The Categorical Product Data Model as a
Formalism for Object—Relational Databases

B.N. Rossiter & D.A. Nelson
Computing Science

Newecastle University, England NE1 7TRU
M.A. Heather

University of Northumbria at Newcastle

November 1994

This report was published as

Rossiter, B N, Nelson, D A, & Heather, M A, The Categorical Product Data Model
as a Formalism for Object—Relational Databases, Computing Science Technical Report
n0.505, University of Newcastle upon Tyne (1994) (42pp).

The paper published on it is very similar:

Nelson, D A, & Rossiter, B N, Prototyping a Categorical Database in P/FDM. Pro-
ceedings of the Second International Workshop on Advances in Databases and Infor-
mation Systems (ADBIS’95), Moscow, 27-30 June 1995, Springer-Verlag Workshops
in Computing, edd. J. Eder and L.A. Kalinichenko, ISBN 3-540-76014-8, 432-456
(1996).



Abstract

Category theory has been developed over the last 50 years as a multi-level mathe-
matical workspace capable of modelling real-world objects. Categories of objects are
manipulated in geometric logic by a single concept represented by the arrow.

The category of products is an important instance of the universal concept of a
limit now recognized to exist in many contexts. The product model provides a natural
extension from relational structures on sets to a full formal description of features such
as classes, objects, association abstraction, inheritance, views and query closure. The
benefit for databases is that these can all be integrated formally through the arrow
concept.

About the author

Nick Rossiter is lecturer in the Department of Computing Science with particular
interests in databases and systems analysis.

David Nelson is a Ph.D. student in the Department of Computing Science with support
from ESPRC and interests in databases and category theory.

Michael Heather is senior lecturer in law where he has been responsible for computers
and law since 1979.

Suggested Keywords

object-relational database model, object—oriented databases, category theory, prod-
ucts, posets, subcategories.



1 Background

Databases have always had a formal background. This has had important advan-
tages in proving that data operations are carried out rigorously, in universality of
applicability and in the agreement of common standards. The basic database models
are firmly based on standard mathematics: hierarchies, directed graphs (networks),
relations and functions.

The difficulty for the development of database technology has been that the function-
ality provided by concepts such as relations is not adequate to deal with real-world
requirements. This has resulted in the development of a new breed of databases —
the object—oriented — with limited mathematical pedigree compared to the existing
models but with very much richer structures which offer the potential for users to
define and manipulate increasingly sophisticated structures.

An inadequate mathematical basis for object—oriented databases as pointed out by
Kim [1990] has limitations: the ability to prove rigorously that a system works univer-
sally is difficult and it is not easy to develop common models and standards without
an accepted mathematical framework. In addition, a few areas have proved very dif-
ficult to implement which are taken for granted in current databases: views, where
different users can see the same stored data in different ways; closure, where the re-
sult of a database query is a database structure which can be manipulated further
by the system; and generalized query languages, where a high—level language can be
employed to answer ad hoc queries.

Partly because of the relatively informal nature of object—oriented databases, an al-
ternative strand of development has been that of the object-relational model where
attempts are made ‘to obtain the best of both worlds” by combining the two ap-
proaches. In this model, relational concepts such as sets, relations and functions are
included as well as object—oriented concepts of abstraction and behaviour. Examples
of this approach are found in Postgres [Stonebraker & Rowe 1986], Montage, Matisse
and UniSQL [Kim 1994].

Category theory is a relatively new and very powerful form of mathematics which
we believe has the capability for providing an effective and natural formalism for
object-based databases. Categorical constructions provide a multi-level capability
matching the three-level database architecture of ANSI/SPARC [Tsichritzis 1978] and
by being based on the arrow as the basic concept, give a powerful representation of
the many mappings involved in a database system. One of the attractions of category
theory is its ability to combine diagrammatic formalisms as in geometry with symbolic
notation as in algebra: in computing science, diagrams are a common way of mastering
complexity and symbolic notation is used for proofs and computation.



1.1 Early Database Work with Categories

The theoretical database models developed by Ullman [1988], with their emphasis
on morphisms, can be considered as an intuitive form of category theory developed
within the customized context of databases. Ullman’s concept of F'* involves the
set of functions both prescribed and implied in a relationship. F7* includes given
functional dependencies, all dependencies on projection and pseudotransitivities. F'*
involves collections of arrows which are represented cumbersomely in set theory but
which are directly handled in category theory.

The Logical Data Model of Kuper & Vardi [1993] also uses categories in an intuitive
form with products, power sets and unions as basic mathematical structures and a
clear separation between names and values. The scope of their model could be made
more general by employing formal categories so that the model is naturally extensible
to handle further types of structure. Multi—level facilities in category theory would
also assist in formalizing mappings between the various structures.

When investigating the relationship between the functional, relational, E-R and
DBTG models, Sibley & Kerschberg [1977] used a categorical representation in binary
product form of relationships based on the work of Mac Lane [1971].

Early work on the representation of the network and hierarchical database models in
category theory [Cartmell 1985] addresses the construction of networks and trees in
categorical terms but does not deal with many important aspects of databases such as
object structures and manipulation. This work also pre-dates recent text books and
papers [Barr & Wells 1990; Freyd & Scedrov 1990; Dennis—Jones & Rhydeheard 1993]
which have made the subject more accessible and which have emphasised categorical
concepts which are very relevant for database construction: the basic properties of
categories and functors; the treatment of posets (partially-ordered sets) as categories;
and products and limit.

More recently, Lellahi & Spyratos [1991; 1992] have applied category theory to com-
plex object structures, the relational model, functional dependencies and a limited
number of features of the object—oriented paradigm. Their work on functional depen-
dencies with the categorical concept of limit shows the potential for category theory
in ensuring consistency. However, they have not realised to any great extent the full
potential of category theory in database work as they have tended to produce their
own formalisms based more on graph theory than on categorical abstractions and have
neglected a number of areas paramount to an object-relational model: normal forms,
the association abstraction and querying and views in a conceptual manner. As we
shall see, the concepts of association and queries can be directly and simply modelled
in a rigorous formal manner by pullbacks and subcategories respectively.

The work presented here is a continuation of our earlier studies on comparing the use
for database theory (including access methods) of category theory, Z and set theory
[Rossiter & Heather 1992], in expressing database architecture and functional depen-



dencies in category theory [Rossiter & Heather 1993] and in prototyping an example
for a student administration database in category theory [Nelson, Rossiter & Heather
1994]. The work also forms a companion to current studies of legal norms, rules and
laws expressed in category theory [Heather & Rossiter 1994a] where interoperabil-
ity between heterogeneous systems is one of the long—term aims, and to studies on
representing natural language in category theory [Heather & Rossiter 1994b).

1.2 Relationship to Functional Models

The functional model has been proposed as a suitable formal and practical basis
for object-oriented databases [Gray, Kulkarni & Paton 1992]. As the fundamental
construction in category theory is the arrow, we should expect our constructions to
resemble the functional model more closely than any of the other semantic mod-
els. While this turns out to be true, important differences emerge such as the much
stronger framework in the categorical approach for multi-level constraints as in the
intension—extension mapping and in typing; for inter—object relationships; and for
keys and functional dependencies. The query language that we are developing is
based on the functional model of DAPLEX [Shipman 1981] but mappings may be
between categories as well as between objects giving higher—order operations with
closure as will be described later. The need for higher—order logic in databases has
already been noted, for example see Beeri [1992].

1.3 Appropriateness of Formalisms

In developing the object models presented here, our motivation has been that the
ideal computing formalism is natural, clarifies thought and resolves controversy in
the application world, indicates new areas or facilities for extending an approach,
employs the minimal number of constructions in an orthogonal manner and is based
upon standard mathematics. The extent to which we meet this ideal is reviewed at
the end of the paper.

2 Categorical Concepts

Category theory can represent all standard mathematical structures and manipula-
tions as predefined categories. There is therefore no limit placed on category theory in
its ability to cope with detail. Further, with the facility to specify formally transforma-
tions between different types of mathematics, category theory provides a powerful way
of modelling complex systems with heterogeneous structures as is found in database
architecture.



2.1 Categories

Category theory is based not on the set as a fundamental but on the concept of a
morphism, generally thought of as an arrow and represented by — [Mac Lane 1971].
Manes & Arbib [1986] consider that the morphism can be regarded as an imperative
arrow for the purposes of computing science. The arrow represents any dynamic
operation or static condition and can cope therefore with descriptive/ prescriptive
equivalent views. For example, the arrow is a generalization of mathematical symbols
like =, €,C, <, f(@),... with the usual respective meaning of equality, membership,
partition, comparison, functional image, etc.

