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Abstract

Abstract

The retrieval of image data in information systems that are both global
and open-ended cannot be advanced independently of the way that image-
data objects are generated, processed and stored in those systems. A uni-
versal representation is needed compatible with other types of multimedia
data and fully integral at the human-computer interface. Instead of im-
posing common standards, impossible in such an environment, a natural
universal reference form is sought as a basis for understanding the gen-
eral principles of image retrieval. To this end formal categories may be
constructed of image-data objects and their complex structures. It is ar-
gued that all image forms are representable in the same general pullback
category enabling the universal operations which can form the basis of all
practical image activity.

Keywords: IR theory and models (general); architectures for IR sys-
tems; theoretical discussion of the information seeking process; image in-
dexing/retrieval; metadata for retrieval of non-text information.



1 Conceptual Representation of Image Data

Image data techniques need to provide a technology to interrogate
distributed data by naive (end) users in open-ended generalised in-
formation management systems. Image processors cannot afford to
develop independently of the other components in multimedia in-
formation systems and it would be a loss to bypass the experience
in information retrieval, databases and human-computer interaction
learnt in the last three decades. Ideally image storage and retrieval
should be performed in a manner that is a simple extension and
merger of current work in these areas for integration and for use in
and across a variety of operational data situations. This is a very
wide span from business, commerce and the professions, through sci-
entific, engineering and medical applications to the world of culture
and the fine arts. There is also a need to have transparent cross-
platform use of the same images for data visualisation and virtual
reality as well as in related specialised fields !. There is also a link
with cryptography through the art of stenography and water marks
[20].

The development of universal principles in image processing would
help prevent fragmentation into a myriad of inconsistent methods
and standards. We should therefore be looking for general under-
lying principles that can form the basis of natural standards to be
found within, not imposed from without.

This is a difficult requirement for image-data objects where complex
data structures may need to be matched in open-ended systems with
connections between heterogeneous models. In standard data tech-
nology it is assumed that all data can be represented in a standard
character code such as ASCII. This principle can be carried over
some way with image data as found in the use of Postscript. How-
ever image data in analogue form is so varied that a piece-meal
approach can only lead to a plethora of incompatible competing
subsystems. There is a need for the simplest basic format maintain-
able over long periods across different systems. Hardware advances
mean that a virtual infinite bandwidth storage capacity are available

like opto-electronics [5], holographs [13, 15] and artificial vision with neuromorphic vision
chips [23].



so that earlier procedures for elaborate coding methods, including
compression, are no longer needed as they may be only a hindrance
to global communications and the future persistence of image data
for later generations.

A proper universal approach is needed from the outset. This has al-
ways been the rationale underlying database models but traditional
models like the hierarchical, network, and the relational (including
SQL) may not be adequate for components involving pictorial as
well as textual data. There are fundamental differences in that addi-
tional levels become necessary and at each level there is an extension
of typing. To be reliably universal the theory needs to be formal.
However even mathematical theory has to be implementable and
computable. This leads to the requirement for the use of construc-
tive mathematics where recent results in category theory appear
very pertinent to the formal philosophy of image representation and
retrieval.

Category theory provides a way to handle image objects consistent
with parallel developments in areas like signal processing, data ware-
housing, data mining and data fusion. The latter for the commercial
environment seeks to integrate fully all the information for a partic-
ular business. Image data is now an important component needed
to enhance the performance of many decision-making procedures
in mixed systems. Examples range from robotics to subjects like
medical diagnostics, and even financial market analysis.

Category theory is a very convenient mathematical workspace to
bring together all the relevant techniques and the wide range of
specialised methods and tools available. Examples found in the lit-
erature of particular methods that need to be integrated include
uncertainty-based methods [11], inductive query languages [17], ge-
netic algorithms, simulated annealing, rule induction [1], neural net-
works, data migration, intelligent agents [21], inference agents, re-
verse patching [27], case similarity for retrieval [12]and re-use [44]
as well as methods borrowed generally from signal processing like
wavelets?, chaos and fractals, time-frequency waveform represen-
tation and other image transforms®, linear/non-linear and robust

2used to distinguish texture in contents-based retrieval [34]
3for example fourier, karhunen, loeve, haar, hadamard, hough, walsh and singular-value



filtering, markov random fields [25]*, gibbs distribution, stochastic
optimization, as well as tomographic reconstructions. These meth-
ods are applicable to image enhancement and restoration, multi-
resolution processing, scale and colour spaces, edge detection, tex-
ture and shape analysis, remote sensing and industrial inspection.
Human processes are often modelled®.

