– internal intuitionistic logic (Heyting)

– subobject classifier (query)

– reflective subtopos viewpoint (query closure)

● We get a Topos [Aristotle] 



  

A Topos for Music
● Music is viewed as a communication of some 

manuscript by communicators
● The topos is relatively static (compared to the 

monad) but being arrow-based can readily 
handle change.  

● Manuscript comprises scores and other 
intentions of composers and writers

● Includes musical notation (typeset, handwritten or digital) 
or more spontaneous formats

● Communicators comprise performers and other 
aspects of performance

● Includes an orchestra, group, recording company



  

Intension/Extension [Aristotle]

● Arguably the most important feature in music
– Terms come from philosophy

● In mathematics/computing science:
– The intension is the type, the extension is the 

collection of instances that satisfy the type

● It's not as simple though as a hierarchy of types
– There remains a philosophical dimension



  

Universe of Discourse

● The Universe contains everything
● The Universe of Discourse (UoD) is that section 

of the Universe of interest to our application
● By the laws of physics we cannot isolate any 

part of the Universe but we can identify a 
section for our work

● In this case
– The intension is the Universe

– The extension is the world of music (UoD)



  

A Score is far from fixed

● A musical manuscript has both
– Intensional properties 

● as a type for how the work is to be performed
● according to the composer

– Extensional properties 
● as instances of the manuscript
● according to variants in 

– Publication (composer initiated, developments after composer's 
death)

– Rehearsal (conductor initiated)
– Performance

● No two performances are ever the same



  

A Manuscript is both extensional 
and intensional

● A musical manuscript is extensional to the 
Universe of Discourse of Music
– One of the objects in this universe

● But intensional to the manuscript, its variants 
and their performances
– Defining the underlying objects

● So elaborate intension/extension hierarchies 
can be constructed
– Where there is a genuine semantic change

– Category theory suggests four levels are adequate



  

Pullbacks for Relationships

● In category theory relationships can be 
represented by:
– Products (unqualified X)

– Pullbacks (qualified X)

– Union (unqualified +)

– Pushouts (qualified +)

● The pullback for the Manuscript/ Variant/ 
Performance relationship follows



  

Relationship of Score by Variant in 
Context of Performance (S XP V)

● Pullback – Locally Cartesian Closed Category

S is category for Score, V for Variant, P for Performance



  

Realising the Extensional Part 

● Preceding diagram appears to be the 
intensional structure
– The definition (or type structure)

● There is also the extension
– The instances (conforming to the type structure)

● The diagram actually does include the 
extension as well, within the category-objects of 
the pullback S XP V, S, P, V



  

Intension/Extension Relationship
for Category-object S

● Type/Instance as Dolittle Diagram

S is score; top S is intension (type); bottom S is extension (set-values); 
SX is limit (type X value pairs); S+ is colimit (type + value pairs)
The extension for the score will contain the notes, perhaps as digraphs

As πl is monic, then so is
Ιr : diagram is both a 
pullback and a pushout 
with limit, product, colimit,
coproduct

It's an adhesive category, also known as a 
pulation square



  

Intension/Extension and the Topos

● Every node (category-object) in our pullback 
relationships will contain such an:
– Intension part

– Extension part

● in a Dolittle structure 
– also known as Pulation square, Adhesive category

● Adhesive categories are readily embedded into 
a topos Є 



  

Category-object Expanded

● Category-object S expanded in pullback S XP V



  

Data Structuring with Pullbacks 

● In real-world, nodes contain more structure than 
shown 

● Also the real-world is more complex than one 
pullback. 

● Need to build more complex structures than 
that shown. Could:
– Expand category-objects with further levels

– Paste pullbacks together
● Pursued in information systems with satisfactory results 

● This is still an experimental area 



  

Example of Pasted Pullback

Have 3 pullbacks: Pb2 X Pb1; Pb2; Pb1

C is category-object for Composer

Overall relationship is of Score with Variant and Composer
in context of Performance



  

Process within the Topos

● Philosophy
– Metaphysics (Whitehead Process and Reality 1929)

– All is flux [Heraclitus]

● Transaction (Universe or information system)
● Activity

– Can be very complex but the whole is viewed as 
atomic – binary outcome – succeed or fail

– Before and after states must be consistent in terms 
of rules

– Intermediate results are not revealed to others

– Results persist after end



  

Promising Technique – Monad
● Philosophy of Leibniz

– Elementary 'substance' whose interior cannot be 
examined (encapsulation)

● The monad is used in pure mathematics for 
representing process
– Has 3 'cycles' of iteration to give consistency



  

Monad in Functional Programming

● The monad is used to formulate the process in 
an abstract data-type

● In the Haskell language the monad is a first-
class construction
– Haskell B Curry transformed functions through 

currying in the λ-calculus

– The Blockchain transaction system for Bitcoin and 
more recently other finance houses uses monads 
via Haskell

– Reason quoted: it is simple and clean technique 

– Shortage of Haskell programmers has encouraged 
the use of the Python language

 



  

Monad can be based on an 
adjunction

● The transaction involves GF, a pair of adjoint 
functors F -| G
– F: X → Y

– G: Y → X

● GF is an endofunctor as category X is both 
source and target

● So T is GF (for monad)
● And S is FG (for comonad)



  

Monad/Comonad Overview
● Functionality for free functor T, underlying 

functor S
– Monad

● T3 → T2 → T (multiplication)
● 3 'cycles' of T (GFGFGF) 

– Comonad (dual of monad)
● S → S2 → S3 (comultiplication)
● 3 'cycles' of S (FGFGFG)

● Objects
– An endofunctor on category Є (the topos)

● Note this multiple performance matches our transaction 

approach, outlined earlier, with GF performed 3 times 



  

Monad/Comonad Diagrams

(a) the monad construction T3 → T2  → T where T = GF, 
multiplication = μ

(b) the comonad construction S → S2  → S3  where S = FG, 
comultiplication = δ



  

A 'Cycle' representing adjointness

● One ‘cycle’ for monad T (GF) 

– Assessing unit η in L and counit ε in R to ensure overall 
consistency 

– One or more 'Cycles' is performed simultaneously (a snap, 
not each cycle in turn). 

