
The Categorical Product Data Model as aFormalism for Object{Relational DatabasesB.N. Rossiter & D.A. NelsonComputing ScienceNewcastle University, England NE1 7RUM.A. HeatherUniversity of Northumbria at NewcastleNovember 1994This report was published asRossiter, B N, Nelson, D A, & Heather, M A, The Categorical Product Data Modelas a Formalism for Object{Relational Databases, Computing Science Technical Reportno.505, University of Newcastle upon Tyne (1994) (42pp).The paper published on it is very similar:Nelson, D A, & Rossiter, B N, Prototyping a Categorical Database in P/FDM. Pro-ceedings of the Second International Workshop on Advances in Databases and Infor-mation Systems (ADBIS'95), Moscow, 27-30 June 1995, Springer-Verlag Workshopsin Computing, edd. J. Eder and L.A. Kalinichenko, ISBN 3-540-76014-8, 432{456(1996).
1



AbstractCategory theory has been developed over the last 50 years as a multi-level mathe-matical workspace capable of modelling real-world objects. Categories of objects aremanipulated in geometric logic by a single concept represented by the arrow.The category of products is an important instance of the universal concept of alimit now recognized to exist in many contexts. The product model provides a naturalextension from relational structures on sets to a full formal description of features suchas classes, objects, association abstraction, inheritance, views and query closure. Thebene�t for databases is that these can all be integrated formally through the arrowconcept.About the authorNick Rossiter is lecturer in the Department of Computing Science with particularinterests in databases and systems analysis.David Nelson is a Ph.D. student in the Department of Computing Science with supportfrom ESPRC and interests in databases and category theory.Michael Heather is senior lecturer in law where he has been responsible for computersand law since 1979.Suggested Keywordsobject{relational database model, object{oriented databases, category theory, prod-ucts, posets, subcategories.
2



1 BackgroundDatabases have always had a formal background. This has had important advan-tages in proving that data operations are carried out rigorously, in universality ofapplicability and in the agreement of common standards. The basic database modelsare �rmly based on standard mathematics: hierarchies, directed graphs (networks),relations and functions.The di�culty for the development of database technology has been that the function-ality provided by concepts such as relations is not adequate to deal with real{worldrequirements. This has resulted in the development of a new breed of databases {the object{oriented { with limited mathematical pedigree compared to the existingmodels but with very much richer structures which o�er the potential for users tode�ne and manipulate increasingly sophisticated structures.An inadequate mathematical basis for object{oriented databases as pointed out byKim [1990] has limitations: the ability to prove rigorously that a system works univer-sally is di�cult and it is not easy to develop common models and standards withoutan accepted mathematical framework. In addition, a few areas have proved very dif-�cult to implement which are taken for granted in current databases: views, wheredi�erent users can see the same stored data in di�erent ways; closure, where the re-sult of a database query is a database structure which can be manipulated furtherby the system; and generalized query languages, where a high{level language can beemployed to answer ad hoc queries.Partly because of the relatively informal nature of object{oriented databases, an al-ternative strand of development has been that of the object{relational model whereattempts are made `to obtain the best of both worlds' by combining the two ap-proaches. In this model, relational concepts such as sets, relations and functions areincluded as well as object{oriented concepts of abstraction and behaviour. Examplesof this approach are found in Postgres [Stonebraker & Rowe 1986], Montage, Matisseand UniSQL [Kim 1994].Category theory is a relatively new and very powerful form of mathematics whichwe believe has the capability for providing an e�ective and natural formalism forobject{based databases. Categorical constructions provide a multi{level capabilitymatching the three{level database architecture of ANSI/SPARC [Tsichritzis 1978] andby being based on the arrow as the basic concept, give a powerful representation ofthe many mappings involved in a database system. One of the attractions of categorytheory is its ability to combine diagrammatic formalisms as in geometry with symbolicnotation as in algebra: in computing science, diagrams are a commonway of masteringcomplexity and symbolic notation is used for proofs and computation.3



1.1 Early Database Work with CategoriesThe theoretical database models developed by Ullman [1988], with their emphasison morphisms, can be considered as an intuitive form of category theory developedwithin the customized context of databases. Ullman's concept of F+ involves theset of functions both prescribed and implied in a relationship. F+ includes givenfunctional dependencies, all dependencies on projection and pseudotransitivities. F+involves collections of arrows which are represented cumbersomely in set theory butwhich are directly handled in category theory.The Logical Data Model of Kuper & Vardi [1993] also uses categories in an intuitiveform with products, power sets and unions as basic mathematical structures and aclear separation between names and values. The scope of their model could be mademore general by employing formal categories so that the model is naturally extensibleto handle further types of structure. Multi{level facilities in category theory wouldalso assist in formalizing mappings between the various structures.When investigating the relationship between the functional, relational, E{R andDBTG models, Sibley & Kerschberg [1977] used a categorical representation in binaryproduct form of relationships based on the work of Mac Lane [1971].Early work on the representation of the network and hierarchical database models incategory theory [Cartmell 1985] addresses the construction of networks and trees incategorical terms but does not deal with many important aspects of databases such asobject structures and manipulation. This work also pre-dates recent text books andpapers [Barr & Wells 1990; Freyd & Scedrov 1990; Dennis{Jones & Rhydeheard 1993]which have made the subject more accessible and which have emphasised categoricalconcepts which are very relevant for database construction: the basic properties ofcategories and functors; the treatment of posets (partially{ordered sets) as categories;and products and limit.More recently, Lellahi & Spyratos [1991; 1992] have applied category theory to com-plex object structures, the relational model, functional dependencies and a limitednumber of features of the object{oriented paradigm. Their work on functional depen-dencies with the categorical concept of limit shows the potential for category theoryin ensuring consistency. However, they have not realised to any great extent the fullpotential of category theory in database work as they have tended to produce theirown formalisms based more on graph theory than on categorical abstractions and haveneglected a number of areas paramount to an object{relational model: normal forms,the association abstraction and querying and views in a conceptual manner. As weshall see, the concepts of association and queries can be directly and simply modelledin a rigorous formal manner by pullbacks and subcategories respectively.The work presented here is a continuation of our earlier studies on comparing the usefor database theory (including access methods) of category theory, Z and set theory[Rossiter & Heather 1992], in expressing database architecture and functional depen-4



