





TECHNICAL REPORT SERIES

No. 464 December, 1993

Models for Legal Documentation: Using Formal Methods for Quality
Assurance in Hypertext Systems

B.N. Rossiter, T.J. Sillitoe and M.A. Heather

Abstract

Current hypertext systems have been widely and effectively used on
relatively small data volumes. But the law is concerned with large complex
data sets. The potential of database technology is explored for aiding the
implementation of hypertext systems holding very large amounts of
complex data. Databases meet many requirements of the hypermedium:
persistent data management, large volumes, data modelling, multi-level
architecture with abstractions and views, meta-data integrated with
operational data, short-term transaction processing and high-level end-
user languages for searching and updating data. To illustrate the potential
for the use of data bases, a system implementing the storage, retrieval and
recall of trails through hypertext comprising textual complex objects is
described. = Weaknesses in current database systems for handling the legal
models are discussed.

© 1993 University of Newcastle upon Tyne.

Printed and published by the University of Newcastle upon Tyne,
Computing Science, Claremont Tower, Claremont Road,

Newcastle upon Tyne, NE1 7RU, England.



——

T




Bibliographical details

ROSSITER, Brian Nicholas

Models for Legal Documentation: Using Formal Methods for Quality Assurance in
Hypertext Systems

[By] B.N. Rossiter, T.J. Sillitoe and M.A. Heather

Newcastle upon Tyne: University of Newcastle upon Tyne: Computing Science, 1993.

(University of Newcastle upon Tyne, Computing Science, Technical Report Series,
no. 464)

Added entries

UNIVERSITY OF NEWCASTLE UPON TYNE.
Computing Science. Technical Report Series. 464
SILLITOE, Timothy John

HEATHER, Michael A.

Abstract

Current hypertext systems have been widely and effectively used on relatively small
data volumes. But the law is concerned with large complex data sets. The potential of
database technology is explored for aiding the implementation of hypertext systems
holding very large amounts of complex data. Databases meet many requirements of the
hypermedium: persistent data management, large volumes, data modelling, multi-level
architecture with abstractions and views, meta-data integrated with operational data,
short-term transaction processing and high-level end-user languages for searching
and updating data. To illustrate the potential for the use of data bases, a system
implementing the storage, retrieval and recall of trails through hypertext comprising
textual complex objects is described. @ Weaknesses in current database systems for
handling the legal models are discussed.

About the author

Nick Rossiter is a Lecturer in the Department of Computing Science at the University
of Newcastle upon Tyne with particular interests in databases and system analysis.

Tim Sillitoe was an M.Sc. student in the Department of Computing Science at the
University of Newcastle upon Tyne from 1988-89.

Michael Heather is Senior Lecturer in Law where he has been responsible for
computers and law since 1979.

Suggested keywords

DATABASES FORMAL METHODS HYPERTEXT LEGAL DOCUMENTS
MODELLING QUALITY CONTROL PETRI NETS SEMANTIC MODELS

Suggested classmarks (primary classmark underlined)
Dewey (18th): 001.6442 029.7 348.022
U.D.C. 681.322.06 651.838.8 340.13






Models for Legal Documentation: Using
Formal Methods for Quality Assurance in
Hypertext Systems

B.N.Rossiter & T.J.Sillitoe
Computing Science
Newcastle University, NE1 TRU

M.A.Heather
Department of Law
University of Northumbria at Newcastle, NE1 85T, UK

November 1993



¢ 5 B g - 4 v - 7 - . S —— . c S



Abstract

Current hypertext systems have been widely and effectively used on relatively
small data volumes. But the law is concerned with large complex data sets.
The potential of database technology is explored for aiding the implementation
of hypertext systems holding very large amounts of complex data. Databases
meet many requirements of the hypermedium: persistent data management, large
volumes, data modelling, multi-level architecture with abstractions and views,
meta-data integrated with operational data, short-term transaction processing
and high-level end-user languages for searching and updating data. To illustrate
the potential for the use of data bases, a system implementing the storage, re-
trieval and recall of trails through hypertext comprising textual complex objects is
described. Weaknesses in current database systems for handling the legal models
are discussed.

About the author

Nick Rossiter is lecturer in the Department of Computing Science with particular
interests in databases and systems analysis.

Tim Sillitoe was an M.Sc. student in the Department of Computing Science from
1988-89.

Michael Heather is senior lecturer in law where he has been responsible for com-
puters and law since 1979.

Suggested Keywords

Modelling, legal documents, semantic models, Petri Nets, formal methods, quality
control, hypertext, databases.



Chapter 1

Introduction

Legal information is large in terms of data volumes and complex in structure
both within documents and in terms of links between different documents. Such
a combination of bulk and complexity suggests the use of databases which need
to be distinguished from databanks [Rossiter 1985]. Legal databanks have been
increasing their capability in an ad hoc manner with the result that it is often
not possible to connect them together or use more advanced hypertext techniques
on them. For this, there has to be some universal structure recognition. This
is achieved by formal methods. Formal methods in programming software tends
to mean the use of languages like Z and VDM. In databases, the formalism is at
a higher level and the whole subject of databases results in a consistent model
being developed. Languages tend to focus on the data content of databases but
a database exists without any data. It is the structure which is developed for
the particular legal data that is to be held. Complex heterogeneous databases
operate in a hypermedium.