The arrow can never be free—standing: it must have some source and target, often
conveniently named domain (dom) and codomain (cod) respectively. A category is a
collection of arrows.

The basic constructs of category theory are quite simple:
1. The identity arrow 14 identifies an object A. That is,

1A2A—>A

2. Arrows are composable if the codomain of the one forms the domain of the
other.

3. Identity arrows can be distinguished by unitary composition with some arrow
f.
f:ly— 1 orsimply A->B

4. Composition of arrows is associative. Arrows may be composed so that the
codomain of one arrow may become the domain of another. Standard category
theory requires composition to be associative. For the arrows:

AL, Ba, ¢t p_i, g

10 (hgf)=(th)o(gf) = (thg)o f

Conventionally then a category in this context is a collection of arrows between objects
which may be named. Below we show a category C with two arrows f and g. Where
categories are given names, we use the convention throughout the paper of denoting
them in bold upper—case letters.

fitA—B g¢g:C—D



An object in a category C where there is one and only one arrow from every other
object to it is known as the final or terminal object of C. This may be denoted by 1
for the whole category, more precisely with the subscript 1¢ where C now represents
the whole category C. Dually (or oppositely) to the final object there may exist a
corresponding initial object where there is an arrow from it to every other object in
the category.

The derivation of a ‘subset’ of objects is represented by the subobject concept. The
object S is a subobject of A if it contains some of the members of A. See the section
Typing for further information on the subobject concept.

The hom—set of arrows between objects p and ¢ in a category C is written Homg(p, ¢)
and represents the set of arrows between the two objects.

A number of universal categories may be recognized to represent well-known mathe-
matical structures. These include the category of sets (SET — where the objects are
sets and the arrows are total functions) and a poset category (where the objects are
compared by arrows representing partial orderings). The category POS deals with
the universe of posets.

A number of types of arrow are defined in category theory which generalize the con-
cepts in set theory of injection (1:1 mapping), surjection (onto) and bijection (1:1
and onto) to apply to any category [Manes & Arbib 1986]. The categorical terms are
monic, epic and isomorphic respectively. Arrows that are monic, epic or isomorphic
are typed in the same way as objects [see Typing later].

A

C 7 B
Figure 1: Simple Diagram Chasing

A diagram for a category can be represented as a series of connected triangles. Each
triangle may comprise two paths between two objects as shown in Figure 1 — one
a composition of two arrows ¢ and f, the other a single arrow h. Then we take
commutativity to mean that a comparison of the two paths can be represented as an
equality h = g o f.

The way that the equation is written is conventional. The other order would be the
dual. The nature of proof in category theory should be emphasised. The diagram



is a formal diagram. It is a geometric representation equivalent to an expression in
algebra. We are in constructive mathematics and the only proof needed is the proof
of existence. Therefore so long as it can be shown that the entities belong to formal
categories [Freyd 1964], proof up to natural isomorphism is by composition. A formal
diagram is in effect a QED (Quod Erat Demonstrandum).

2.2 Subcategories

In a subcategory E of a category D, all of the objects and arrows of E are to be found
in D, the source and targets of arrows in E are the same as those in D, the identity
arrows are the same for objects in E as in D and composition rules for arrows in E
are the same as in D. E is a subcategory of D (with collection of objects objp) if for
objects p,q in E (collectively termed objg) we have

objg C objp and Homg(p,q) € Homp(p,q) (Vp,q € objg)

Clearly, subcategories in general only contain some of the objects and arrows of their
parent categories. However, there are two examples of special interest. If E has the
same arrows for each pair of objects as in D, E is termed a full subcategory of D. If
E has the same objects as D, it is termed a wide subcategory of D. Any category is
a full wide subcategory of itself.

The terms category and subcategory are relative so that a family of categories, with
inclusion dependencies between them, can be placed in a partial order with the arrows
representing ordering by inclusion. From a functional perspective, the arrows are in
fact functors mapping one category to another as described below.

2.3 Functors

An arrow between categories is termed a functor if it satisfies some structure—preserving
requirements: each arrow and object in the source category must be assigned (as in
homomorphisms); identity morphisms in the source category must be preserved and
for each pair of arrows in the source category, f : A — B and ¢ : B — (, then
F(gf) = F(g)o F(f)in the target category where F'is the functor. This type of ar-
row provides the facility for transforming from one category type to another category

type.

Functors are therefore basically structure-composing and —preserving morphisms from
a source category to a target category. An obvious case is when the shape of the target
category is determined by the functor, that is it accomodates all assignments from
the source category and has no other structure of its own. However, functors can
also be inclusive (or injections) so that the target category contains more structure
than the source category. The functor from a subcategory onto the category on which



it 1s founded is an example of such a morphism which we find is very pertinent for
database modelling. Such morphisms are free functors.

It is also possible to construct what are known as underlying functors, in carefully
controlled circumstances, which forget some of the structure of the source in forming
the target category, for example a transformation from a graph to its underlying sets.
Such functors do provide a total mapping from one category to another but some of
the structure is mapped to bottom L.

It is possible to construct arrows (functions) from one category to another that are not
functors [Freyd & Scedrov 1990, at page 5] but we always use functor constructions
as otherwise our formalisms are outside category theory.

2.4 Typing

Category theory has a naturally inherent concept of type. Discrete items are iden-
tified by the single category 1. Therefore an element in a set ¢ € A is represented
categorically by @ : 1 — A. Typing is added by indicating the category (i.e. some
pool of values in set theory extensions) from where the item is taken. For example
a:1lc — A (or more simply C —% A) makes the element « in set A of type C.
However, in general, A need not be a member of an object in the category SET but
may belong to a more general category.

Typing can be readily based on arrows as well as object values. Monic arrows in a
category or object can be considered as of type M where M is a category representing
the universe of monics. In each of these examples, the arrow is relating categories and
is strictly a functor, emphasising the need for multi-level capabilities for typing.

In imperative programming languages, the concept of range is used to indicate that
a variable may only take a subset of the values specified by a type. The equivalent
categorical concept is the subobject, where each subobject, say 9, is related through
an injective function, say ¢, to an object O. There is a monic inclusion function ¢ from
S to O. Note that although we can regard S as a ‘subset’ of O, the better categorical
view is that the type of S is related to that of O by the type conversion function «.
For instance if S are integers and O are reals, the function ¢, can be thought of either
as the inclusion mapping from integers to reals or a type conversion function from
integer to real.

2.5 Product and Projection

Two operations common in relational algebra, product and projection, are represented
directly in category theory through the construction of a cone. A cone is an open
triangle comprising three objects for example, A, C' and A x (' where the product
A x (' is the vertex of the cone as shown in Figure 2. The projection arrow = operates



in either a left (m;) or a right (7,) context, depending on which part of the product is
being selected.

AxC

Figure 2: Product Cone for Objects A and C

In strict category terms, the cone as presented in Figure 2 does not appear to commute
but it may alternatively be presented as in Figure 3 where for any object V' and arrows
g1:V — Aand ¢ : V — C, there is a product U with projections A and C such
that the diagram commutes, that is the two equations hold:

Toqg=4q

T 0= (2

U is the universal product of A x C'.
v

q1 q \gq2

A o U——= - C

Figure 3: Commuting Product Cone for Objects A and C

2.5.1 Coproduct and Inclusion

The dual concept to the product is the coproduct in which all the arrows in the
commuting product cone discussed earlier are reversed in direction. The object S
(disjoint union) replaces the object U (universal product). The coproduct of A and
C', written A + (', is the disjoint union of A and C' and is usually represented by
the cone in Figure 4 where ¢; and 2, are inclusion arrows ¢; : A — A + C and
t, 1 O — A+ C respectively:

10



A+C

A C

Figure 4: Coproduct Cone for Objects A and C

2.5.2 Finite Products

The preceding examples have been of binary products. The concept of cones is,
however, extensible to n—ary products both for multiplication and addition [Rossiter

& Heather 1993].

2.5.3 Pullbacks

So far we have considered only the universal product U where the complete (unre-
stricted) product of two objects is considered. An important product in practice is
the pullback or fibred product where a product is restricted over some object. If A
and C both have arrows to some common B as A —& B and ¢ —% B, then the
subproduct of A and C' over B written as A x gC' may be represented by:

Figure 5: Diagram of Pullback of A and C over B

where f(a) = g(c¢) and f(a),g(c) € B,a € A,c € C. This diagram commutes in
that fom = g om. In this paper, we generally say a pullback is of two objects
over another. This is actually a kind of synecdoche, as in strict category theory, the
pullback is expressed in terms of arrows: 7; is the pullback of f along ¢ in the above
example.