dencies in category theory [Rossiter & Heather 1993] and in prototyping an examplefor a student administration database in category theory [Nelson, Rossiter & Heather1994]. The work also forms a companion to current studies of legal norms, rules andlaws expressed in category theory [Heather & Rossiter 1994a] where interoperabil-ity between heterogeneous systems is one of the long{term aims, and to studies onrepresenting natural language in category theory [Heather & Rossiter 1994b].1.2 Relationship to Functional ModelsThe functional model has been proposed as a suitable formal and practical basisfor object{oriented databases [Gray, Kulkarni & Paton 1992]. As the fundamentalconstruction in category theory is the arrow, we should expect our constructions toresemble the functional model more closely than any of the other semantic mod-els. While this turns out to be true, important di�erences emerge such as the muchstronger framework in the categorical approach for multi{level constraints as in theintension{extension mapping and in typing; for inter{object relationships; and forkeys and functional dependencies. The query language that we are developing isbased on the functional model of DAPLEX [Shipman 1981] but mappings may bebetween categories as well as between objects giving higher{order operations withclosure as will be described later. The need for higher{order logic in databases hasalready been noted, for example see Beeri [1992].1.3 Appropriateness of FormalismsIn developing the object models presented here, our motivation has been that theideal computing formalism is natural, clari�es thought and resolves controversy inthe application world, indicates new areas or facilities for extending an approach,employs the minimal number of constructions in an orthogonal manner and is basedupon standard mathematics. The extent to which we meet this ideal is reviewed atthe end of the paper.2 Categorical ConceptsCategory theory can represent all standard mathematical structures and manipula-tions as prede�ned categories. There is therefore no limit placed on category theory inits ability to cope with detail. Further, with the facility to specify formally transforma-tions between di�erent types of mathematics, category theory provides a powerful wayof modelling complex systems with heterogeneous structures as is found in databasearchitecture. 5



2.1 CategoriesCategory theory is based not on the set as a fundamental but on the concept of amorphism, generally thought of as an arrow and represented by �! [Mac Lane 1971].Manes & Arbib [1986] consider that the morphism can be regarded as an imperativearrow for the purposes of computing science. The arrow represents any dynamicoperation or static condition and can cope therefore with descriptive/ prescriptiveequivalent views. For example, the arrow is a generalization of mathematical symbolslike =;2;�;�; f(x); : : : with the usual respective meaning of equality, membership,partition, comparison, functional image, etc.The arrow can never be free{standing: it must have some source and target, oftenconveniently named domain (dom) and codomain (cod) respectively. A category is acollection of arrows.The basic constructs of category theory are quite simple:1. The identity arrow 1A identi�es an object A. That is,1A : A �! A2. Arrows are composable if the codomain of the one forms the domain of theother.3. Identity arrows can be distinguished by unitary composition with some arrowf . f : 1A �! 1B or simply A �! Bf4. Composition of arrows is associative. Arrows may be composed so that thecodomain of one arrow may become the domain of another. Standard categorytheory requires composition to be associative. For the arrows:A �!f B �!g C �!h D �!i Ei � (hgf) = (ih) � (gf) = (ihg) � fConventionally then a category in this context is a collection of arrows between objectswhich may be named. Below we show a category C with two arrows f and g. Wherecategories are given names, we use the convention throughout the paper of denotingthem in bold upper{case letters.f : A �! B g : C �! D6