The hypermedium is an information space representing a high level abstraction
of data. It represents an idealised view of the information needs of an area of
particular human interest or activity. Information usually amounts to connections
between different items to be found in human experience. These may be physical
things or they may be ideas.

The significant feature of the hypermedium is the nature of this connection be-
tween data. It consists of an ordering but an ordering that is not unique. Many
possible orderings may exist. While the computer is an obvious tool for handling
and organizing large quantities of data in the hypermedium, straight-forward
procedural methods cannot cope with the complexity of the organization. The
experience of early workers in databases is being repeated in the hypermedium by
those engaged in developing hypertext. To progress beyond small simple systems



requires the writing of what amounts to a customized database system. How-
ever, in adopting a customized solution, there is an immediate loss of generality
and of functionality and a deterioration in quality. The hyperbases so developed
may only be usable in their home environment whereas a generalised database
implementation would provide the basis for the use of the same information for
many other purposes [Rossiter & Heather 1990]. There is the matching and re-
trieval capabilities of information retrieval systems, the document segmentation
and word indexing of free text products, the display of mark-up languages, the
layouts and layers to be found in the Office Document Architecture, the use of
metadata for data exchange, and the application of a body of rules as in the field
of AI and expert systems.

It therefore seems better to make use of the experience of the database community
in building large hyperbases but it cannot be pretended that the benefits of one
technology to the other are all in one direction. As will be seen later, database
technology in its present form has some deficiencies in modelling complex objects
and events, the solution of which will be given greater impetus by involvement
in new challenging areas. The authors therefore see the relationship between
database and hypertext technologies as symbiotic rather than parasitical. The
hope is that database technology is both extending to the hypermedium and
being extended by it.

For reasons of continuity from the old, a fundamental unit of data in the new
hypermedium is a document. Present hypertext provides mainly for small sim-
ply structured documents and in the way that it concentrates on factors at the
human-machine interface, it gives good insight into the capabilities needed for a
full hypermedium system. Three main types of link are recognized in hypertext
systems:

1. explicit inter-document links representing citations,
2. lexical links in which the meaning of words is resolved,

3. conceptual links in which implicit semantic connections are made between
one document and another.

The work described later is mostly concerned with symbolic links between one
document and another. Lexical links pose greater difficulties in implementation
because of frequent ambiguity in finding the definition of a word amongst its many
usages in a text. Implicit links have proved to be difficult for the machine to locate
automatically but can be entered manually by the user in most hypertext systems
and in small-scale applications can provide very rich structures. It is unlikely that



such richness can be achieved in large hyperbases where automated authoring is
likely to prevail.

In traditional document systems, there is often a very arbitrary division in infor-
mation [Rossiter & Heather 1989] because of the rigidity enforced by predefined
document sizes. In hypertext systems, this is overcome to some extent through
various composition techniques for representing ‘isPartOf’ relationships. Through
such aggregation, logical documents can be defined which are a synthesis of what
may be many diverse physical documents. The view of the authors is that these
ideas need developing further to represent a document as a complex data ob-
ject holding information in the form of structured data. The representation of
document structures in database models is investigated more fully later.

1.1 Limitations of Current Hypertext Systems

Present hypertext systems concentrate on the human-computer interface and rely
on semi-automated or manual techniques to represent links between one docu-
ment and another. This is satisfactory for small simple document structures but
otherwise there are a number of problems:

The use of symbolic addressing is not fully exploited to cope with pre-
existing forms of citation and for automated authoring of large quantities
of text.

Methods of management of persistent data are relatively primitive.

Searching facilities are specialised.

There is no consensus on the nature of the formal data model which is
necessary to provide an integrated framework for data structuring and ma-
nipulation. Recent work employing set theory [Tompa 1989],[Garg 1988],
Petri Nets [Furuta & Stotts 1989] and Z [Hitchcock & Wang 1992] shows
the urgency with which this area is now being tackled. It is important for
large complex applications that current hypertext practice involving the use
of directed graph (general network) structures, inheritance hierarchies and
object-oriented scripts be underpinned by a greater body of theory. A for-
mal storage model using network structures has been developed [Campbell
& Goodman 1988] but this omits many of the activities.

e Node data is WYSIWYG. There is limited opportunity for mapping and
indirection between user views and storage structures. There tends to be



one fixed view - that of the author, with little scope for the preferences of
individual readers.

e Hypertext systems are generally self-contained and cannot be easily inte-
grated with other programs and data. It is difficult for another application
to use the hyperbase.

These problems are emphasised with large data volumes, multiple authorship,
complex inter-node and intra-node relationships, need for multiple views of same
hypermedium, and a desire to integrate the hyperbase with other types of appli-
cation within the organization.

1.2 Potential of Database Technology

Database technology has significance as it can assist in many of these problem
areas: high-level end-user languages such as SQL can be embedded in standard
programming languages to integrate database facilities with other functional as-
pects; management of large volumes of persistent data, including such aspects as
security, integrity, concurrency and optimization of access, is a central tenet of
the technology; multi-level architectures with mappings from logical to physical
levels provide different views of the same stored data; content-addressing can be
integrated with navigation to give facilities as sophisticated as those found in
information retrieval systems.