Image objects therefore provide quite a challenge and methodologi-
cal leap for the subject of information retrieval in mixed-information
systems. The technology has progressed far beyond the physical
document and we are well into the concept of the logical document
as a complex abstract structure and process. As indicated above
it is the number of levels that have to be handled and their inter-
relationships. It is comparable to the difference in text retrieval
between syntactically (more or less physically based) searching on
controlled keywords through semantically significant free vocabulary
to the richer pragmatics of full text in context. An analogue picture
is a much more compact form of information communication than its
digital counterpart. It is that distinction that category theory can
capture. Earlier forms of discrete mathematics such as set theory
have the same limitations as the digital image format. Searching on
images is a value-added activity requiring more sophisticated meth-

ods.

There is great current interest in the object-oriented approach® which
has been used to structure meta-information for image retrieval em-
phasising the composition of visual entities [38] 7 and in the use of
objects for visual agents in portable computing interfaces [21].

From this wide-ranging list of current applications, it is clear that
image retrieval has to be applied to a very wide range of activities.
Text retrieval like standard database technology has been developed

decomposition

4For similarity matching of chromatic and spatial information using rough-picture queries
[25].

5For instance Yasuda et al [46] used a human memory model, involving graceful oblivion
and abrupt recollection, as it is claimed that pyramidal (ie hierarchical) coding provides better
comparison efficiencies.

SHowever, there are problems in unifying the separate set theoretic approaches to the
object-oriented methods on offer [4].

"where the entities like human, chair, etc are distinguished from their respective con-
stituents like eye, leg, etc.



in the context of the stand-alone database with local well-defined
rules, a simple local universe with control vocabulary etc. Search
engines attempt to extend these same methods for distributed data
rather than to reconsider the complexity afresh from basic princi-
ples. Image processing involves not only the manipulation of large
volumes of data at the syntactic level but also an attempt to under-
stand the semantic features portrayed by the image to a viewer. For
example, colour photographs held in an image database in the tif
format or JPEG may occupy 10Mb each of storage space but users
would like to scan them for the presence of certain features such as
the presence of colours in a particular pattern. The system will need
highly efficient disk handling routines plus sophisticated means of

analysing images. The number of applications is immense®.

To satisfy all these demands, image retrieval systems may be in-
terpreted through a viewer with varying contrasts, highlights and
brightness. The techniques to perform this are usually numerical
algorithms based on continuous mathematics. The techniques are
analagous to data mining in so far as display patterns and data
fusion are being investigated.

2 Current State of Image Representation

There have been two main directions to date in handling image data
[14] :

e Image contents can be modelled as a set of attributes to give a
fairly high level of abstraction but with little scope for free or
ad hoc queries [18, 30],

e Feature extraction/object recognition subsystems provide an
automated approach to object recognition but the methods are
difficult, computationally expensive and tend to be domain spe-
cific [40].

8The number of digital cameras sold by 2001 is expected to be 8m every year in the USA

compared to 2m now. There are 2 billion photographs taken each year in business and ten
times that amount if personal use is take into account [42].




Rather than employ general models as used in databases (relational,
network and hierarchical), information retrieval has traditionally
employed customized methods (for example relevance matching or
ranking algorithms). Text retrieval tends to be performed by spe-
cialised packages, usually involving inverted files. SPIRES [36] was
an early example of the use of a generalised database management
approach to information retrieval which used quite an advanced form
of dynamic data modelling which was particularly fitted to complex
documents in full text (for example, like UK Statutes). Comparable
database systems are now needed to store image data that can be
searched with queries at the intensional level. Based on the experi-
ence of text retrieval, customized systems for similarity based image
retrieval using only relevance feedback techniques of IR may be too
simplistic unless they can extend to the extra layers of metadata to
be found in database systems.