An object in a category C where there is one and only one arrow from every otherobject to it is known as the �nal or terminal object of C. This may be denoted by 1for the whole category, more precisely with the subscript 1C where C now representsthe whole category C. Dually (or oppositely) to the �nal object there may exist acorresponding initial object where there is an arrow from it to every other object inthe category.The derivation of a `subset' of objects is represented by the subobject concept. Theobject S is a subobject of A if it contains some of the members of A. See the sectionTyping for further information on the subobject concept.The hom{set of arrows between objects p and q in a category C is written HomC(p; q)and represents the set of arrows between the two objects.A number of universal categories may be recognized to represent well{known mathe-matical structures. These include the category of sets (SET { where the objects aresets and the arrows are total functions) and a poset category (where the objects arecompared by arrows representing partial orderings). The category POS deals withthe universe of posets.A number of types of arrow are de�ned in category theory which generalize the con-cepts in set theory of injection (1:1 mapping), surjection (onto) and bijection (1:1and onto) to apply to any category [Manes & Arbib 1986]. The categorical terms aremonic, epic and isomorphic respectively. Arrows that are monic, epic or isomorphicare typed in the same way as objects [see Typing later].A
BC fgh ������������� AAAAAAAAAAAAU�Figure 1: Simple Diagram ChasingA diagram for a category can be represented as a series of connected triangles. Eachtriangle may comprise two paths between two objects as shown in Figure 1 { onea composition of two arrows g and f , the other a single arrow h. Then we takecommutativity to mean that a comparison of the two paths can be represented as anequality h = g � f .The way that the equation is written is conventional. The other order would be thedual. The nature of proof in category theory should be emphasised. The diagram7



is a formal diagram. It is a geometric representation equivalent to an expression inalgebra. We are in constructive mathematics and the only proof needed is the proofof existence. Therefore so long as it can be shown that the entities belong to formalcategories [Freyd 1964], proof up to natural isomorphism is by composition. A formaldiagram is in e�ect a QED (Quod Erat Demonstrandum).2.2 SubcategoriesIn a subcategory E of a category D, all of the objects and arrows of E are to be foundin D, the source and targets of arrows in E are the same as those in D, the identityarrows are the same for objects in E as in D and composition rules for arrows in Eare the same as in D. E is a subcategory of D (with collection of objects objD) if forobjects p; q in E (collectively termed objE) we haveobjE � objD and HomE(p; q) � HomD(p; q) (8p; q 2 objE)Clearly, subcategories in general only contain some of the objects and arrows of theirparent categories. However, there are two examples of special interest. If E has thesame arrows for each pair of objects as in D, E is termed a full subcategory of D. IfE has the same objects as D, it is termed a wide subcategory of D. Any category isa full wide subcategory of itself.The terms category and subcategory are relative so that a family of categories, withinclusion dependencies between them, can be placed in a partial order with the arrowsrepresenting ordering by inclusion. From a functional perspective, the arrows are infact functors mapping one category to another as described below.2.3 FunctorsAn arrow between categories is termed a functor if it satis�es some structure{preservingrequirements: each arrow and object in the source category must be assigned (as inhomomorphisms); identity morphisms in the source category must be preserved andfor each pair of arrows in the source category, f : A �! B and g : B �! C, thenF (gf) = F (g) � F (f) in the target category where F is the functor. This type of ar-row provides the facility for transforming from one category type to another categorytype.Functors are therefore basically structure{composing and {preserving morphisms froma source category to a target category. An obvious case is when the shape of the targetcategory is determined by the functor, that is it accomodates all assignments fromthe source category and has no other structure of its own. However, functors canalso be inclusive (or injections) so that the target category contains more structurethan the source category. The functor from a subcategory onto the category on which8



it is founded is an example of such a morphism which we �nd is very pertinent fordatabase modelling. Such morphisms are free functors.It is also possible to construct what are known as underlying functors, in carefullycontrolled circumstances, which forget some of the structure of the source in formingthe target category, for example a transformation from a graph to its underlying sets.Such functors do provide a total mapping from one category to another but some ofthe structure is mapped to bottom ?.It is possible to construct arrows (functions) from one category to another that are notfunctors [Freyd & Scedrov 1990, at page 5] but we always use functor constructionsas otherwise our formalisms are outside category theory.2.4 TypingCategory theory has a naturally inherent concept of type. Discrete items are iden-ti�ed by the single category 1. Therefore an element in a set a 2 A is representedcategorically by a : 1 �! A. Typing is added by indicating the category (i.e. somepool of values in set theory extensions) from where the item is taken. For examplea : 1C �! A (or more simply C �!a A) makes the element a in set A of type C.However, in general, A need not be a member of an object in the category SET butmay belong to a more general category.Typing can be readily based on arrows as well as object values. Monic arrows in acategory or object can be considered as of typeM whereM is a category representingthe universe of monics. In each of these examples, the arrow is relating categories andis strictly a functor, emphasising the need for multi{level capabilities for typing.In imperative programming languages, the concept of range is used to indicate thata variable may only take a subset of the values speci�ed by a type. The equivalentcategorical concept is the subobject, where each subobject, say S, is related throughan injective function, say i, to an object O. There is a monic inclusion function i fromS to O. Note that although we can regard S as a `subset' of O, the better categoricalview is that the type of S is related to that of O by the type conversion function i.For instance if S are integers and O are reals, the function i, can be thought of eitheras the inclusion mapping from integers to reals or a type conversion function frominteger to real.2.5 Product and ProjectionTwo operations common in relational algebra, product and projection, are representeddirectly in category theory through the construction of a cone. A cone is an opentriangle comprising three objects for example, A, C and A � C where the productA�C is the vertex of the cone as shown in Figure 2. The projection arrow � operates9



in either a left (�l) or a right (�r) context, depending on which part of the product isbeing selected. A� C CA �r�l ������� AAAAAAUFigure 2: Product Cone for Objects A and CIn strict category terms, the cone as presented in Figure 2 does not appear to commutebut it may alternatively be presented as in Figure 3 where for any object V and arrowsq1 : V �! A and q2 : V �! C, there is a product U with projections A and C suchthat the diagram commutes, that is the two equations hold:�l � q = q1�r � q = q2U is the universal product of A� C. V
CA U q2q1 q�l �r������������� AAAAAAAAAAAAU? -�Figure 3: Commuting Product Cone for Objects A and C2.5.1 Coproduct and InclusionThe dual concept to the product is the coproduct in which all the arrows in thecommuting product cone discussed earlier are reversed in direction. The object S(disjoint union) replaces the object U (universal product). The coproduct of A andC, written A + C, is the disjoint union of A and C and is usually represented bythe cone in Figure 4 where il and ir are inclusion arrows il : A �! A + C andir : C �! A+ C respectively: 10