The use of data models requires more detailed discussion. Database technology
depends on the development of an appropriate data model for structuring and
manipulating the data. It could be argued that the use of any model is reduc-
tionist, resulting in a loss of information. However, a data model does provide a
rigorous framework within which an application can be developed. It therefore
seems necessary, to exploit the full power of hypertext, to have some machine
model expressing semantic detail of the documents held with a full abstract spec-
ification of the data-types involved and a multi-level architecture similar to that of
a DBMS. A clear problem is the kind of model that is most suitable for represent-
ing the architecture of documents and multimedia data and for providing usable
query languages. As will be seen later, current DBMS models are inadequate in
some respects.

The manner in which cross-references are realised and checked is crucial for a
consistent hyperbase. Database systems employing symbolic keys for identifica-
tion of objects have an inherent advantage over less conceptual approaches in
handling text whose content is continuously changing. In first generation hy-



pertext systems with physical node addressing, cross-references must in advance
be fully identified as in a network database. In a value-oriented database ap-
proach to hypertext, links are made dynamically at run-time using symbolic key
matching techniques. Both means provide for display and navigation through
documents. The physically-oriented approach uses less resources but the early
binding of identifier to data is more of a static method which allows less flexibility
if, for example, data is being loaded in an uncertain order or key values are being
changed or deleted.

The greater flexibility obtained through the dynamic power of lazy evaluation
using database technology is not the only advantage in this area. Constraints
like referential integrity can be placed automatically on new data entered into the
system and on updates to existing records. Potential cross-references in symbolic
form are checked against the current database and must succeed for the new
or changed record to be accepted without reservation. At the programmer’s
discretion, errors resulting from dangling cross-references can result either in the
new data being rejected or accepted with reservation. Such reservations include
a warning message, flagging of the citing field or a setting of the citing field to
null.

The various levels of verification of links makes the construction of large hy-
perbases a very much easier and rigorous process through a multi-stage commit
process. During the addition of user data, dangling cross-references, perhaps re-
flecting the order in which data is added, are flagged in the first pass and only
after a second pass to re-check citations is the possibility of rejection considered.
In any event, cross-references which cannot be resolved will remain flagged as
such so that the system is always consistent with respect to which references are
navigable. Finally the concept of referential transparency should be raised. In a
database environment, the entire management of the links will be automatically
handled by the system to relieve the user of all responsibility for maintaining
referential integrity.



Chapter 2

An Example Document
Architecture

In order to examine document architectures, the example of English legal statutes
will be used in this paper. In England, Parliament enacts statutes and Figure 2.1
shows an extract from a case to illustrate the complex relationships between this
text and statute documents. There are a number of references from the case to
the Trade Descriptions Act and also to other cases and to different parts of the
same case.

Within statutes, a section represents the smallest self-contained free standing
unit of text although subsections may be directly cited sometimes. A section is
a mere point in the textual hypermedium and can rarely be consulted alone or
understood without reference to other documents. For many purposes, sections
are grouped together into parts or paragraphs into schedules. As any of the
information in the Figure 2.1 may have a bearing on a section in question, it can
readily be seen that advanced hypertext features are needed if all the relevant
subject matter is to be available and easily reached in the electronic medium.
Our work can be contrasted with that of Yoder & Wettach [1989] who have also
developed a hypertext system for the law. Their system is very flexible in the
forms of data accepted but lacks a formal data model for controlling structures
and for providing a general means of manipulating the data.

2.1 Trails and Paths

The existence of conceptual paths through textual documents was recognised by
Bush in 1945 [Bush 1945]. Treu [1971] considered the existence of trails through



bibliographic citations and thought they should be preserved for a searcher to
retrace his steps at a later date. At Newcastle, the need to provide a concep-
tual framework for the machine to assist the human in his database searching
and navigation was recognised in 1987 [Rossiter 1987] with a prototype imple-
mentation of the recording of trails in database tables as persistent data fully
integrated with the hypertext data. The main objective of the trails was to assist
the human in communication with the machine by removing the need to memo-
rise backward and forward references, unsuccessful routes through the database,
search terms used and the search and navigation strategy. Also in 1987, Conklin
[1987] identified one of the major difficulties in current hypertext systems as the
user becoming "lost in hyperspace” as a result of losing his way along a trail as
a result of the demands made during navigation. Zellweger [1989] has classified
the various kinds of path and emphasised the importance of implementing paths
as first class data. Although the implementation of the paths as scripts is satis-
factory for single-user systems, there are problems with sharing of the path data
in multi-user environments.

There is general agreement in the work quoted above that path information should
be first-class data, replayable with or without variation and an essential part of
the user interface. Before considering the required structures in more detail, we
will first consider database models for representing the internal structure of the
statute.