11



2.5.4 Pushouts

Pushouts are an extension of the coproduct concept. They give us the facility to
construct amalgamated sums which may be more complex in form than simple disjoint
unions. An amalgamated sum S is constructed by a pushout from objects A and C
where A,C O B and the functions ¢; : B — A and ¢, : B — (' are monic as shown
in Figure 6:

Figure 6: Diagram of Pushout of S from A and C

The nature of S depends on the choice of functions #;, 7., f and g. We can relax the
requirement for ¢; and ¢, to be monic in which case S becomes a sum identifying part
of one object with a part of another in a general manner.

2.5.5 Limits

The concept of a limit has only been fully explored theoretically in the last 30 years.
Limits play a crucial role in representing database constructions in category theory
because they can be used to enforce local and global consistency. In particular they
can be used to ensure that extensions comply with the constraints specified in the
intension.

There are a number of ways that a limit is defined depending on the perspective.
Barr & Wells [1990] consider a limit may be a terminal object of a family of cones.
Perhaps the most suited to database work is that of Freyd & Scedrov [1990] where
a limit, if it exists, is considered to be the infimum for all product cones of a family
where every cone in the family commutes: the limit exists only if every cone in the
family commutes. This perspective requires the cones to be placed in a poset where
the canonical form of the 7" cone D; is given by the diagram shown in Figure 7.

12



Ty Uy

Figure 7: A Canonical Example of a Cone D;

In this figure, P is a product, 7g is the projection coordinate of the first element in the
product, 7; is the projection of the i component of the product and K and N; are
projected objects. f; is some arrow which may or may not cause the cone to commute,
that is it is not assumed that f; o 7g = 7.

In detail, to determine whether a limit holds, we consider a collection of ¢ cones
(D; |1 <@ < e) as shown in Figure 7. The postulated limit (infimum) is the vertex,
P, of the cones as P precedes (<) all other objects. Therefore, we determine which
cones in the family of cones actually commute by determining for each value of 2
whether f; o 7o = m;. If all ¢ cones commute, P is the limit; otherwise we have no
limit.

If a source category with a limit is related to a target category by a functor, it is often
important to check that the limit also exists in the target category. If it does, the
functor preserves limits.

Corresponding to the notion of limit, there is the concept of colimit where the supre-
mum (least upper bound) is sought rather than the infimum. Products and pullbacks
may have limits and coproducts and pushouts colimits.

An important example is given later of limits where in Figure 7 we treat P as the
product of persistent attributes in a class, K as the identifier (key), IV; as a non—key
attribute and f; as a postulated functional dependency.

2.6 Natural Transformations

An arrow between functors is termed a natural morphism (or transformation) as shown
in Figure 8 where there is a natural transformation o« from K to L, written:

a: K — L

This natural transformation assigns to each source object A a target arrow

13



as: K(A) — L(A)

such that for each source arrow A — B the target square shown in Figure 9 com-
mutes. This is the covariant form. There also exists the corresponding contravariant.

A B C D
f . g
K
[P
L
f g
A B c———D'

Figure 8: Natural Transformations compare Functors

o)

K(A) L(A4)

K(f) L(f)

K(B) o

Figure 9: Commuting Target Square with Covariant Natural Transformation

Note the tight inter-relationship between the levels in category theory: morphisms
and objects of categories at the lowest level are part of the expressions at the highest
level of natural morphisms. A special case of natural transformation is the concept of
natural isomorphism where, in the example given, the composites a0 3 and fo « are
the identity natural transformations of L and K respectively. This links to another
mathematical approach where « is regarded as an isomorphism of a model of categories

14



giving connections to model theory. In effect, a natural transformation is a natural
isomorphism when every component of the transformation is an isomorphism.

3 The Product Data Model

Using the categorical constructions introduced so far, we now construct the product
data model to capture the semantics of object-relational databases. The minimum
objectives for our data model are:

1. A clear separation between intension (class) and extension (object) structures
with a rigorous mapping defined between them.

2. Object encapsulation.

3. An orthogonal definition language for functions within a class to include both
functional dependencies and methods, the naming and typing of all functions
and attributes within each class.

4. Constraints on class structures as represented by the concept of primary and
candidate keys, normal forms such as BCNF (Boyce-Codd Normal Form) and
functionality and membership class in object (E-R) models.

5. The standard information system abstractions formulated in the 1970s [Smith
& Smith 1977] and which are prime targets of current object—oriented databases
[Atkinson et al 1992] and object-relational systems [Stonebraker & Rowe 1986].
These abstractions include inheritance (generalization and specialization); com-
position such as aggregation; classification and association.

6. Message passing facilities between methods located in any part of the system.

7. A query language which can provide results with closure: the output from a
query can be held in a class—object structure which ranks equally pari passu
with other such structures already existing in the database.

8. A multilevel architecture like that in the ANSI/SPARC standard [Tsichritzis
1978] with definitions of views, global schemata and internal structures and the
mapping between them.

All symbols declared in the formalism are itemized in Appendix I along with a brief
description of their purpose.

15



3.1 Classes
3.1.1 Basic Structures

The class construction represents the intension for a database. Fach class is repre-
sented by a category (CLS; | 1 < ¢ < ¢) where ¢ is the number of classes in the
database. The class name is the name of the category. Category theory keeps distinct
intensional and extensional forms of a data dictionary. For example, 1cLs types a
database entity in general, 1crg, types the database entity suppliers and 1cis,, types
the database entity parts. Then CLS7 is the class of suppliers and CLS2 is the class
of parts.

Each category CLS; is a collection of arrows where an arrow may represent an action
(transformation) or an association. The former represent methods and the latter
dependencies (functional, inclusive, transitive, etc). Arrow names are the names of
methods and dependencies.

Each arrow has a domain and a codomain. Within the universal category SET,
domains and codomains are sets but in general they can be of arbitrary complexity.
Domain and codomain names are the names of variables defined within the class. In
the next section, we describe the identification of one or more domains as candidate
keys and the selection of one of these as the primary key. The types of arrows, domains
and codomains are defined by naming the categories upon which their data types are
based. All arrow constructions as regards composition and association must conform
to the four axioms of category theory given earlier.

Formally, each category CLS; is a collection of k arrows or morphisms F' = {f; |
1 < j <k} where f; has domain dom(f;) and codomain cod(f;). The domain and
codomain names are not necessarily distinct. {dom(f;)Ucod(f;) |1 < j < k} is the
set of variables in the class which we call V' with cardinality ¢. In order to permit
complex actions and dependencies, domains may be structured, that is contain more
than one variable. For database applications, codomains are normally considered to
comprise a single variable although category theory itself need not be restricted to
minimal covers [Freyd & Scedrov 1990] but can cope well with open covers [Mac
Lane & Moerdijk 1991]. Variables may be either persistent variables given by a set
A={a; |1 <j < n} comprising the persistent component of the class, or memory
variables given by a set U = {u; | 0 < j < n'} comprising the transient component of
the class. Note that A and U are both subobjects of V and n + n' = ¢.

Using our earlier notation, V' corresponds to objcr,g. and I to HomCLSi(v, v') for all
1
!
v, e V.

Arrows are typed, for example the collection of arrows D = {d; | 0 < ¢ < r'} represents
arrows occurring in the universe of functional dependencies and M = {m, |0 <7 < s}
represents arrows occurring in the universe of methods. Note that D and M are both
subobjects of I' and r' + s = k.

16



Functional dependencies involve only persistent variables as their domains and codomains.
Minimal covers are assumed: domains may be composite involving more than one
persistent variable while codomains are restricted to being single persistent variables.
Therefore for each functional dependency, we have d; : * — y, v € pA,y € A, that

is, = is a member of the powerset of A. Although y is a singleton variable, this does
not mean that its structure is simple. y could represent structures such as multivalued
sets, lists or arrays. We deduce the set of persistent variables F that participate in
functional dependencies, as domain or codomain, by {dom(d;)Jcod(d;) | 0 < < r'}.
Note that £/ = A only in the special case when all domains in D are single attributes
and every attribute in A is involved in a dependency.