A+ C CA il ir�������� AAAAAAAKFigure 4: Coproduct Cone for Objects A and C2.5.2 Finite ProductsThe preceding examples have been of binary products. The concept of cones is,however, extensible to n{ary products both for multiplication and addition [Rossiter& Heather 1993].2.5.3 PullbacksSo far we have considered only the universal product U where the complete (unre-stricted) product of two objects is considered. An important product in practice isthe pullback or �bred product where a product is restricted over some object. If Aand C both have arrows to some common B as A �!f B and C �!g B, then thesubproduct of A and C over B written as A� BC may be represented by:A� BC C BA�l�r fg������*HHHHHHjHHHHHHj������*Figure 5: Diagram of Pullback of A and C over Bwhere f(a) = g(c) and f(a); g(c) 2 B; a 2 A; c 2 C. This diagram commutes inthat f � �l = g � �r. In this paper, we generally say a pullback is of two objectsover another. This is actually a kind of synecdoche, as in strict category theory, thepullback is expressed in terms of arrows: �l is the pullback of f along g in the aboveexample. 11



2.5.4 PushoutsPushouts are an extension of the coproduct concept. They give us the facility toconstruct amalgamated sums which may be more complex in form than simple disjointunions. An amalgamated sum S is constructed by a pushout from objects A and Cwhere A;C � B and the functions il : B �! A and ir : B �! C are monic as shownin Figure 6: B C SAilir fg������*HHHHHHjHHHHHHj������*Figure 6: Diagram of Pushout of S from A and CThe nature of S depends on the choice of functions il, ir, f and g. We can relax therequirement for il and ir to be monic in which case S becomes a sum identifying partof one object with a part of another in a general manner.2.5.5 LimitsThe concept of a limit has only been fully explored theoretically in the last 30 years.Limits play a crucial role in representing database constructions in category theorybecause they can be used to enforce local and global consistency. In particular theycan be used to ensure that extensions comply with the constraints speci�ed in theintension.There are a number of ways that a limit is de�ned depending on the perspective.Barr & Wells [1990] consider a limit may be a terminal object of a family of cones.Perhaps the most suited to database work is that of Freyd & Scedrov [1990] wherea limit, if it exists, is considered to be the in�mum for all product cones of a familywhere every cone in the family commutes: the limit exists only if every cone in thefamily commutes. This perspective requires the cones to be placed in a poset wherethe canonical form of the ith cone Di is given by the diagram shown in Figure 7.12



P
NiK �ifi�0 ������������� AAAAAAAAAAAAU-Figure 7: A Canonical Example of a Cone DiIn this �gure, P is a product, �0 is the projection coordinate of the �rst element in theproduct, �i is the projection of the ith component of the product and K and Ni areprojected objects. fi is some arrow which may or may not cause the cone to commute,that is it is not assumed that fi � �0 = �i.In detail, to determine whether a limit holds, we consider a collection of c cones(Di j 1 � i � c) as shown in Figure 7. The postulated limit (in�mum) is the vertex,P , of the cones as P precedes (�) all other objects. Therefore, we determine whichcones in the family of cones actually commute by determining for each value of iwhether fi � �0 = �i. If all c cones commute, P is the limit; otherwise we have nolimit.If a source category with a limit is related to a target category by a functor, it is oftenimportant to check that the limit also exists in the target category. If it does, thefunctor preserves limits.Corresponding to the notion of limit, there is the concept of colimit where the supre-mum (least upper bound) is sought rather than the in�mum. Products and pullbacksmay have limits and coproducts and pushouts colimits.An important example is given later of limits where in Figure 7 we treat P as theproduct of persistent attributes in a class, K as the identi�er (key), Ni as a non{keyattribute and fi as a postulated functional dependency.2.6 Natural TransformationsAn arrow between functors is termed a natural morphism (or transformation) as shownin Figure 8 where there is a natural transformation � from K to L, written:� : K �! LThis natural transformation assigns to each source object A a target arrow13