212

[1985)
|HOUSE OF LORDS]
WINGS LTD. . ; ; : : : . x . RESPONDENT
AND
ELLIS . : : . . . . . . . APPELLANT
1984 June 25, 26; Lord Hailsham of St. Marylebone L.C.,
Oct. 25 Lord Keith of Kinkel, Lord Scarman, Lord

Brandon of Oakbrook and Lord Templeman

Trade Description—Travel agents—Accommodation facilities and
services—Company unwittingly publishing false statements in
travel brochure—Discovery of error—Company informing sales
staff and agents with instructions fo inform customers of error—
Whether company knowingly making false statement—Trade
Descriptions Act 1968 (c. 29), s. 14(1)(a)

The defendant company, in the course of their business as
holiday tour operators, published a travel brochure which
contained descriptions and photographs of hotel accommodation.
Unknown to anyone within t company at the time of
publication, the brochure falsely described a hotel in Sri Lanka
as air conditioned by use of the code letters “A.C.” and a

tograph wrongly purporting to be that of a room at the

tel which, in so far as it gave no signs of any outside
ventilation such as overhcad ceiling fans or mosquito nets,
indicated that the room was air conditioned. The errors were
not discovered until May 1981 after the brochures had been
distributed to travel agents. A memorandum, dated 1 June
1981, was sent to all company staff instructing them to amend
their brochures and instructing sales agents to inform travel
agents and customers of the errors when holiday bookings were
made by telephone. Customers who had already booked holidays
at the hotel were also informed of the mistake by letter. On 13
January 1982, the complainant read an unamended brochure
and booked a holiday at the hotel with the company through
travel agents. The complainant, who could only be contacted
through the travel agent, was never told of the errors in the
brochure. On his return from Sri Lanka, he complained to the
company and to a trading standards officer that the hotel was
not air conditioned as described in the brochure. The company
was convicted by justices on informations preferred against
them by the trading standards officer alleging that on 13 January
1982, in the course of a trade or business, thcy made a
statement which they knew to be false as to the nature of the
accommeodation at _.ﬂ« hotel, namely the statement “A.C." in
the description of the hotel in the brochure, contrary to section
14(1)(a)(in) of the Trade Descriptions Act 1968'; and that they
recklessly made a statement which was false as to the nature of
the accommodation at the hotel, namely the photograph in the
brochure, which was likely to be taken as an indication that the
hotel bedrooms were air conditioned, contrary to section
14(1)(b)(ii) of the Act of 1968. On appeal by the company the
Divisional Court of the Queen’'s Bench Division allowed the
appeal and quashed the convictions.

The prosecutor appealed in respect of the quashing of the

' Trade Descriptions Act 1968, 8. 14(1): sce post. pp. 2R20—2R3A

1A.C. Wings Ltd. v. Ellis (H.L.(E.))

conviction under section 14(1)(a) of the Act and the following
point of law was certified: whether a defendant may properly be
convicted of an offence under section 14(1)(a) of the Trade
Descriptions Act 1968 when he has no knowledge of the falsity
of the statement at the time of the publication but knew of the
falsity at the time when the statement was read by the
complainant.

On the prosecutor’s appeal:—

Held, allowing the appeal, that the defendant company had
been rightly convicted of committing an offence under section
14(1)(a) of the Act of 1968 since (per Lord Keith of Kinkel,
Lord Scarman and Lord Brandon of QOakbrook) a statement
which was falsc was made cw theé company in the course of its
business when it was recad by the complainant, an interested
member of the public doing business with the company upon
the basis of the statement; that the offence was committed on
that occasion because the company then knew it was false to
state that the hotel accommodation was air conditioned and
the fact that the company was unaware of the falsity of the
statement when it was published was irrclevant; that if the
company considered that it was innocent of fault, it was open to
it to prove lack of fault under the statutory defences, but it did
not do so (post, pp. 281F, 290, 297c-p, 298rG).

Reg. v. Thomson Holidays Lid. [1974] Q.B. 592, C.A.
applied.

Per Lord Hailsham of St. Marylebone L.C. The certified
question should be answered in the affirmative but with a
qualification by saying: “Yes, unless the defendant has raised a
successful defence under section 24 of the Act and provided
that the reading by the complainant was part of the chain of
consequences intended and authorised by the defendant prior to
its receipt by the complainant™ (post, p. 290p-€).

Per Lord Brandon of Oakbrook. (i) The certified question
was ineptly expressed and should be amended as follows:
“Whether a defendant may properly be convicted of an offence
under section 14(i)(a) of the Trade Descriptions Act 1968 when
he has made a continuing false statement, which he did not
know was false when he first made it, but which having come to
know of its falsity at some later time, he has thereafter
continued to make.” As amended in that way, it should be
answered with a simple “Yes.” (post, p. 298e-¢). (ii) On the
footing that the certified question can be answered as it stands,
it should be answered in the manner proposed by Lord Scarman
(post, p. 298FG).

Per Lord Templeman. The certified question should be
answered in the affirmative. The accused must plead and prove
the circumstances specified in section 24 before a defence of
mistake can succeed (post, pp. 300G, 301a).