It is to be noted that there is a prominent use of text to assist
searches in the systems based on attributes like Chabot [30]. Text
is extensively used to support image retrieval. Text may be used
in this way because of the natural adjointness between text and
image data which will be discussed below. For instance facial images
using textual qualitative descriptions are described by Srihari [40]
as mentioned above. See also Picard & Minka’s work reported in
1995 [32].

The current state of text retrieval systems now can be seen in sys-
tems like Strudel[8, 9] to deal with web-based text.

In technical terms, the theoretical problems on image processing
crystallise as follows:

e there is an emphasis on powerobjects rather than atomic ob-
jects with flexible searching required on clusters and groups;

e universal relations need to be constructed to make new con-
nections intra-schema (local universe) and inter-schema (global
universe) - i.e. for integration of images with text across het-
erogeneous databases;

e type/domain resolution is necessary to recognise which attributes



are joinable - for different types of image representation (pixel,
graph, Postscript)

Categories provide a theory of types. Typing is an inherent feature
of every image recognition and therefore a necessary part of image
retrieval. There are two basic categories to type image data. These
are:

1. the source of the data ;

2. the medium of the data.

Thus for an old master the source will be a human painter (of a cer-
tain character e.g. a genius like van Gough which will be reflected
in the painting and may therefore form part of any search crite-
ria), whereas the medium may well be a painting in oils which will
again import certain characteristics to the image and be specifiable
in the retrieval process. A computer-generated image from auto-
matic methods could have a source like natural physical processes in
meteorology or natural biological processes in medical applications.
These two examples might today very well be in some medium with
similar characteristics. Both have bit streams but still have different
types for their respective sources. These full typing features need to
be available to the system as necessary for storage, retrieval, display,
etc. There is an adjointness between the two categories as discussed
below. A review of current methods shows the diversity of aims and
requirements of the many applications of the use of image analy-
sis, particularly as indicators of physical states and phenomena and
therefore the complication for compatibility and integration.

3 Current Application Areas

There is no limit to the variety of potential applications of data im-
ages. Typical examples of the importance of their detailed use can
be seen in the speed sensor microwave imager for predicting long-
term rainfall [7] or in the special sensor microwave imager [43]. In



utilising the information to be derived from the images to predict
long-term rainfall, there is a need to distinguish nonraining back-
ground conditions from any direct emission or scattering from the
hydrometer. Similarly remote viewing with multi-spectral images
allows mowcasting’ of fog and pollution hazards but there is a need
for image retrieval to take account of noise in either the source or
the medium [43]because thermal emission in the near infrared has to
be eliminated. However, colour is often an important distinguishing
feature. In the latter it can help to detect whether rain is present
or not [16].

A comparable need to extract information from the details of images
and the corresponding rigorous requirements for precise query spec-
ifications are to be found in medical image applications. However,
medical information systems themselves tend to consist of a great
proportion of image information of an imprecise nature. The knowl-
edge extractable from the imprecision may be quite critical but can-
not be so easily identified as in textual information. Content-based
image retrieval is needed for computer-aided diagnosis and [41] is
an example of a system that uses object-oriented iconic queries to
gain access to the information at the semantic level by association
through prototypes. Other contents-based retrieval used in medical
imaging employ type abstraction hierarchies [17]. Tmages may be
classified by an automatic clustering algorithm and shapes and spa-
tial relationships derived from object contours but they always have
a dependence on specific knowledge of the image domain.

Standard fixed forms are also in use for medical diagnosis [31] but
only it seems at the storage level. R-trees used to index points in
a multidimensional space can distinguish unexpected objects (for
example, tumors and hematoma) from expected objects like hearts
and lungs as a diagnostic tool.

A facet of information retrieval that does not feature much if at all
in document retrieval is texture. These are perceptions of qualia[33].
Notice the difference between the search for a portrait with a mature
use of colour and a colour portrait of a mature face. Both involve
qualia, the former at a syntactical level and the latter at a semantic
level. Nevertheless despite difficulties texture because of its impor-
tance is already being used as a search criterion. For instance with



human faces in [6], facial images have been shown to be distinguish-
able by a small number of relevant stimulus parameters based on
the results of psycho-physical research.