�A : K(A) �! L(A)such that for each source arrow A �! B the target square shown in Figure 9 com-mutes. This is the covariant form. There also exists the corresponding contravariant.A B C Df gA B C 0 D0f g0KL� �-- ----? 6Figure 8: Natural Transformations compare FunctorsK(A) L(A)L(B)K(B)
�A
�B L(f)K(f) --? ?Figure 9: Commuting Target Square with Covariant Natural TransformationNote the tight inter-relationship between the levels in category theory: morphismsand objects of categories at the lowest level are part of the expressions at the highestlevel of natural morphisms. A special case of natural transformation is the concept ofnatural isomorphism where, in the example given, the composites � � � and � �� arethe identity natural transformations of L and K respectively. This links to anothermathematical approach where � is regarded as an isomorphism of a model of categories14



giving connections to model theory. In e�ect, a natural transformation is a naturalisomorphism when every component of the transformation is an isomorphism.3 The Product Data ModelUsing the categorical constructions introduced so far, we now construct the productdata model to capture the semantics of object{relational databases. The minimumobjectives for our data model are:1. A clear separation between intension (class) and extension (object) structureswith a rigorous mapping de�ned between them.2. Object encapsulation.3. An orthogonal de�nition language for functions within a class to include bothfunctional dependencies and methods, the naming and typing of all functionsand attributes within each class.4. Constraints on class structures as represented by the concept of primary andcandidate keys, normal forms such as BCNF (Boyce{Codd Normal Form) andfunctionality and membership class in object (E{R) models.5. The standard information system abstractions formulated in the 1970s [Smith& Smith 1977] and which are prime targets of current object{oriented databases[Atkinson et al 1992] and object{relational systems [Stonebraker & Rowe 1986].These abstractions include inheritance (generalization and specialization); com-position such as aggregation; classi�cation and association.6. Message passing facilities between methods located in any part of the system.7. A query language which can provide results with closure: the output from aquery can be held in a class{object structure which ranks equally pari passuwith other such structures already existing in the database.8. A multilevel architecture like that in the ANSI/SPARC standard [Tsichritzis1978] with de�nitions of views, global schemata and internal structures and themapping between them.All symbols declared in the formalism are itemized in Appendix I along with a briefdescription of their purpose. 15



3.1 Classes3.1.1 Basic StructuresThe class construction represents the intension for a database. Each class is repre-sented by a category (CLSi j 1 � i � c) where c is the number of classes in thedatabase. The class name is the name of the category. Category theory keeps distinctintensional and extensional forms of a data dictionary. For example, 1CLS types adatabase entity in general, 1CLS1 types the database entity suppliers and 1CLS2 typesthe database entity parts. Then CLS1 is the class of suppliers and CLS2 is the classof parts.Each category CLSi is a collection of arrows where an arrow may represent an action(transformation) or an association. The former represent methods and the latterdependencies (functional, inclusive, transitive, etc). Arrow names are the names ofmethods and dependencies.Each arrow has a domain and a codomain. Within the universal category SET,domains and codomains are sets but in general they can be of arbitrary complexity.Domain and codomain names are the names of variables de�ned within the class. Inthe next section, we describe the identi�cation of one or more domains as candidatekeys and the selection of one of these as the primary key. The types of arrows, domainsand codomains are de�ned by naming the categories upon which their data types arebased. All arrow constructions as regards composition and association must conformto the four axioms of category theory given earlier.Formally, each category CLSi is a collection of k arrows or morphisms F = ffj j1 � j � kg where fj has domain dom(fj) and codomain cod(fj). The domain andcodomain names are not necessarily distinct. fdom(fj)S cod(fj) j 1 � j � kg is theset of variables in the class which we call V with cardinality q. In order to permitcomplex actions and dependencies, domains may be structured, that is contain morethan one variable. For database applications, codomains are normally considered tocomprise a single variable although category theory itself need not be restricted tominimal covers [Freyd & Scedrov 1990] but can cope well with open covers [MacLane & Moerdijk 1991]. Variables may be either persistent variables given by a setA = faj j 1 � j � ng comprising the persistent component of the class, or memoryvariables given by a set U = fuj j 0 � j � n0g comprising the transient component ofthe class. Note that A and U are both subobjects of V and n+ n0 = q.Using our earlier notation, V corresponds to objCLSi and F to HomCLSi(v; v0) for allv; v0 2 V .Arrows are typed, for example the collection of arrowsD = fdi j 0 � i � r0g representsarrows occurring in the universe of functional dependencies andM = fmi j 0 � i � sgrepresents arrows occurring in the universe of methods. Note that D and M are bothsubobjects of F and r0 + s = k. 16



Functional dependencies involve only persistent variables as their domains and codomains.Minimal covers are assumed: domains may be composite involving more than onepersistent variable while codomains are restricted to being single persistent variables.Therefore for each functional dependency, we have di : x �! y, x 2 }A; y 2 A, thatis, x is a member of the powerset of A. Although y is a singleton variable, this doesnot mean that its structure is simple. y could represent structures such as multivaluedsets, lists or arrays. We deduce the set of persistent variables E that participate infunctional dependencies, as domain or codomain, by fdom(di)S cod(di) j 0 � i � r0g.Note that E = A only in the special case when all domains in D are single attributesand every attribute in A is involved in a dependency.Functional dependencies can be composed. Thus the composition of d1 : fag �! fbgand d2 : fbg �! fcg gives d2 � d1 : fag �! fcg. Such compositions are representedwithout di�culty in the partially{ordered structures that we introduce later as anatural consequence of the transitivity rule (if fag � fbg and fbg � fcg, then fag �fcg). However, in some circumstances, partial composition occurs. For example:d3 : fa; eg �! fcgd4 : fb; cg �! fdgwhere cod(d3) � dom(d4). These partial compositions generate a new collection ofarrows termed pseudotransitivities obtained by:1. identifying partial compositions as above where, for two arrows di and dj,cod(di) � dom(dj);2. determining variables needed to augment the dependency di to achieve totalcomposition as z = dom(dj)� cod(di);3. augmenting both dom(di) and cod(di) with z to give a new function:d0i : (dom(di)[ z) �! (cod(di)[ z)4. composing dj and d0i (that is dj � d0i) to give a pseudotransitivity arrow:pi : (dom(di)[ z) �! (cod(dj))So in the above example, we determine through pseudotransitivity that fa; b; eg �!fdg. After each pseudotransitivity arrow has been identi�ed, it must be determinedwhether any further ones can be deduced: the process is iterative. The result is acollection of pseudotransitivity arrows P = fpi : x �! yg (x 2 }A; y 2 A; 0 �17