Per Lord Hailsham of St. Marylebone L.C., Lord Keith of
Kinkel, Lord Scarman and Lord Brandon of Oakbrook. Reg. v.
Thomson Holidays Lid. [1974] Q.B. 592 was correctly deaided
save in so far as it purports to decide as a general proposition
of law applicable to all cases that a statement is only made for
the purposes of section 14 of the Act of 1968 when it is
communicated to someone (post, pp. 285p-¢, 290e, 2960-¢,
298p—).

Decision of the Divisional Court of the Queen's Bench
Division [1984] | W.L.R. 731; [1984] 1 All E.R. 1046 reversed.

Figure 2.1: An example of a Case showing Statute Citations



Chapter 3

Database Models and Textual
Structures

The basic DBMS models such as the relational are not suitable for manipulation
of the fine structure of documents mainly due to the problems of normaliza-
tion and aggregation of textual data [Rossiter & Heather 1990] which in general
terms result from an inadequate representation of complex objects. At least for
representing ideas, it is necessary to move on from the classical models to the
semantic models because the required emphasis is on capability, expressiveness
and abstraction. A range of semantic models incorporating more features and
constraints than in the basic models has been proposed in an attempt to model
more closely the real world. These include the Entity-Relationship (E-R) Model
[Chen 1976] and Taxis [Mylopoulos et al 1980], both of which have been employed
in this work.

3.1 Class Structures

A Chen E-R diagram of English statutes is shown in Figure 3.1. More details
on this model, which is based on directed-graph theory, have been presented
elsewhere [Rossiter & Heather 1990]. Two types of hierarchy are embedded within
the class structure:

e An essential inheritance hierarchy to indicate the inheritance of properties
(attributes) automatically by lower level objects from higher ones through
‘isA’ relationships.

10



o An aggregation hierarchy to indicate potential groupings of data through is-
PartOf’ relationships. This hierarchy provides the framework upon which
textual units are dynamically aggregated to satisfy varying user require-
ments.

The aggregation hierarchy has as its root a highly abstract object node which has
some similarity to a node in hypertext terminology comprising a chunk of data
for presentation to the user. There are thus clear similarities between the two
approaches. However, there are important differences:

e in hypertext systems, nodes are static structures at run-time whereas in
our approach, a node can be dynamically generated at any time from any
of the underlying text objects by aggregation.

e in hypertext systems, the internal structure of the nodes can be left unde-
fined whereas in database technology there is a clearly defined structure for
each specific text object at lower levels of the class hierarchy.

o the aggregation of node in our approach is always made in the context of
symbolic identifiers (see Figure 3.2) rather than record or card numbers.

3.2 Symbolic Addressing for Hypertext

For navigation in the hypermedium, it is important to be able to identify uniquely
individual units of text so that cross-references can be resolved. With the com-
plex object structure employed in this study, it has been found that the optimal
solution is to employ a generic symbolic key all.unit.id for the abstraction node
as shown in Taxis-like form in Figure 3.2. The key all.unit.id effectively defines
a generic heading which contains an integer value for each possible component
of a textual identifier. The form of the key is application dependent: in our
work, nine different components have been identified such as section, subsection
and footnote. For a given instance of a text, the values of some components
are inapplicable. Such components have a value of zero: all other components
have positive values, for example, section# would be assigned the value 6 in the
heading of the sixth section of an act. This provides a completely general mech-
anism for addressing all objects in the inheritance hierarchy. The values for the
attributes of node are constrained by the variables such as ssmin and ssmaz which
specify the minimum and maximum values permitted for subsection numbers.

The class tezt is a specialization of node representing an abstraction of the main
body of text. As shown in the definition of tezt.id, a subset of the components of

11



the generic key all.unit.id is required to address the main text. Specific features
included in tezt but not in node are attributes representing various details of the
internal structure of an item of text. Cross-references are represented by the class
XRef with each citation held in ref.id comprising a pair of symbolic identifiers for
the citing and cited text units, respectively. The constraint is specified that the
citing and cited objects must be members of the set tezt: therefore, the identifiers
of the text units must conform to the structure of text.id and the text units must
be instances of the class tezt to enforce referential integrity.

3.3 Models for Expressing Dynamic Aspects of
Trail Management

Life-cycles are represented well in Petri Nets [Reisig 1985]. Their significance for
representing dynamics of law was recognised very early on [Holt & Meldman 1971].
At this time of the 25th anniversary of the Italian National Research Council’s
Institute of Legal Documentation, it is appropriate to recall the pioneering work
in this field, with which the Institute was connected, by Enrico Maretti [Degli
Antoni & Zonta 1982]. Figure 3.3 shows an Entity-Life History Model in Petri
Net form for the entity-type path which indicates the sequence and choice of
events in searching and navigating and in recording and replaying trails through
the hypermedium. The diagram shows the processes involved (in rectangles),
the states reached between processes (in circles) and the order of execution of
the processes (through the direction of the arrows). Selection is represented by
multiple outputs from a state, conjunction by multiple inputs into a process,
iteration by cycles in the flow of processing and parallelism by multiple outputs
from a process. Whilst execution of a particular process is not complicated, it is
a matter of integrated management of the very large number of processes that
are possible and their complex inter-relationships. It is interesting to note that
Petri Nets have also been employed by Furuta & Stotts [1989] for representing
the semantics of dynamic activities with documents. The formal network basis
for the representations is an attractive feature.