In [26], the perception of human texture is resolved into the three
components of periodicity, directionality and randomness. Picard
& Minka [32] compare human texture with searching on texture
of water in digital libraries. They suggest that no single model is
sufficient. Shakir & Nagao [38] therefore use a selection of models to
represent texture such as meta information, the hierarchical model
and the object-oriented approach.

Some work on semantic interrogation has been carried out by Yang
& Wu [45] who propose a query-by-example diagrammatic language
using type constructors like functions and inheritance to manipulate
images at the semantic level.

This has been no more than a cursory survey of current activity in
image work but it is perhaps sufficient to show the need for funda-
mental studies if the subject is to proceed in a coherent scientific
way that can encompass the many different facets of the subject.
It is for this reason that in investigating the universal requisites
for image representation that we have had to turn to the modern
mathematics of category theory.

4 Brief Review of Category Theory

Categories of identity arrows (objects) and arrows are formally re-
lated by functors and functors by natural transformations so that
category theory only needs the concept of the arrow as a transitive
transformation of these three types (arrows, functors, natural trans-
formations). An important result follows that any number of levels
beyond four are redundant for a full description of any system.

Category theory is able to unify many standard mathematical ideas
which are needed in information processing [3] for a knowledge en-
gineering context and in particular for objects like graphs, semantic
nets, geometric models and hierarchies, as used in image work[12].



It has also exposed to view concepts that were hardly recognised
previously. One of the most important of these new concepts is ad-
jointness. Adjointness is a fundamental universal property showing
itself in many forms in a wide variety of situations but whose gen-
eral nature has only really been appreciated in the last twenty years,
particularly in the context of the contravariant relationship between
intensional and extensional data [24]. By virtue of the adjoint func-
tor theorem[10], left adjoints preserve colimits (right-exactness) and
right adjoints preserve limits (left-exactness). Colimits are the dual
of limits. Text at the word level is the simplest of examples; search-
ing at the semantic level is more sophisticated but the principles
remain the same except that we have to deal in categories rather
than sets.

F' : addressing

U : retrieval

. 1A <UF:

__________________________

Figure 1: Adjointness in Indexing

Adjointness is a characteristic of all forms of indexing. Its general
nature in category theory terms can perhaps be understood in the
example of the indexing of a traditional book. The simplest index
is an inverted file (concordance), an example of pure adjointness,
F 44U : A — B. The ordering in the book of category A is the
order of the words of natural language. The indexer has complete
free choice on how to index but subject to the initial ordering of
A. The arrow is the free functor F' describing a particular choice of
indexing, for example on words, concepts, chapter headings, figures,
etc. Category B contains the ordering of the index, the simplest
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form is usually a lexical order of the important words in the text
with the page numbers on which they appear. This is a totally free
ordering in B but entirely subject to the ordering in A. A reader
uses the order in B to find the page required in A, an operation of
the underlying functor U. With this information the reader finds
the required page leaving the index (with its own ordering) behind
showing that U is also the forgetful functor.

If category A is a collection of multimedia objects, the arrows would
be the relationships of conceptual links with higher-order arrows
relating collections such as documents. The free functor F' is the
(arbitrary) addressing for each multimedia object in the collection.
This formal theory of indexing in the adjointness of two categories
is illustrated in Figure 1.

Notice that 15, < UF consists of all the orderings in the text and
FU < 1g all the orderings in the index. Therefore the underlying
functor U : B — A provides the overall awareness of the con-
tents of the documents in category A. The awareness of these can
be retained with a more elaborate database management model.
The index need not be fixed. For example [22] uses a parallel and
distributed associative network to focus directly on any subset of
pixels in the image with a method from optical holography. This
enables dynamical indexing avoiding ad hoc predetermined fixed
indexing. [47] examines the efficiency of indexing for image and
video databases at four levels (pixel, nearest neighbour, block and
full image) to construct a generalised histogram as a phase space
for their invariant properties of translation, rotation, reflection and
connection. Now we need the counterpart of a dynamic index for
distributed multimedia data.