i � r00). The set of variables E 0 that participate in pseudotransitivities is given byfdom(pi)S cod(pi) j 0 � i � r00g.For each arrow that is a method, mi : x �! y(0 � i � s), then x 2 }V; y 2 V ,that is the domain may be any subobject of the persistent and memory variablesand the codomain is a singleton persistent or memory variable. If required, memoryvariables can be considered as derived [Shipman 1981] or virtual variables which canbe manipulated by database operations.The typing is indicated by a collection of mappings fh : 1TYP �! Hg where Hrepresents the name of either an arrow in F or an object in V , h is an instance ofH andTYP is the category upon which the type of H is based. The category constructionnaturally provides an encapsulation of attributes and methods for a class.3.1.2 Identi�ersAs we shall see later, we need a way of deriving identi�ers for use in our relationshiprepresentations. Identi�ers can be natural (primary keys) or system assigned (objectidenti�ers). Both the forms of identi�ers are initial objects in categories as there isan arrow from the identi�er to every other object in the category. Initial objects arenormally denoted by 0 in category theory { hence we adopt K0 as the notation forthe key. The key K0 is derived as shown below for each class category CLS [Rossiter& Heather 1993] following a lattice approach [Demetrovics, Libkin & Muchnik 1992]rather than an algorithmic one [Ullman 1988]. The lattice formalism lends itself moreto a categorical approach with its emphasis on poset constructions. We employ theidenti�ers and dependencies to test whether our class structures correspond to BCNF(Boyce{Codd Normal Form). This normal form is adopted because it is more powerfulthan 3NF and can easily be deduced from functional dependencies making it ideallysuited to a lattice approach. The procedure is as follows:1. Generate the poset category PRJ with elements p; q 2 }A and projected or-derings (p� q � �l(p � q); p� q � �r(p � q)) as the arrows, that is to take theprojections by applying the free functor G : A �! PRJ.2. Generate the poset category DEP with elements p; q 2 E and arrows fdi j 0 �i � r0g as the orderings, that is to apply the free functor G0 : E �! DEP.3. Generate the poset category PSU with elements p; q 2 E 0 and arrows fpi j 0 �i � r00g that is to apply the free functor G00 : E0 �! PSU.4. TakeDEP and PSU representing respectively the non{trivial functional depen-dency arrows declared in the previous section and the pseudotransitivity arrows(dependencies inferred from the postulated functional dependencies and theircombinations [Ullman 1988]) between p; q 2 }A. Inject these into PRJ, that isadd the arrows of DEP and PSU to those already in PRJ.18



5. Test that PRJ is still a poset by checking for anti{symmetry (if p � q andp � q, then p = q). Cycles in the ordering would give a preset 1 (pre{orderedset) which would need to be partitioned by applying a suitable quotient functorto produce a number of posets which can then be handled collectively. EachPRJ as a poset corresponds to an F+ [Ullman 1988]. Each class (record{type)has its own F+.6. The in�mum or meet of the elements of A in PRJ (VA) is the primary key PK.If there is no in�mum, the set of maximal lower bounds is the set of candidatekeys CK.7. The class is in BCNF if each source of a functional dependency arrow is PK oris a member of CK.8. The identi�erK0 is either PK or a user{selection fromCK. When it is necessaryto distinguish the keys for each class, consider K i0 as the identi�er for the ithclass CLSi.9. Other persistent attributes may be labelled K1 : : :Kr where r = n� c with c asthe number of attributes in the key. In the simplest situations, r = r0, where r0is the cardinality of the set of dependencies D but in many cases such as classeswith no dependencies or with multiple candidate keys or with classes that arenot in BCNF, this will not be true.Alternatively, an object identi�er can be de�ned as the identity functor on a category,for example 1CLSi : CLSi �! CLSi.Our �nal task is to transfer our results from PRJ into the class category CLS. Thisis necessary as, particularly if the key is composite, K0 is not guaranteed to be avariable in the class CLS. We apply an injective functor from a view of the posetPRJ into CLS. The category that we inject into C is the exponential constructionPRJK0 (the arrows of PRJ with K0 as source). CLS now includes the key K0 andthe arrows from K0 to each of K1 : : :Kr. If therefore K0 was not already in PRJ,the injection increases the number of persistent variables n in CLS by one and thenumber of arrows k by r, that is n � n+ 1 and k  � k + r.3.2 RelationshipsThe association abstraction between classes is represented in object models by nota-tion based on the Entity{Relationship approach. In categorical terms, the E{R modelis represented by pullbacks. In Figure 5, A and C are entity{types or classes and Bis a relationship between them. Instances of the relationship occur when f(a) = g(c).1A radical alternative approach that we are working on, at the moment, is to allow the startingrelation to be a preset and to map it automatically into a family of posets satisfying BCNF19