Functional dependencies can be composed. Thus the composition of d; : {a} — {b}
and dy : {b} — {c} gives dy o d;y : {a} — {c}. Such compositions are represented
without difficulty in the partially-ordered structures that we introduce later as a
natural consequence of the transitivity rule (if {a} < {b} and {b} < {¢}, then {a} <
{c}). However, in some circumstances, partial composition occurs. For example:

ds: {a,e} — {c}

dy: {b,c} — {d}

where cod(ds) C dom(dy). These partial compositions generate a new collection of
arrows termed pseudotransitivities obtained by:

1. identifying partial compositions as above where, for two arrows d; and d;,

cod(d;) C dom(d;);

2. determining variables needed to augment the dependency d; to achieve total
composition as z = dom(d;) — cod(d;);

3. augmenting both dom(d;) and cod(d;) with z to give a new function:

d. : (dom(d;) U z) — (cod(d;) U z)
4. composing d; and d; (that is d; o d}) to give a pseudotransitivity arrow:
pi : (dom(d;) Uz) — (cod(d;))
So in the above example, we determine through pseudotransitivity that {a,b,e¢} —
{d}. After each pseudotransitivity arrow has been identified, it must be determined

whether any further ones can be deduced: the process is iterative. The result is a
collection of pseudotransitivity arrows P = {p; : @ — y} (2 € pA,y € A,0 <

17



i < r"). The set of variables £’ that participate in pseudotransitivities is given by

{dom(p;)Ucod(p;) |0 < < r"}.

For each arrow that is a method, m; : © — y(0 < ¢ < s), then © € pV,y € V,
that is the domain may be any subobject of the persistent and memory variables
and the codomain is a singleton persistent or memory variable. If required, memory
variables can be considered as derived [Shipman 1981] or virtual variables which can
be manipulated by database operations.

The typing is indicated by a collection of mappings {h : 17yp — H} where H
represents the name of either an arrow in F' or an object in V', & is an instance of H and
TYP is the category upon which the type of H is based. The category construction
naturally provides an encapsulation of attributes and methods for a class.

3.1.2 Identifiers

As we shall see later, we need a way of deriving identifiers for use in our relationship
representations. Identifiers can be natural (primary keys) or system assigned (object
identifiers). Both the forms of identifiers are initial objects in categories as there is
an arrow from the identifier to every other object in the category. Initial objects are
normally denoted by 0 in category theory — hence we adopt Ky as the notation for
the key. The key Ky is derived as shown below for each class category CLS [Rossiter
& Heather 1993] following a lattice approach [Demetrovics, Libkin & Muchnik 1992]
rather than an algorithmic one [Ullman 1988]. The lattice formalism lends itself more
to a categorical approach with its emphasis on poset constructions. We employ the
identifiers and dependencies to test whether our class structures correspond to BCNF
(Boyce—Codd Normal Form). This normal form is adopted because it is more powerful
than 3NF and can easily be deduced from functional dependencies making it ideally
suited to a lattice approach. The procedure is as follows:

1. Generate the poset category PRJ with elements p,¢q € pA and projected or-
derings (p x ¢ < m(p X q);p x ¢ < 7. (p X q)) as the arrows, that is to take the
projections by applying the free functor G': A — PRJ.

2. Generate the poset category DEP with elements p, ¢ € F and arrows {d; | 0 <
i < r'} as the orderings, that is to apply the free functor G' : ¥ — DEP.

3. Generate the poset category PSU with elements p, ¢ € E’ and arrows {p; | 0 <
¢ < r"} that is to apply the free functor G : £ — PSU.

4. Take DEP and PSU representing respectively the non—trivial functional depen-
dency arrows declared in the previous section and the pseudotransitivity arrows
(dependencies inferred from the postulated functional dependencies and their
combinations [Ullman 1988]) between p,q € pA. Inject these into PRJ, that is
add the arrows of DEP and PSU to those already in PRJ.

18



5. Test that PRJ is still a poset by checking for anti-symmetry (if p < ¢ and
p > q, then p = ¢). Cycles in the ordering would give a preset ! (pre—ordered
set) which would need to be partitioned by applying a suitable quotient functor
to produce a number of posets which can then be handled collectively. Each
PRJ as a poset corresponds to an F'* [Ullman 1988]. Each class (record-type)
has its own F'T.

6. The infimum or meet of the elements of A in PRJ (A A) is the primary key PK.
If there is no infimum, the set of maximal lower bounds is the set of candidate

keys C'K.

7. The class is in BCNF if each source of a functional dependency arrow is PK or
is a member of C'K.

8. The identifier K is either PK or a user—selection from C'K. When it is necessary
to distinguish the keys for each class, consider K as the identifier for the ¢*
class CLS;.

9. Other persistent attributes may be labelled K ... K, where r = n — ¢ with ¢ as
the number of attributes in the key. In the simplest situations, r = r/, where '/
is the cardinality of the set of dependencies D but in many cases such as classes
with no dependencies or with multiple candidate keys or with classes that are
not in BCNF, this will not be true.

Alternatively, an object identifier can be defined as the identity functor on a category,
for example 1CLSi : CLS; — CLS;.

Our final task is to transfer our results from PRJ into the class category CLS. This
is necessary as, particularly if the key is composite, Ky is not guaranteed to be a
variable in the class CLS. We apply an injective functor from a view of the poset
PRJ into CLS. The category that we inject into C is the exponential construction
PRJ% (the arrows of PRJ with Ky as source). CLS now includes the key Ky and
the arrows from Ky to each of Ky...K,. If therefore Ky was not already in PRJ,
the injection increases the number of persistent variables n in CLS by one and the
number of arrows k£ by r, that isn «—n+1 and &k «— k +r.

3.2 Relationships

The association abstraction between classes is represented in object models by nota-
tion based on the Entity—Relationship approach. In categorical terms, the F-R model
is represented by pullbacks. In Figure 5, A and C' are entity—types or classes and B
is a relationship between them. Instances of the relationship occur when f(a) = g(¢).

! A radical alternative approach that we are working on, at the moment, is to allow the starting
relation to be a preset and to map it automatically into a family of posets satisfying BCNF

19



Instances for B are of the form {< a,¢,b >| f(a) = g(c),b € B} where b is any
information carried by the link and is an element in the powerset of B (that is a

subset of B).

Our pullback is on class identifiers K¢ as initial objects in categories representing
classes. To give an example, consider the pullback of Kj and K2 over O shown in
Figure 10, where K} and K@ are initial objects in the categories for the entity—types
supplier (CLS1) and parts (CLS2) respectively and O is a relationship orders between

1
7y %

K} x oK? @]
Ty %

2
NG

suppliers and parts.

Figure 10: Diagram of Pullback of K} and K over O

The collection of relationships in a database intension is represented by a family of
pullback categories (ASS; | 0 < ¢ < p) where p is the number of relationships. We
next include information to cover aspects such as functionality and membership class.
First let us consider the nature of each object and arrow in the category:

o K| is the identifier for the supplier class CLSy.
e K? is the identifier for the parts class CLSq.

o O is the relationship orders representing all instances of this type of association
between suppliers and parts. Instances for O are of the form {< ki, k2,0 >|
Jk) = g(kd), ks € K§, k¢ € K§,0 € pO} where o is information such as
quantities and dates of orders and is an element in the powerset of O (or is a
subset of O representing that set of orders for a part from a particular supplier).
O can be considered as a simple structure including j properties for orders
{o; |1 <i< g}

Alternatively, where there is considerable complexity in the structure and op-
erations of O, it would be desirable to create a category, say CLS3, to handle
as a class the internal complexity of the orders and to include in the pullback
structure the identifier for this class Kj defined as pairs of values < ki, k2 > as
a surrogate for the orders category.

e Kj X oK} is the subproduct of K and K over O: it represents the subset of
the universal product Kj x K2 that actually occurs for the relationship O.

20



By considering the nature of the arrows we can now provide more information con-
cerning the relationship O:

e The arrow f maps from identifier K} to the relationship O. It represents asso-
ciations between suppliers and orders.

e The arrow g maps from identifier K? to the relationship O. It represents asso-
ciations between parts and orders.

e When f(k§) = g(k2), we have an intersection between the two associations, that
is a supplier and a part both point at the same order: a set of such orders is
associated with a particular supplier-part pair.

e The arrow 7; is a projection of the subproduct Kj x o K¢ over K} representing
all suppliers.

— If this projection arrow is onto (epimorphic or epic in categorical terms)
then every supplier appears at least once in the subproduct. Thus every
supplier participates in the relationship and the membership class of K is
indicated as mandatory. If, however, 7; is not epic, then not every supplier
participates in the relationship and the membership class of K} is indicated
as optional.