4.1 Adjointness between Text and Image Data

The relationship between different forms of representation of data,
particularly the intensional-extensional correlation, is fundamental
to all applications such as the manipulation of image data based on
content and meaning. Imaging is rapidly becoming a major industry
and a burning research topic to be seen as part of a much wider
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field of study of information engineering. They all follow the same
pattern as the adjointness between textual and image information
where both are mapped onto the electronic medium as a bit stream.

Multimedia are logical rather than physical based. They are an
abstract category of a document which may be represented as a
textual file or as an image file resulting from input by means of a
scanner. The two forms clearly contain equivalent information al-
though they would appear in quite different electronic forms. This
is an important example of adjointness as demonstrated in Figure
2. TXT(X),IMG(D) and ELE(2) are categories corresponding
respectively to text, image and electronic form. Each of these cat-
egories is a free functor. In set theoretic terms TXT(X) is a map
from the alphabet X on to finite strings so a character, x, goes to
a string, z +—<z>. ELE(2) is correspondingly composed of strings
of zeros and ones. IMG(D) provides a definitive visual form which
might be available in words in TXT(X). The transformations

IMG(D) = TXT(X)

will not be lossless but are both subcategories of some greater cat-
egory. Thus the human imagination of a reader of text may supply
features not available in the image form and the converse also holds.

IMG(D)

TXT(X)

ELE(2)

Figure 2: Adjointness of Electronic Forms
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4.2 Intension-Extension Mapping

IMG (D)

TXT(X) ELE

| \SEM

Figure 3: Adjointness in Real-world Semantics

The links in multimedia may therefore be at different levels. The
mappings representing the links would therefore need to be typed
in geometric logic. There is the simple linking between documents
like a citation of a label or name (the intension). A more powerful
level of connection is within the semantics (the extension). There is
also the intension-extension relationship which has been shown by
Lawvere [24] to be composed of adjoint functors.

The extension level of the abstract document is therefore the same
for the three categories of text, image and the electronic bits of
the digital form. Equality in geometric logic is provided for by
composition. The possible relationships between the three categories
of documents at the two levels can therefore all be summed up in a
simple geometric formal diagram.

A real-world semantics SEM can be represented in any of the three
forms of image, text and electronic. There will therefore be in-
tension, and extension consisting of contravariant functors between
each of the three and SEM as in the diagram in Figure 3.

It is this adjointness that enables images to be retrieved by the use
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of linguistic descriptions. An image database may therefore be in-
terrogated by any of the ordinary textual query methods to retrieve
facial images like the use of controlled vocabulary or often more sim-
ply the use of rough queries. More advanced textual methods are
also in use such as those to retrieve facial images using fuzzy sets[11].
Fuzzy-set theory has been used too in a fine-arts database to input
impression words of different degree for the location and other se-
mantic features, for example, the query ‘joyful pictures which have
a mountain in the center and there is a tree in the right’ [29].

5 Image Retrieval

One important concept from sheaf theory is the pullback or fibred
product where a product is restricted over some object or category.
S and M both have arrows to some common category W (the real-
world) as S — W and M —W, and the subproduct of S and M
over IMG written as S X1me M may be represented by the diagram
shown in Figure 4.

The diagram in Figure 4 describes the pullback of ¢ along f. The
product S Xpve M is an example of the universal limit. Holographic
methods are examples of exploiting the concept of limit [22]. It
seems in general that the discovery of knowledge, as in information
retrieval, is always the pullback of an arrow along another arrow
over some category. The pullback limit is technically left ezactness
[10]. This is the formal description of the existence of any knowable
entity in the real world.

0 \
S XIMgM /W/IMG

€f<t) t
M

Figure 4: Pullback of ¢ along f

This example shows well the difference between the use of univer-
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sal theory in constructive mathematics and the axiomatic set theory
style of SQL where a kind of brute-force has to be applied to extract
exact knowledge as a member of the powerset. The better scientific
approach is to conceptualise from the three-level standpoint of this
example. Thus all images are the limits in the pullback of two
categories, a source (S) and a medium (M). The category W con-
tains a subcategory IMG consisting of the real-world components
that make up the source and the medium. These are real-world
constructions. Again the important relationships between these in-
dexed partial-orders are those of adjointness which lead to a formal
understanding of the query. There is the need to find universal
forms because they are natural; they should also be obvious and are
usually quite trivial to identify.