η: 1L  GF(L) ε: FG(R)  1R

η

ε

F -| G



  

Failure in Expected Adjointness

● Means transaction has failed
● Communication is suspended
● Restart is necessary at some convenient point 

(Rollback)
● In music need to distinguish between a wrong 

note and differences in expression:
– Intonation is the rules, on violin with left hand (left 

exact)

– Articulation is the expression, on violin with right 
hand (right exact)

● Failure leads to revised adjointness



  

Operating within a Topos

● The monad operation is simple:
– T: Є → Є

● where T is the monad <GF, η, μ> in Є, the topos, 
with input and output types the same

● The extension (data values) will vary but the 
intension (definition of type) remains the same

● Closure is achieved as the type is preserved



  

Process in Musical Performance

● The topos Є created earlier contains
– The intension/extension in the categories S (for 

Score, with musical notation), V (for Variant), S XP V 
(for their qualified product), P (for performance for 
the actual musical event)

● A single monad/comonad action (of 3 cycles T3) 
will take the music forward one unit of 
performance (phrase or bar), say one step 



  

Process in Musical Performance 2

● Moving from one barline to another is 
determined uniquely by the adjunction  F -| G

– F is the free functor (looking forward, 
creative/expressive) 

– G is the underlying functor (looking back, 
enforcing the rules, qualia) 



  

Process in Musical Performance 3 

● If adjointness holds over the 3 cycles

–  Then η the unit of adjunction measures the 
creativity of the step going forward (rhetoric)

– And ε the counit of adjunction measures the 
qualia of the step looking back (dialectic)

● If expected adjointness does not hold over the 3 
cycles

– Then integrity has been lost and 
resynchronization is necessary with revised 
adjointness



  

Comparison with Earlier work

● Our end-product bears some similarity to the 
denotators described earlier but 
– uses the topos and the monad to represent process 

at a conceptual level

– is more suited for further development of the topic

– encouraging discussion with musicians.  



  

Experience

● Performers do comment that playing is an 
intensive experience:
– at the same time both looking back as to what you 

have played and anticipating what is to come. 

● Such experience is captured by the 
monad/comonad structure with its 
forward/backward nature and inherent 
adjointness



  

Monad/Comonad Direction

● Overall the monad looks backwards 
– T3 → T2  → T

● and its comonad forwards 
– S → S2  → S3

● in their three cycles. 
● However, the situation is more subtle than this:

– in each cycle the monad looks forwards (F) and 
then backwards (G) 

– its comonad looks backwards (G) and then 
forwards (F)



  

Orderly Communication

● The duality of the monad/comonad represents 
communication in an orderly manner within 
initially defined colimits and adjointness. 



  

Composition

● A musical work is referred to as a composition.
● It is indeed a composition of steps 

– With the output from one step becoming the input to 
the next step

● The order is fixed in advance
● Composition is an inherent feature of category 

theory
● With one monad execution as a single step, it is 

necessary to compose monads to perform a full 
work



  

Therefore composability is the Key

● Compose many monads together to give the 
power of adjointness over a whole wide-ranging 
application

● In banking (Bitcoin) the reliability obtained from 
composing processes over a wide-range of 
machines (distributed data recovery) justifies 
the move to Category Theory

● There is a problem though in EML (Eilenberg/ 
Mac Lane) Category Theory:
– Monads do not compose naturally



  

Haskell and Monads

● Kleisli Category of a Monad
– Transforms a monad into a monadic form more 

suitable for implementation in a functional language
● Used in Haskell rather than the pure mathematics form of 

Mac Lane

● Strengthens the monad for composability
– As in the Cartesian Monad, with products

● A practical application of the pure maths has 
exposed problems in the maths

● Solution has come from another pure 
mathematician Kleisli



  

Kleisli Lift

● Define a natural transformation:

– τ
A,B

: A X TB → T (A X B) where A,B are objects in X 

and T is the monad such that the following diagram 
commutes 

There is a problem
with distributivity
In EML



  

Cartesian Monads in Music

● Take each barline, or some other time 
signature, as a unit of process
– Such a barline will be Cartesian, representing the 

potentially complex physics of the music
● Combinations of notes, including chords
● Or powerobjects as in the denotators approach

● Therefore Cartesian Monads as strengthened 
by the Kleisli Lift are essential for composition 
purposes



  

Summary of Progress/Look forward

● Topos has been established as data-type of 
choice

● Monad shows potential for processing the topos 
● There is no assumption of any particular 

musical genre. 
● Such a categorial framework could be 

implemented in the functional programming 
language Haskell
– Basic physical music structures have been 

implemented in Haskell (Paul Hudak) 
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