— If this projection arrow is one—to—one (monomorphic or monic in categorical
terms) then each supplier appears just once in the subproduct. If, however,
7; 1s not monic, then a supplier may participate more than once in the
relationship.

— If 7; is both monic and epic, the projection is said to be isomorphic with
each supplier appearing once in the subproduct and K} having mandatory
participation in the relationship.

e The arrow =, is a projection of the subproduct Kj x o K3 over K2 representing
all parts.

— If this projection arrow is epic, then every part appears at least once in the
subproduct. Thus every part participates in the relationship and the mem-
bership class of KZ is indicated as mandatory. If, however, 7, is not epic,
then not every part participates in the relationship and the membership
class of K¢ is indicated as optional.

— If this projection arrow is monic, then each part appears just once in the
subproduct. If, however, 7, is not monic, then a part may participate more
than once in the relationship.

— If 7, is both monic and epic, it is said to be isomorphic with each part
appearing once in the subproduct and KZ having mandatory participation
in the relationship.

21



3.2.1 Significance of Monic Projections

Using the values for O given in the text, the following diagrams illustrate the conclu-
sions for functionality and membership class from testing for monics and epics:

Kl =1{1,2}

T \
Kixok3={<1,9><29>)} 0
7; is monic and epic T /

7, is not monic and not epic K§ = 19,10}

Figure 11: Diagram of Pullback of K} and K over O

Kl =1{1,2}

™ \
KlxoK2={<1,9>,<1,10 >} @
7 is not monic and not epic Tr /

7, is monic and not epic K§ ={9,10,11}

Figure 12: Diagram of Pullback of K} and K¢ over O

Consider first the situation in Figure 11 where:

0={<1,9,{<222,6 >, <301,8 >} >, <2,9,{<224,9 >, < 287,12 >} >}
indicating that there are two relationships between kj € Kj and k3 € Kj:

e kb = 1 and k2 = 9 are associated with the subset of orders {< 222,6 >, <
301,8 >} where 222 and 301 are order numbers and 6 and 8 are quantities. The
subset of orders o is in the powerset of orders (o € pO).

e k) = 2 and k2 = 9 are associated with the subset of orders {< 224,9 > <
287,12 >} where 224 and 287 are order numbers and 9 and 12 are quantities.

Note that with 7; being monic, this means that each element &} € K appears once
in the subproduct K} x oKZ. As m is epic, this means that every element k} €

22



K} appears in the subproduct K x oK giving K} mandatory membership in the
subproduct. Because 7, is not monic, some elements k2 € K2 appear more than once
in the subproduct K} x oK2. As 7, is not epic, this means that not every element
k3 € K3 appears in the subproduct K x oK} giving K2 optional membership in the
subproduct.

In conventional E-R model terminology, the types of arrows indicate an N:1 relation-
ship K} : K2, that is each supplier is associated with one part, each part is associated
with many suppliers. In our view, a better approach as it is readily extendible to
n—ary products is to say that each supplier participates N times in the relationship
O and each part once. This technique of measuring the cardinality of participation in
the relationship is of increasing popularity in some object models [Elmasri & Navathe
1994]. All parts must participate in the relationship but not all suppliers need do so.

In Figure 12

O={<1,9,{<222,6 > <301,8 >} > <1,10,{< 2255 >} >}

7, 1s monic so that each part participates once in the relationship and #; is not
monic so that each supplier occurs N times in the relationship (a 1:N relationship
K} : K3). The non-epic mappings indicate that it is optional for parts and suppliers
to participate in the relationship.

3.2.2 Further Examples

Our normal understanding of supplier/parts data would lead us to expect 7; and =,
to be neither monic nor epic: the relationship is N : M and the membership class
of both entity-types is optional. In the table below, further examples with different
semantics are given for the relationship of A and ' over B as shown in Figure 5:

A C B ] T relationship
epic mon | epic mon | partic mapping memb.cl.
A:C A:C A C

Suppliers  Parts Orders | n n n n N:M N:M 0o o
Students Courses  Take N:M N:M m o
County District ~ Within | y n v v N:1 1:N m m
Councils  Councils

]
=
=
=

National Name Ident. v v n n 1:N N:1 m o
Ins. No.
Car Licence  Possess | y y y y 1:1 1:1 m m

These show that by examining the type of the projection arrows 7; and 7;, we can
determine the following:

23



e the functionality for participation of entities of a particular type in a relationship
given by partic — how many times an entity appears in the subproduct;

o the functionality as a mapping ratio between two entity—types given by mapping
— the normal E-R perspective;

e the membership class of entity—types in a relationship as mandatory m or op-
tional o.

It should be emphasised that the handling of the entity—relationship modelling here
is very much stronger than in conventional data processing where the functionality
and membership classes are represented by labels. In the categorical model, the
functionality and membership class are achieved through typing of the arrows so that
the constraints cannot be violated. Categorical structures are universal rather than
conventional. There is an underlying functor from a categorical E-R model to a
conventional one with structure loss through typing constraints being represented as

labels.

3.2.3 Enhancements

So far we have considered binary relations (relationships between two entity—types)
and have neglected n—ary and involuted relationships, multiple relationships between
the same classes and the abstractions of inheritance and composition. These are read-
ily handled by standard categorical constructions. n—ary relationships are represented
by finite products [Rossiter & Heather 1992]. Involuted relationships are handled di-
rectly: for example K3 x g K} is the subproduct of Kj with itself over the relationship
with the object B. Multiple relationships between the same classes are handled by
a series of pullbacks over the same two initial objects, for example K] x pKZ and
K} x pK? represent pullbacks of K} and KZ over B and D respectively. Inheritance
and composition are described below.

3.2.4 Pullback Identifiers
The values for a subproduct in a pullback will always be unique so generally this
component of the diagram can be used as an identifier. Therefore in Figure 12 the

identifier is Kj x o K2. Note that, as in the class diagram, the identifier is the infimum
of the diagram.

3.2.5 Inheritance

Inheritance in object-oriented terms is the assumption by classes of properties and
methods defined in other classes. It is an intensional concept affecting the manner

24



in which classes are created. In categorical terms, this is achieved by the coproduct
construction shown in Figure 13 which yields a disjoint union of two or more objects.
Consider:

e a category CLS3 (employers) with set of arrows Homcrs,p, ¢ between objects
p,q and set of domains and codomains ObjCLS3§ and

e acategory CLS4 (managers) with set of arrows Homcrs, p, ¢ and set of domains
and codomains ObjCLS4-

The coproduct CLS3 4+ CLSy4 is the disjoint union of the arrows (HomCLS3p,q +
Homcrs, p, q) and the domains and codomains (objCLS3 + objCLS4).

CLS; + CLS4

0 A

CLS 5 CLS,

Figure 13: Coproduct Cone for Objects CLS3 and CLS4

In this example, CLS3 and CLS4 contain the specific properties and methods for
employers and managers respectively and CLS3 + CLSy4 is the amalgamation of these
objects and arrows into a new category which is in effect the specialization of CLS3
over CLS4. The arrow s (for subtype) shows the direction of the specialization:
s : CLS3 — CLS4 (employee has subtype manager). In general, the supertype
category will be identified by one or more properties in the data and the subtype
category (being a weak entity) by an identity functor to give an object identifier. In
more concrete terms, s can therefore be considered as the mapping between the key of
the supertype category CLSg and the identity functor 1crg, of the subtype category:

S [X’g — 1CLS4

Since a coproduct can, in turn, be the base of another cone, it is a simple matter to
construct inheritance hierarchies [Nelson, Rossiter & Heather 1994]. The ancestry of
each class in the hierarchy is preserved in the construction of pushouts. Note though
that, with our scheme at present, multiple inheritance is not permitted as the disjoint
union would not include properties or arrows that appeared in both categories at the
base of the cone. At present therefore, our model provides inheritance through the
arrangement of categories in a partial order restricted to hierarchical constructions
rather than the more general poset of Cardelli [1984].

25



For convenience, we consider the additional ¢ class categories (CLS; : ¢+ 1 < ¢ <
¢+ g), such as CLS3 + CLS4 above, created as coproducts to comprise the family of
categories UNL

Polymorphism at its simplest level is achieved by the coproduct construction. Methods
defined for CLS3 as arrows in the set (HomCLS3p, q) are also available automatically

in the set (HomCLs3p, q+ HOHICLS4P7 Q)-

3.2.6 Composition

Composition including aggregation is the creation of new classes from a collection of
other classes. The method of composition is flexible varying from standard math-
ematical operations such as products or unions on classes [Kuper & Vardi 1993] to
qualified operations such as relational joins. The basic ways of representing these
compositions have already been introduced such as universal product, disjoint union,
qualified product and amalgamated sum.