Instances for B are of the form f< a; c; b >j f(a) = g(c); b 2 }Bg where b is anyinformation carried by the link and is an element in the powerset of B (that is asubset of B).Our pullback is on class identi�ers K i0 as initial objects in categories representingclasses. To give an example, consider the pullback of K10 and K20 over O shown inFigure 10, where K10 and K20 are initial objects in the categories for the entity{typessupplier (CLS1) and parts (CLS2) respectively and O is a relationship orders betweensuppliers and parts. K10 � OK20 K20 OK10�l�r fg������*HHHHHHjHHHHHHj������*Figure 10: Diagram of Pullback of K10 and K20 over OThe collection of relationships in a database intension is represented by a family ofpullback categories (ASSi j 0 � i � p) where p is the number of relationships. Wenext include information to cover aspects such as functionality and membership class.First let us consider the nature of each object and arrow in the category:� K10 is the identi�er for the supplier class CLS1.� K20 is the identi�er for the parts class CLS2.� O is the relationship orders representing all instances of this type of associationbetween suppliers and parts. Instances for O are of the form f< k10; k20; o >jf(k10) = g(k20); k10 2 K10 ; k20 2 K20 ; o 2 }Og where o is information such asquantities and dates of orders and is an element in the powerset of O (or is asubset of O representing that set of orders for a part from a particular supplier).O can be considered as a simple structure including j properties for ordersfoi j 1 � i � jg.Alternatively, where there is considerable complexity in the structure and op-erations of O, it would be desirable to create a category, say CLS3, to handleas a class the internal complexity of the orders and to include in the pullbackstructure the identi�er for this class K30 de�ned as pairs of values < k10; k20 > asa surrogate for the orders category.� K10 � OK20 is the subproduct of K10 and K20 over O: it represents the subset ofthe universal product K10 �K20 that actually occurs for the relationship O.20



By considering the nature of the arrows we can now provide more information con-cerning the relationship O:� The arrow f maps from identi�er K10 to the relationship O. It represents asso-ciations between suppliers and orders.� The arrow g maps from identi�er K20 to the relationship O. It represents asso-ciations between parts and orders.� When f(k10) = g(k20), we have an intersection between the two associations, thatis a supplier and a part both point at the same order: a set of such orders isassociated with a particular supplier-part pair.� The arrow �l is a projection of the subproduct K10 � OK20 over K10 representingall suppliers.{ If this projection arrow is onto (epimorphic or epic in categorical terms)then every supplier appears at least once in the subproduct. Thus everysupplier participates in the relationship and the membership class of K10 isindicated as mandatory. If, however, �l is not epic, then not every supplierparticipates in the relationship and the membership class of K10 is indicatedas optional.{ If this projection arrow is one{to{one (monomorphic or monic in categoricalterms) then each supplier appears just once in the subproduct. If, however,�l is not monic, then a supplier may participate more than once in therelationship.{ If �l is both monic and epic, the projection is said to be isomorphic witheach supplier appearing once in the subproduct and K10 having mandatoryparticipation in the relationship.� The arrow �r is a projection of the subproduct K10 � OK20 over K20 representingall parts.{ If this projection arrow is epic, then every part appears at least once in thesubproduct. Thus every part participates in the relationship and the mem-bership class of K20 is indicated as mandatory. If, however, �r is not epic,then not every part participates in the relationship and the membershipclass of K20 is indicated as optional.{ If this projection arrow is monic, then each part appears just once in thesubproduct. If, however, �r is not monic, then a part may participate morethan once in the relationship.{ If �r is both monic and epic, it is said to be isomorphic with each partappearing once in the subproduct and K20 having mandatory participationin the relationship. 21



3.2.1 Signi�cance of Monic ProjectionsUsing the values for O given in the text, the following diagrams illustrate the conclu-sions for functionality and membership class from testing for monics and epics:K10 � OK20 = f< 1; 9 >;< 2; 9 >g K10 = f1; 2gOK20 = f9; 10g�l�r fg�l is monic and epic�r is not monic and not epic ������*HHHHHHjHHHHHHj������*Figure 11: Diagram of Pullback of K10 and K20 over OK10 � OK20 = f< 1; 9 >;< 1; 10 >g K10 = f1; 2gOK20 = f9; 10; 11g�l�r fg�l is not monic and not epic�r is monic and not epic ������*HHHHHHjHHHHHHj������*Figure 12: Diagram of Pullback of K10 and K20 over OConsider �rst the situation in Figure 11 where:O = f< 1; 9; f< 222; 6 >;< 301; 8 >g >;< 2; 9; f< 224; 9 >;< 287; 12 >g >gindicating that there are two relationships between k10 2 K10 and k20 2 K20 :� k10 = 1 and k20 = 9 are associated with the subset of orders f< 222; 6 >;<301; 8 >g where 222 and 301 are order numbers and 6 and 8 are quantities. Thesubset of orders o is in the powerset of orders (o 2 }O).� k10 = 2 and k20 = 9 are associated with the subset of orders f< 224; 9 >;<287; 12 >g where 224 and 287 are order numbers and 9 and 12 are quantities.Note that with �l being monic, this means that each element k10 2 K10 appears oncein the subproduct K10 � OK20 . As �l is epic, this means that every element k10 222