The pullback diagram is actually richer than that shown in Figure
4. As indicated in Figure 5 many other arrows are in fact involved.
Because of the principle of adjointness, these are unique which is
why a particular arrow can imply that an image object exists and,
if it exists, it can be retrieved by the appropriate query.

Figure 5: Pullback of source type t along image type f
showing fuller collection of arrows

The nature of these further arrows, together with those already in-
troduced, is shown in the table in Figure 6.
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arrow | selects of from comment

f w given S source analysis
! S given W source construc-
tion
t w given M medium analy-
sis
t=1 M given W medium con-
struction
Ty S given | S x M | source nature
€4 M given | S x M | image qualia

@ S x M | given w real-world
image query

nf S x M | given S image creativity
) S x M | given M medium type

b w some | S X M | component col-
lection e.g. pix-
els

II W all S x M | component com-
binations

Figure 6: Table showing nature of each arrow in Full
Pullback Diagram in Figure 5

6 Application to Image Processing

Consequently the pullback diagram in Figure 5 can be applied to the
universal problem of image representation. The universal categories
for any image are source S and medium M. For example a painter
would be an object in the category S and oils an object in the
category M. For subcategory S painter and subcategory M for
oils, the limit S xmvg M represents all the paintings by different
painters and W includes particular components of the oil medium.
For computer-generated images S Xmvg M where the category S
represents computers, M is the electronic medium and W consists
of hardware items ranging from the components of the distributed I'T
systems to the pixel representations i.e. the arrows, of the categories
S Xmme M and W, each have a partial order self-indexed by their
own semantics.

The arrow f maps each source on to forms of representation. ¢ gives
the forms used in a particular medium; this arrow performs the role

16



of insertion of the category of medium into the physical or hardware
form. The pullback (limit) S xng M contains all the components
that make up the image forms. This is the generalised version of
the familiar vector method and Salton’s cosine [35, 39] which is an
inner product. The limit S X M is the outer product and the
generalisation of the vector method and tensor products.

In general the arrow

o W(SEM) — S XIMG M(SEM)

is the functor formally representing the discovery of knowledge in
an operational sense. The table sets out the interpretation of the
various arrows based on their universal form in category theory.
Note that because of the three-level architecture, the highest type
of arrow, natural transformation, can represent characteristics like
creativity (ny) or qualia (e;).

7 Concluding Remarks

Systems that are open like modern distributed information systems
are exposed to real-world complexity. For instance [19] computer vi-
sion algorithms have from the outset had to accept the challenge of
heterogeneous real-world systems. It matters not whether it is from
the smallest lithograms of nanotechnology [28], or partial images of
footprints to identify shoes in investigation at the scene of a crime
[2], or constructions obtained from virtual telescopes to produce im-
ages greater than the diameter of the earth [37]. In each case it is
necessary to get a handle on the complexity. Already we are seeing
the appearance of products like JetSend from Hewlett-Packard to re-
place all drivers with one piece of code that enables any information
appliance to talk with any other. Such interactive devices capa-
ble of cross-platform operation need to be constructed according to
open-ended standards. It is to be noted that despite the extensive
international standard on offer, present world-wide information in-
terchange depends only on two basic standards for Communications:

17



SS7 (signalling system 7 for digital telephony) and TCP-IP for the
internet. These simple standards are inadequate for the complexity
of digital images.

John Taylor, IEE president 1998/99, sums up the position well [42]:

For the last 30 years, computer science has focussed heav-
ily on programming, function, compilers, etc. In compari-
son, data, databases, distributed information management
etc have been rather second-class subjects with relatively
little formal methodology or theory. From now on, the
pendulum is going to swing rapidly the other way driven
by storage technology, digital multimedia, the internet and
WWW | informal information and personal digital imag-
ing.

It is the formal theory in modern formulations like category theory
that can provide the basis for open-ended natural standards that
can cope with the required complexity.
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