3.3 Typing

Arrows and attributes are typed, as described earlier, by specifying the categories
from which their values will be drawn. These categories may be other classes, basic
pools of values such as integer and string, or domains of arbitrary complexity such as
complex objects, arrows, lists, graphs and sets.

3.4 Message Passing

We consider message passing to be a function from one arrow to another arrow, where
the arrows may be within the same category (intra—class) or in different categories
(inter—class). This function is best viewed in category theory as a morphism in the
arrow category [Barr & Wells 1990] which is written C~ to view the arrows of C as
objects in C~. For example, suppose the arrow 7; takes a value from an arrow for the
method my, in the class CLS; to an arrow for the method m,, in the class CLS; where
CLS; and CLS; are not necessarily distinct. This is viewed in the arrow category as
a morphism between objects in CLS;” and CLS;™ as shown below:

nj:my — my, (my € CLS; ,m, € CLS?)

We can show that message passing is performed in a consistent manner if the diagram
in Figure 14 commutes, that is m, o n;, = n;, 0 my.

The form of Figure 14 is the same as that for the natural transformation target square
shown earlier in Figure 9 as the message passing function is a natural transformation

26



between objects in the category of arrows [Simmonds 1990]. A simple way to realise
that inter-arrow morphisms are natural transformations is to consider that the map-
ping between CLS and CLS™ is a functor; hence a mapping between CLS — CLS™

pairs is a natural transformation.

dom(my) N dom(m,,)
my, my,
cod(my) M cod(m,,)

Figure 14: Commuting Square for Message n; between my, and m,, in Arrow Categories

CLS{” and CLSy” respectively

The constructions above provide a sound framework for investigating aspects of mes-
sage passing such as control of types of initiators/ receivers and a formal basis for
reflective systems.

3.5 Objects

Objects represent the extensional database holding values which must be consistent
with the intension (the class structures).

There is a mapping V; from each class CLS; to the instances for each object-type
OBJ; which ensures that the constraints specified in the intension hold in the exten-
sion. The mapping is a functor as it is between categories. The functor V; takes each
arrow f in CLS; to a set of arrow instances V;(f) in OBJj, each domain dom(f) in
CLS; to a set of instances V;(dom(f)) in OBJj, each codomain cod(f) in CLS; to
a set of instances V;(cod(f)) in OBJj, the key Ky to a set of instances V;(Kj), each
non—key attribute (K; | 1 < ¢ < r) to a set of instances V;(K;) and each functional
dependence (d; | 1 < ¢ <r) to a set of arrow instances V;(d;). All assignments by the
functor V; are of values for arrows, domains and codomains.

For each class CLS;, the functor V; should preserve limits with respect to the func-
tional dependencies, that is the diagram in Figure 15 should commute for every cone

where [T A is the product of (Vi(Ko) x Vi(K1)... x Vi(K;)), (m; | 0 <53 <r)isa

27



projection coordinate from [[A and {Vi(d;) : Vi(Ko) — Vi(K;) | 1 < ¢ < r} are
the postulated functional dependencies. The commuting requirement is for all V;(K;)
where (1 <@ <) it is true that V;(d;) o 7o = 7.

Vi(Ko)
Figure 15: Cone for extension [T A in the Category OBJ

Referring back to our original discussion of limits, we are checking that the limit is
preserved when real-world data is examined: that is, all cones in our family of cones
commute and therefore an infimum can be constructed for the family of cones, in this

case [] A.

In object-oriented terms, objects contain values consistent with their class definitions
(including typing) and perform operations according to the methods defined in their
classes. The classes are the intension, the objects the extension. This can be repre-
sented generically by the diagram in Figure 16 where CLS represents a family of class
categories, OBJ a family of object categories and TYP a family of type categories.

E, P and [ are functors representing the mappings from object to class, from class
to type and from object to type respectively. FE (the dual of D) maps extension
to intension. [ is an inclusion functor so that OBJ is a subcategory of TYP. P
indicates the typing constraints applied to classes and is a collection of arrows as
indicated earlier in Categorical Concepts comprising:

o {v; : ltyp, — Vi}, representing the constraint that each instance v; of an
object V;(1 < < ¢) is found in the category TYP;.

o {fi: ltyp, — F;}, representing the constraint that each instance f; of an
arrow Fi(1 <¢ < k) is found in the category TYP;.

28



TYP

CLS T OBJ

Figure 16: Commuting Diagram for Consistency of Objects with Classes and Types

In relational database terminology, each category TYP is a domain and each V is
an attribute name. The database is consistent when the diagram commutes, that is
P o FE =1, representing the situation that our objects in the extension conform both
to the class definition in the intension and to the typing constraints.

In a similar way, another functor R takes each pullback category ASS at the intension
level to its extension LNK. This functor also preserves limits so that the constraints,
such as for monic, epic and multiple relationships must apply in every case to the ar-
rows between the actual data values. Diagram chasing ensures that type declarations
are obeyed. Note how the model is not simply labelling constraints in the intension,
it is enforcing them as limit or commuting requirements in the actual data values held
in the extension.

3.6 Physical Storage Structures

In a similar way to the mapping between classes and objects, it is straight—forward to
define mappings as functors between categories for objects and categories representing
disk structures, say, hash tables or indexes. In earlier work [Rossiter & Heather 1992],
we considered the various approaches to hashing in categorical terms.

3.7 Families of Categories

Shortly, we turn our attention to manipulation of our categories. For this purpose, it
is convenient to introduce the concept of families of categories. In effect, we make the
following groups:

e The category INT representing the intension as a family of ¢ classes CLS, p
association definitions ASS and ¢ coproducts UNI representing inheritance.

o The category EXT representing the extension as a family of ¢ objects OBJ and
p association instances LNK.

29



e The functor D mapping from category INT to category EXT. This functor
is called D (for database) because this is effectively the purpose of a database
management system.

Between any two intension categories INT; and INTj (not necessarily distinct), m
message passing routes can be defined using arrows of the form n described earlier
between the corresponding arrow categories INT;” and INT;” respectively.

In future work, we intend to employ the concept of the categorical topos to represent
the families described above.

3.8 Manipulation

A fundamental difficulty in current object-based systems is that of closure. It is not
easy to obtain an output from a database that can be held as objects with associated
class definitions such that the new structures rank equally pari passu with those in the
existing database. Another difficulty with some object systems is that the output is
a subset of variables in an object without any consideration of the arrows (functions)
which are an equally important part of the data. This latter difficulty is readily
handled in a formal manner by subcategories which provide a means of selecting some
of the objects and arrows in a category and hence give in a natural manner the basis
for a query mechanism. We remind ourselves that category INT; is a subcategory of

category INT; if:

objint; & objint; A Hominr;(p.q) © Homin;(p,g) (Vp, ¢ € objin;)

Query operations can be defined at two levels: intra—object and inter-object. In
categorical terms, in the general sense, there is no difference between the two as both
are handled by arrows. The query language that we have developed is therefore based
on arrows as in a functional data model such as DAPLEX [Shipman 1981], but our
arrows are higher-order mappings from one category to another. Our arrows are in
fact functors between the input structure and the output structure. The input for
each operation is a category and the output is another category or a subcategory.

A functor arrow will return a category. It is therefore the norm that the output of
a query on a category will be another category complete with arrows and objects
which can be held in the database in the same way as other categories. The output
or target category could contain structured values not present in the source category
and assigned by another functor. It is therefore possible to create complex categories
through manipulating values from a number of database categories. Alternatively, a
forgetful functor applied to a category forgets some of the structure and this could be
used, if the user desires, to forget the arrows and return simple tables of values as is
the normal practice in network and some object—oriented databases.

30



An example of a query is given in the next section.