Three types of information are accessed by the processes shown in Figure 3.3: the
hypermedium itself, the names of the trails made by each user held in path and
a complete history held in pathitem of each path comprising an initial content-
based search followed by a series of navigational commands. The structure of this
information is described in the next section.

12



3.4 Models for Expressing Static Aspects of
Trail Management

As companion to the Petri Net of Figure 3.3, there is an E-R diagram in Figure
3.4 to show the relationships between the entities holding the trail information
path and pathitem and other entities relevant to trail management. Each user
can hold many paths each of which holds many path items. For branching trails
[Zellweger 1989], it is necessary to introduce the involuted relationship cites to
indicate that a single path item can branch to many other path items during
navigation through the user backtracking. For linear trails, the relationship cites
is not required.

The entity-type Current. Record. Position has been introduced to explicitly indi-
cate the current selected object. Many users can be active at a given time but it
is an assumption at present that each user holds a single current record position
at any given time. The entity-type hypermedium is in a 1:N relationship with
pathitem indicating that each hypermedium object can appear many times as a
path item but that each path item refers to only one hypermedium object. The
importance of the relationship item.found.in for integrity of the trail is described
later.

13



e .
8|npeyos
-ansg
pelo N
! ydeibeied
3 l
e N
e 11 8INPeyas
-Qng N
2 0X0)
JoHX N uopoesqng NU .2

< il I
Joes L
: N
N| uonoes

Buno =
r 8jouloo4 :
<

JO88

Figure 3.1: The Chen E-R Diagram for Statutes

14



define

unique

define

AnyDataClass Node with

ss#: {| ssmin:ssmax |}

section#: {| sectmin:sectmax |}
part#: {| partmin:partmax |}
subp#: {| subpmin:subpmax [}
para#: {| paramin:paramax |}
subschedule#: {| subsmin:subsmax |}
schedule#: {| schmin:schmax |}
footnote#: {| footmin:footmax |}
year: {| yearmin:yearmax |}
chapter: {| chapmin:chapmax |}

all.unit.id: (year, chapter, part#,
section#, ss#, schedule#, subschedule#,
para#, subp#, footnote#)

AnyDataClass Text isA Node with

changeable

unique

define

unique

marginal.note.other: string
crossnotes: string

omissions: string
footnotes.old.stats: string
formatting.attributel: string
formatting.attribute2: string ... etc

text.id: (year, chapter,
section#, ss#, schedule#, para#, subp#)

AnyDataClass XRef with
citing.text.id: set of Text
cited.text.id: set of Text

ref.id: (citing.text.id, cited.text.id)

Figure 3.2: Taxis-like Specification of Symbolic Key for Statutes

15



Gomsos

ysrutj

Figure 3.3: Entity-life History Model for Trail Management in Petri Net Form

16



Figure 3.4: E-R Diagram for Static Aspects of Trail Management

User 1
1 Current.
1  Record.
Position
has.
made 1 N
N
saved.
Path as
1

1

contains
A 1 Hyper.

4 W medium
N

Path- cites
item




Chapter 4

Implementation of Trail
Management System

The system was implemented on the SPIRES DBMS from Stanford University
run on an Amdahl 5860 of the NUMAC service. The textbase STATLT holding
the statutes for England has been developed and refined in a series of projects
since 1980 and at the start of the project described here already provided a very
detailed definition of the data structure, full text searching facilities, symbolic
addressing in the manner of Figure 3.2 and a multivalued attribute marg-note-

zref in each text unit to record cross-references made to other parts of the text
[Rossiter & Heather 1987].

The current work is concerned with the implementation of the dynamic aspects
shown in Figure 3.3 and the static aspects of Figure 3.4. The additional tables
created to record the status of navigation will first be described.

4.1 Tables to record the Navigational Status

The entity-types path and pathitem shown in Figure 3.4 hold all information on
the trails made by users through the textbase. The attributes describing this
information are shown below (key attributes in bold):

e path(user.id, trail.num, trail.label)

e pathitem(user.id, trail.num, command.num, command,
citing.text.id, cited.text.id, current.unit, link.status, relevance)

18



Each trail is labelled with a string ¢rail.label for identification by the user. In
pathitem, cited.text.id holds the symbolic key of the current record after the com-
mand held in command has been both executed and successful. Success or failure
is indicated by the value for the logical attribute link.status. The current unit size,
indicating the extent to which the complex object structure has been aggregated
to provide results to the user, is indicated by the value for current.unit. The
attribute relevance can be used to record the desirability of taking a particular
route.

The attribute citing.tezt.id represents the involuted relationship cites of Figure 3.4
and is used as a backward reference point to enable the user to perform backwards
and forwards tracking through the text. The attribute pair citing.tezt.id and
cited.text.id is exactly equivalent to ref.id defined earlier in the Taxis-like symbolic
key definition of Figure 3.2. The tables and their attributes are extensively used
by the processes described in the Petri Net of Figure 3.3.