3.8.1 Query Example

We take the supplier—parts example given earlier, augmenting it with an inheritance
structure where electrical parts are a specialization of parts in general. The following
categories are defined:

e INT; for the class CLS; for suppliers: identifier K}
arrows:
fi: K} — sname
fa: K} — saddress
fs: K§ — no.shares
fa: K§ — share.price
f5 : (no.shares x share.price) — capitalization

where sname, saddress, no.shares, share.price € A; capitalization € U;
fiooo s fa€D; fs € M. A U, F, M are defined in section on Classes.
More detailed typing is not shown here.

e INT; for the class CLS2 for parts: identifier K2
arrows:
fo : K@ — pname
fr: K2 — size
fs: K2 — weight
where pname, size, weight € A; fe,..., fs € D.

o INT; for the pullback ASSy of suppliers and parts over orders as in Figure 10:
identifier K} x o K}
arrows:
e 2 1
i Ky X oK — K,
7 Ky X oK — K}
f:K} — O
g:Kj— O

K} is the identifier for the supplier class CLSj.
— K2 is the identifier for the parts class CLSs.

O is the powerset of orders.

Instances for O are of the form {< k3, k2,0 >| f(k) = g(k3), k¢ € K5, ki €
K2, 0 € pO}.

o INT4 for the class CLS3 for electrical parts — a specialization of parts with
object identifier liNT, as the identity functor on INT4

31



arrows:
fo: liNnT, — voltage
fio: liNT, — capacity

where voltage, capacity € A; fg, fio € D.

e INT; for the union (coproduct) UNIy = INT2 + INTy: identifier K}
arrows:
fe,..., fs from INTo
fa, f1o from INTy4
81 ¢ [X’g — 1INT4

The natural language query is ” What are the names and identifiers of suppliers with
capitalization greater than one million pounds who supply an electrical part with volt-
age rating of 90 volts?”.

The series of functorial operations is given below. As is usual in database systems,
these operations are defined in intensional terms but later, in order to introduce the

closure concept, we look in more depth at what is actually involved in a query in
terms of deriving an intension-extension mapping.

1. Xi:INTg — INT;
(Hom-set in INTg = fo, s1; subobjects in INT¢ = (K7, 1inT,, voltage | voltage
90));

2. X5 :INT7; — INT3
(Hom-set in INT7 = m;; subobjects in INT7 = (K} x o K3, K | K € INTg));

3. X3:INTg — INT,
(Hom-set in INTg = {}; subobject in INTg = K});

4. X4 :INT9 — INT,
(Hom-set in INTg = fi, f3, fu, f5; subobjects in INTg = (K}, sname, no.shares,
share.price,capitalization | capitalization > 1000000));

5. X5 :INTl() — INT9
(Hom-set in INT1¢ = f1; subobjects in INT19 = (K, sname | K} € ObjINTS));

The first functor X7 derives the subcategory INTg from INT5 by taking the com-
position of the arrows s; : K — liNT, and fg : liNT, — voltage to determine
which part identifiers K are associated with a voltage of 90.

The second functor X, derives the subcategory INT7 from INT3 by restrictions
on INT3 to the arrow m; and on the source of #; to cases where the part is in the
subobject K2 derived by Xj.

32



The third functor X3 takes the output INT7 from X, and restricts it further to
produce the subcategory INTg with no arrows and subobject K}. This subobject
represents suppliers who supply parts rated at 90 volts.

The fourth functor X, produces subcategory INTg from INT; with the arrows
f1, f3, fa, f5 and subobjects, including ( K, sname), for which the application of f, fi, fs
to Kj gives a capitalization of more than a million pounds.

The final functor X5 produces the answer in a new subcategory INT71¢ which is a
subcategory of INTg with arrow fi and subobjects (K, sname) such that the values
for K} are found in the category INTg, effectively giving an intersection between

INTgs and INTg over K.

Note that the strategy involves a selection of both arrows and objects rather than
just objects as in the relational approach. The selection of arrows is achieved through
defining hom—sets and the selection of objects through defining subobjects. Further,
subobject specifications can involve predicates of arbitrary complexity to facilitate
sophisticated searching techniques. All operations produce new subcategories. Results
can also be injected into other categories so that new categories of arbitrary complexity
can be constructed through free functors.

3.8.2 Closure in Queries

So far we have seen how intensional subcategories can be defined as results for searches.
But can we store the results obtained in our example queries back in the database in
their current form to be used in exactly the same way as existing classes?

The answer is that we have defined a series of subcategories INTg...INTqg in inten-
sional terms but have omitted to define the corresponding extensional subcategories.
The relationship between each intension INT; and extension EXT}; is given by the
mapping D; : INT; — EXT;. Therefore for a query earlier, say no.4, we can write
in more detail:

Dy : INT; — EXT,

Dy : INT9g — EXTy

as functors for the query representing intension and extension mapping respectively.
Each query therefore involves a mapping between an intension—extension pair as source
and an intension-extension pair as target. We can represent this structure as shown
in Figure 17 with the query now represented by the natural transformation oy.

33



INT, EXT,

INT, EXTy

Figure 17: The Query o4 as a Natural Transformation with source Dy and target Dy

To be a natural transformation, the square introduced earlier as Figure 9 and shown
as Figure 18 for our current query o4 should commute for every arrow f; : dom(f;) —
cod(f;) in the source category INT; (1 <j <k 1<i<(c+p+yg)).

Didom(s;) o, Dyfdom(£,))
Dl(fj) D9(fj)
Di(eod(f;) o Dyfcod(f;)

Figure 18: The query o4 as a Commuting Target Square with Covariant
Natural Transformation o4 from functor Dy to functor Dy

This means that for all f; in INT; then o4, 0 D1(f;) = Do(f;) 0 04, that is our two
paths from the values for domains of arrows in the source category Di(dom(f;)) to
the values for codomains of arrows in the target category Dg(cod(f;)) should be equal.
One path A involving o4, navigates from domain values in the source category via
domain values in the target category to codomain values in the target category; the
other B involving o4, has the same starting and finishing points but navigates via
codomain values in the source category.

34



In path A, the arrow o4, creates a subobject of the domains for arrows f; in EXTy
to be assigned to the extension category EXTg. In path B, the arrow o4, creates a
subobject of the codomains for arrows f; in EXT; to be assigned to the extension
category EXTg. Referring back to the syntax used in our query examples, the hom-
set of the target category is defined as the set of f; assigned by Dy and the subobjects
in the target category are defined as the union of dom(f;) and cod(f;) for arrows f;
assigned by Dg.

The output from o4 is clearly a structure which can be held in our database, ranking
equally with other classes and objects in the system. Typing constraints will continue
to be enforced in the output structure. So the typing for objects and arrows in INTg
will be based on that in INT; with the additional constraint that capitalizations
must be greater than one million pounds. In computing terms, we are expressing the
constraint that no object can exist in our database which is not fully described by a
class definition.

In categorical terms, we are expressing a query as a natural transformation. Each
functor can be considered as a continuous function (infimum preserving) between
two posets with limits : each structure D; : INT; — EXT; is then viewed as a
closed cartesian category where D; is a continuous function preserving the infimum
(as key) within the poset INT; in EXT;j. Closed cartesian categories have been used
in other areas of computing science, in formalisms such as Scott domains, as they are
equivalent in theoretical power to the typed lambda calculus [Barr & Wells 1990].

3.9 Views on Classes

The mechanism required for views is similar to that for queries. In fact a snapshot
view will be identical to a query. However, there are two other aspects of views that
need further consideration:

e The need to retain the definition within the database and produce views of the
current data on demand by the user.

e The problems of updating the database by users who have limited views of the
data structures.

The first involves creating a mapping in intensional terms only as we did with the
queries originally defined as Xj ... X5. Thus the functors in the family X defined ear-
lier can all be construed as defined views. When a view is realised, the corresponding
natural transformation is activated to deduce the extension.

The second involves the definition of another functor, say 7, to relate the result from
the query back to the main database values. Thus if we define a view as shown in
Figure 19, we can achieve updatable views on a class.

35



A well-known special case of a view is that taken of the complete database. In
this case for every D; : INT; — EXT; in the database, the application of o;
returns an identical D; : INT; — EXT; in the view. The application of 7; to each
D; : INT; — EXT; in the view should then faithfully return our initial database.
If this is so, there is a natural isomorphism between o and 7 and our database is
consistent.

INT, EXT,

INT, EXTy

Figure 19: The View o4 as a Natural Transformation with Updates through 74

4 Conclusions

The conclusions can be stated briefly. Mainstream mathematics with the development
of category theory has now attained the same level of formal abstraction as needed
for databases. Category theory therefore provides a formal modelling technique that
is universal in the sense of mathematics.

Category theory, for example, fills in the gaps in current object models where there
is weakness in comparison to relational models in respect of formality, views, query
closure, etc. We would claim that category theory actually provides a formal ba-
sis for the object-relational model, underpinning work on systems such as Postgres

[Stonebraker & Rowe 1986] and on the forthcoming SQL-3 standard.