4.2 Dynamic Aspects and the User Interface

The processes shown in Figure 3.3 were implemented using the SPIRES Proto-
cols language. Two types of command are recognised by the system. SPIRES
system commands are passed to the database kernel without modification. Other
commands to validate and execute either a search, navigation or trail request are
parsed and then sent to the appropriate process. It should be emphasised that
the interpretation of users’ actions is to some extent context-driven. Thus if the
variable status holds the value REPLAY, the users’ actions will be interpreted as
far as possible as involving the recall of a trail. If the value is ACTIVE, the user
is thought to be navigating and if INACTIVE (from the navigation perspective)
performing an initial search to locate a record on content prior to navigation.
However, if it is unambiguous that a user wishes to change his mode of operation
from, say, navigation to content search, his status will be changed transparently
from, in this case, REPLAY to INACTIVE. This flexibility is very important as
it is only by changing mode in the middle of a session that a user can vary an
earlier trail to explore the text in a new manner. The facilities available to the
user under each status value are as follows:

e INACTIVE: A search command creates an initial result stack of items. This
is followed by iterative searching with Boolean logic on the current stack.
Navigation can only sensibly proceed when the user has identified a single

record as of initial importance from content searching. The ideal is probably
an initial list of ranked records as described by Croft & Turtle [1989)].

19



ACTIVE: Navigation commands available are of three main types:

entering a positive or negative number enables the user to browse backwards
or forwards through the text in logical sequence of the textual units. This
command is typically used for browsing in either direction through sections
within a part or paragraphs within a schedule at a constant textual unit
size.

entering the command ref directs the system to find the record referenced
by the current record. If several records are referenced from a single record,
the user will be given a choice as to which one is required. If the reference
is to a high-level unit such as a part, objects will be aggregated to retrieve
a complete part for the user. This command can therefore dynamically
change the current textual unit size.

entering values for the identifiers of subobjects of the symbolic key defined
in Figure 3.2 finds the record with symbolic key with new values for the
designated subobjects and current values for other components. The current
textual unit size is adjusted accordingly.

With all three forms of the navigation command, execution results in updating
the table pathitem defined earlier and, if successful, making the object found the
current item.

REPLAY: for the replay of trails established earlier, the user first provides a
string trail string for identifying the required trail held in the table path. If
the trail exists, the first action held for the path in pathitem will be executed
and the system status will be changed to REPLAY. During the replay of a
trail, a user can enter any of the following:

o first finds the key of the record found at the beginning of the selected trail

and establishes it as the current record.

last finds the key of the record found by the end of the selected trail and
establishes it as the current record.

e fwd[n] takes the navigation n steps forward from the current position.

bwd[n] returns the navigation back n steps.

end causes the status of the system to be changed from REPLAY to INAC-
TIVE.

20



Chapter 5

Discussion

We have used current database techniques to satisfy our requirements. Of partic-
ular interest is the availability of both powerful browsing and searching facilities,
the recording of all information concerning user trails as persistent data in fully-
fledged database tables, and the dynamic variation of text unit size to meet
changing user demands.

However, our task was relatively hard in two areas:

1. the dynamic adjustment of unit size; and

2. the integration of dynamic and static models.

In our implementation, aggregation was achieved at run-time through masking
out components of the primary key and assembling, using the Protocols language,
the series of text objects meeting the criteria implied by the user’s current re-
quest. Reasonable performance was achieved in this task but the aggregation is
being achieved by external operations on the objects rather than by the more con-
ceptual approach of aggregation abstraction: new object classes with aggregation
methods are defined to represent the various unit sizes.

Database technology does not provide a completely satisfactory solution to this
problem. The definition of abstract data types as in the well-known commercial
ISO-standard relational database system Ingres to represent the various aggrega-
tion possibilities may give problems with closure: the return of a multi-valued set
produces an unnormalized relation. Alternatively, an object—oriented database
system such as GemStone could have been employed. This would have mod-
elled well the inheritance abstractions but aggregation is achieved by external
operations on objects as in our current implementation.

21



The dynamic and static aspects have been implemented using different models
which are weakly-integrated. This lack of integration is found in all conven-
tional database systems in current use [Tsichritzis & Nierstrasz 1988]. On the
other hand, an inherent feature of object-oriented databases is that methods do
form part of the class definition. Some semantic database models such as Taxis
also provide this capability and their expressiveness has been examined for text
[Rossiter & Heather 1990]. Although these integrated models are currently at
the experimental stage for realistic amounts of data, their employment in future
large hyperbase systems seems almost obligatory. The object-oriented model of
hypertext developed using the Vienna Development Method [Lange 1990] shows
the potential of the paradigm in this area.

In addition, there is also a number of areas where further work is required:

1. The interface provided to users. Layered object-oriented techniques em-
ploying multi-windowing need to be front-ended onto the present system.

2. Investigation of the semantics of trail integrity. The integrity of trails de-
pends during their existence on no component object being deleted during
maintenance of the hypermedia database. There is therefore a need for re-
strictions on the actions that are permitted on objects that participate in
trails. Operations such as deletion on any hypermedium object participating
in the relationship item.found.in should perhaps be constrained. Further
work is needed at the conceptual level in this area to determine the exact
nature of the constraints required.

22



Chapter 6

Conclusions

Hypermedia systems are very complex: events have to be controlled over long pe-
riods, as in the design, control, maintenance and integrity of linear and branching
trails used for navigation; text and graphical information comprises complex data
objects with the need for aggregation and inheritance abstractions; and interfaces
must employ multi-windowing techniques and be natural according to psycholog-
ical models. We have considered hyperbases in terms of formal models based on
Petri Nets for activity and directed graphs for data structures. However, there is
some difficulty in integrating the two models to provide a unified formalism. We
are currently investigating the use of category theory for providing a more power-
ful universal formalism for advanced computer applications [Rossiter & Heather

1993].

23



Chapter 7
References

V.Bush (July 1945), As we may think, Atlantic Monthly 101-108. Reprinted
1988 in: Computer-Supported Cooperative Work: A Book of Readings, ed. I.
Greif, Morgan Kaufman 17-34.

B.Campbell and J.M.Goodman (1988), HAM: A General Purpose Hypertext Ab-
stract Machine CACM 31 855-861.

P.P-S Chen (1976), The Entity-Relationship Model - towards a unified view of
data, ACM Transactions on Database Systems 1(1) 9-36.

J. Conklin (1987), Hypertext : An Introduction and Survey, IEEE Computer
20(9) 17-41.

W.B.Croft and H.Turtle (1989), A Retrieval Model for Incorporating Hypertext
Links, in: Hypertext’89 Proceedings; Special Issue - SIGCHI Bulletin 213-224.

G.Degli Antoni & B.Zonta (1982), Analysis of Laws by Petri Nets: Motivations
and Methodologies, in: Artificial Intelligence and Legal Information Systems,
C.Ciampi (ed), North-Holland 1 273-299.

R.Furuta and P.D.Stotts (1989), Programmable Browsing Semantics in Trellis,
in: Hypertext’89 Proceedings, Special Issue - SIGCHI Bulletin 27-42.

P.K.Garg (1988), Abstraction Mechanisms in Hypertext CACM 31 862-870.

M.A.Heather and B.N.Rossiter (1987), Database techniques for text modelling:
the document architecture of British statutes, University of Newcastle upon Tyne,
Computing Laboratory Technical Report no 227.

M.A.Heather and B.N.Rossiter (1989), A Generalized Database Management Ap-
proach to Textual Analysis, in: Proceedings. 2nd International Colloquium, Bible
and Computer: Methods, Tools, Results, Champion-Slatkine, Paris-Geneva 519-
535. .

24



P.Hitchcock & B.Wang (1992), Formal Approach to Hypertext System based
on Object-oriented Database System, Information & Software Technology 34(9)
573-592.

A.W.Holt & J.A.Meldman (1971), Petri Nets and Legal Systems, in: Jurimetrics
Journal 12 2.

D.B.Lange (1990), A Formal Model of Hypertext, in: Proceedings Hypertext
Standardization Workshop, edd. J. Moline, D. Benigni and J. Baronas, National
Institute of Standards and Technology 145-166.

J.Mylopoulos, P.A .Bernstein and H.K.T.Wong (1980), A Language Facility for
Designing Database-Intensive Facilities, ACM Transactions on Database Systems
5 185-207.

W . Reisig (1985), Petri Nets, an Introduction, Springer Verlag, Berlin.

B.N. Rossiter (1985), Full Text Data Base Management Systems: A Model and
Implementation for Law, II International Congress Logica, Informatica, Diritto,
edd. A.A.Martino, F. Socci Natali, 585-598.

B.N. Rossiter (1987), Machine Awareness in Database Technology, Proceedings
Symposium VI, Meta-intelligence and the Cybernetics of Consciousness, XI In-
ternational Congress of Cybernetics, Namur 1-9.

B.N.Rossiter and M.A.Heather (1990), Strengths and Weaknesses of Database
Models for Textual Documents, Proceedings EP90, ed. R. Furuta, Cambridge
125-138.

B.N. Rossiter & M.A.Heather (1993), Database Architecture and Functional De-
pendencies Expressed with Formal Categories and Functors, University of New-
castle upon Tyne, Computing Science Technical Report no 432.

F.W.Tompa (1989), A Data Model for Flexible Hypertext Database Systems,
ACM Transactions on Information Systems 7(1) 85-106.

S.A.Treu, (1971), A Conceptual Framework for the Searcher-System Interface,
in: Interactive Bibliographic Search: The User/Computer Interface, ed. D. E.
Walker, AFIPS Press, Palo Alto 53-66.

D.C.Tsichritzis and O.M.Nierstrasz (1988), Fitting Round Objects into Square
Data bases, ECOOP ’88 Proceedings, in: Lecture Notes in Computer Science,
Springer-Verlag 322 283-299.

E.Yoder and T.C.Wettach (1989), Using Hypertext in a Law Firm, in: Hyper-
text’89 Proceedings, Special Issue - SIGCHI Bulletin 159-167.

P.T.Zellweger (1989), Scripted Documents: A Hypermedia Path Mechanism, in:
Hypertext’89 Proceedings, Special Issue - SIGCHI Bulletin 1-14.

25