More specifically, we have provided evidence of the following:

o multi—level theory gives natural handling of intension, extension and views;

e imprecise descriptions of association, inheritance and aggregation can now be
rationalized and made formal;

36



e message passing can be represented by natural transformations between meth-

ods;

?

e queries with closure are natural transformations between intension—extension
functors;

e views with updating are pairs of dual natural transformations between intension—
extension functors;

Orthogonality and consistency are achieved throughout by use of the single concept
of an arrow. We have kept carefully within the known theory rigorously established
over the last 50 years by a number of pure mathematicians of world class. We have
resisted the temptation to customize the main stream mathematics or make up our
own definitions on the basis that any concept should be understood fully and tested
in pure theory before it becomes applicable in applied mathematics (see comments by

Hoare in [de Moor 1992]).

No doubt alternative modelling techniques could be developed to provide the same
power and multi-level capability available in category theory. But everything would
need to be proved from scratch. Because of the constructive nature of category theory,
our diagrams are themselves formal proofs. The results obtained therefore by treating
a database as a functor show the advantages available to the database community from
category theory.

37



5 References

Atkinson et al 1990, M.Atkinson et al, The Object—oriented Database System Manifesto,
in a number of publication including: The Story of Os: Implementing an Object—oriented
Database System, Morgan Kaufmann 1992.

Barr & Wells 1990, M.Barr & C.Wells, Category Theory for Computing Science, Prentice—
Hall.

Beeri 1992, C.Beeri, New Data Models and Languages — the Challenge, Proceedings 11th
ACM Symposium on Principles of Database Systems 1-15.

Cardelli 1984, L.Cardelli, A Semantics of Multiple Inheritance, in: Semantics of Data
Types, Lecture Notes in Computing Science 173 51-67, Springer Verlag.

Cartmell 1985, J.Cartmell, Formalising the Network and Hierarchical Data Models — an
Application of Categorical Logic, Lecture Notes in Computer Science 240 466-492.

Demetrovics, Libkin & Muchnik 1992, J.Demetrovics, L.Libkin & [.B.Muchnik, Func-
tional Dependencies in Relational Databases: A Lattice Point of View, Discrete Applied
Mathematics 40(2) 155-185.

Dennis—Jones & Rhydeheard 1993, E.Dennis—Jones & D.E.Rhydeheard, Categorical
ML - Category—Theoretic Modular Programming, Formal Aspects in Computing 5(4) 337
366.

Elmasri & Navathe 1994, R.Elmasri & S.B.Navathe, Fundamentals of Database Systems,
Benjamin/Cummings, Redwood City, 2nd edition.

Freyd 1964, P.Freyd, Abelian Categories: An Introduction to the Theory of Functors,
Harper and Row, New York.

Freyd & Scedrov 1990, P.J.Freyd & A.Scedrov, Categories, Allegories, North—Holland
Mathematical Library 39.

Gray, Kulkarni & Paton 1992, P.M.D.Gray, K.G.Kulkarni & N.W.Paton, Object-Oriented
Databases: A Semantic Data Model Approach, Prentice Hall.

Heather & Rossiter 1994a, M.A.Heather & B.N.Rossiter, Applying Geometric Logic to
Law, Proceedings 4th National Conference on Law, Computers and Artificial Intelligence,
Exeter 80-95.

Heather & Rossiter 1994b, M.A .Heather & B.N.Rossiter, Category Theory: the Math-
ematics for the Humanities?, in: International ALLC/ACH Conference, CONSENSUS EX
MACHINA, Paris (Sorbonne).

Kim 1990, W.Kim, Introduction to Object—oriented Database Systems, MIT Press.
Kim 1994, W.Kim, On Object-Oriented Database Technology, ADB. Inc.

Kuper & Vardi 1993, K.M.Kuper & M.Y.Vardi, The Logical Data Model, ACM TODS
18(3) 379-413.

Lellahi & Spyratos 1991, S.K.Lellahi & N.Spyratos, Towards a Categorical Model sup-
porting Structured Objects and Inheritance, FIDE Technical Report, University of Glasgow,

38



FIDE/91/8.

Lellahi & Spyratos 1992, S.K.Lellahi & N.Spyratos, Categorical Modelling of Database
Concepts, FIDE Technical Report, University of Glasgow, FIDE/92/38.

Mac Lane 1971, Saunders Mac Lane, Categories for the Working Mathematician, Springer—
Verlag 1971.

Mac Lane & Moerdijk 1991, Saunders Mac Lane & Ieke Moerdijk, Sheaves in Geometry
and Logic, A First Introduction to Topos Theory, Springer—Verlag 1991.

Manes & Arbib 1986, E.Manes & M.Arbib, Algebraic Approaches to Program Semantics,
Springer Verlag 1986.

de Moor 1992, O. De Moor, Categories, Relations and Dynamic Programming, Oxford
University Computing Laboratory Report PRG-98.

Nelson, Rossiter & Heather 1994, D.A.Nelson, B.N.Rossiter & M.A.Heather, The Func-
torial Data Model — An extension to Functional Databases, Technical Report n0.488, Com-
puting Science, Newcastle University.

Rossiter & Heather 1992, B.N.Rossiter & M.A.Heather, Applying Category Theory to
Databases, presented to 8th British Colloquium for Theoretical Computing Science in March
1992, published as Technical Report no.407, Computing Science, Newcastle University.

Rossiter & Heather 1993, B.N.Rossiter & M.A.Heather, Database Architecture and
Functional Dependencies expressed with Formal Categories and Functors, published as Tech-
nical Report no.432, Computing Science, Newcastle University.

Shipman 1981, D.W.Shipman, The Functional Data Model and the Data Language DAPLEX,
ACM TODS 6 140-173.

Sibley & Kerschberg 1977, E.H.Sibley & L.Kerschberg, Data Architecture and Data
Model Considerations, AFIPS Conference Proceedings, Dallas 1977, 85-96.

Simmonds 1990, H.Simmonds, Lecture Notes for SERC School on Logic for Information
Technology, University of Leeds.

Smith & Smith 1977, J.Smith & D.Smith, Data Abstraction, Aggregation and General-
ization, ACM TODS 2(2) 105-133.

Stonebraker & Rowe 1986, M.Stonebraker & L.A.Rowe, The Design of Postgres, Pro-
ceedings ACM SIGMOD Conference, 340-355.

Tsichritzis 1978, D.Tsichritzis, ANSI/X3/SPARC DBMS Framework, Report of the Study
Group on Data Base Management Systems, Information Systems 3.

Ullman 1988, J.D.Ullman, Principles of Database and Knowledge-base Systems, Computer
Science Press 1.

39



6 Appendix I: Symbols employed for represent-
ing database concepts

40



Level symbol instance range ¢ concept
Category ASS ASS; 1...p association intension
CLS CLS; 1...¢ class
CLS™ CLS;” l...¢ class with arrows considered
as arrow—objects
DEP DEP; l...c dependencies (in poset)
EXT EXT; l...e+p database extension
INT INT; l...c+p+yg database intension
INT— INT; |1...c+p+yg intension with arrows considered
as arrow—objects
LNK LNK; 1...p association extension
OBJ OBJ; 1...c database object
PRJ PRJ; 1.. persistent variables
(in powerset ordered by projection)
PSU PSU; l...c pseudotransitivities (in poset)
TYP TYP; >1 types
UNI UNI; l...g coproduct (inheritance)
Arrow D d; 0...7 dependencies
F fi 0...k all arrows within a class
M m; 0...s methods
P P 0...r" pseudotransitivity
S S; 0...9 supertype-subtype
Object A a; l...n persistent variables
E €; 0...7 persistent variables in arrows D
£ el 0...r" persistent variables in arrows P
K Kl l...c initial object (key) in CLS;
Ki(1<j<r) k; l...c non—key attributes in CLS;
U U; 0...n memory variables
V v; 1...q all variables
Functor D D; l...c+p map intension to extension
1) E; 1...c map object to class
G G l...¢ map variables A to PRJ
G’ G l...c map variables £ to DEP
G" 4 l...c map variables £’ to PSU
1 1I; 1...c map object to type
P P 1...c map class to type
R R; 1...p map association intension to extension
V Vi 1...c map class to object
X X; >0 query mapping intension to intension
Natural o o >0 query/view deriving one INT : ENT
Transform- pair as a ‘subset’ of another
ation T i >0 dual of query/view o
n Ul 0...m message from arrow—object in INT;”

to arrow-object in INT}”

41