K10 appears in the subproduct K10 � OK20 giving K10 mandatory membership in thesubproduct. Because �r is not monic, some elements k20 2 K20 appear more than oncein the subproduct K10 � OK20 . As �r is not epic, this means that not every elementk20 2 K20 appears in the subproduct K10 � OK20 giving K20 optional membership in thesubproduct.In conventional E-R model terminology, the types of arrows indicate an N:1 relation-ship K10 : K20 , that is each supplier is associated with one part, each part is associatedwith many suppliers. In our view, a better approach as it is readily extendible ton{ary products is to say that each supplier participates N times in the relationshipO and each part once. This technique of measuring the cardinality of participation inthe relationship is of increasing popularity in some object models [Elmasri & Navathe1994]. All parts must participate in the relationship but not all suppliers need do so.In Figure 12O = f< 1; 9; f< 222; 6 >;< 301; 8 >g >;< 1; 10; f< 225; 5 >g >g�r is monic so that each part participates once in the relationship and �l is notmonic so that each supplier occurs N times in the relationship (a 1:N relationshipK10 : K20 ). The non{epic mappings indicate that it is optional for parts and suppliersto participate in the relationship.3.2.2 Further ExamplesOur normal understanding of supplier/parts data would lead us to expect �l and �rto be neither monic nor epic: the relationship is N : M and the membership classof both entity{types is optional. In the table below, further examples with di�erentsemantics are given for the relationship of A and C over B as shown in Figure 5:A C B �l �r relationshipepic mon epic mon partic mapping memb.cl.A:C A:C A CSuppliers Parts Orders n n n n N:M N:M o oStudents Courses Take y n n n N:M N:M m oCounty District Within y n y y N:1 1:N m mCouncils CouncilsNational Name Ident. y y n n 1:N N:1 m oIns. No.Car Licence Possess y y y y 1:1 1:1 m mThese show that by examining the type of the projection arrows �l and �l, we candetermine the following: 23



� the functionality for participation of entities of a particular type in a relationshipgiven by partic { how many times an entity appears in the subproduct;� the functionality as a mapping ratio between two entity{types given by mapping{ the normal E{R perspective;� the membership class of entity{types in a relationship as mandatory m or op-tional o.It should be emphasised that the handling of the entity{relationship modelling hereis very much stronger than in conventional data processing where the functionalityand membership classes are represented by labels. In the categorical model, thefunctionality and membership class are achieved through typing of the arrows so thatthe constraints cannot be violated. Categorical structures are universal rather thanconventional. There is an underlying functor from a categorical E{R model to aconventional one with structure loss through typing constraints being represented aslabels.3.2.3 EnhancementsSo far we have considered binary relations (relationships between two entity{types)and have neglected n{ary and involuted relationships, multiple relationships betweenthe same classes and the abstractions of inheritance and composition. These are read-ily handled by standard categorical constructions. n{ary relationships are representedby �nite products [Rossiter & Heather 1992]. Involuted relationships are handled di-rectly: for exampleK10�BK10 is the subproduct of K10 with itself over the relationshipwith the object B. Multiple relationships between the same classes are handled bya series of pullbacks over the same two initial objects, for example K10 � BK20 andK10 � DK20 represent pullbacks of K10 and K20 over B and D respectively. Inheritanceand composition are described below.3.2.4 Pullback Identi�ersThe values for a subproduct in a pullback will always be unique so generally thiscomponent of the diagram can be used as an identi�er. Therefore in Figure 12 theidenti�er is K10�OK20 . Note that, as in the class diagram, the identi�er is the in�mumof the diagram.3.2.5 InheritanceInheritance in object{oriented terms is the assumption by classes of properties andmethods de�ned in other classes. It is an intensional concept a�ecting the manner24



in which classes are created. In categorical terms, this is achieved by the coproductconstruction shown in Figure 13 which yields a disjoint union of two or more objects.Consider:� a category CLS3 (employers) with set of arrows HomCLS3p; q between objectsp; q and set of domains and codomains objCLS3; and� a category CLS4 (managers) with set of arrows HomCLS4p; q and set of domainsand codomains objCLS4.The coproduct CLS3 + CLS4 is the disjoint union of the arrows (HomCLS3p; q +HomCLS4p; q) and the domains and codomains (objCLS3 + objCLS4).CLS3 +CLS4CLS4CLS3 il irs�������� AAAAAAAK -Figure 13: Coproduct Cone for Objects CLS3 and CLS4In this example, CLS3 and CLS4 contain the speci�c properties and methods foremployers and managers respectively and CLS3+CLS4 is the amalgamation of theseobjects and arrows into a new category which is in e�ect the specialization of CLS3over CLS4. The arrow s (for subtype) shows the direction of the specialization:s : CLS3 �! CLS4 (employee has subtype manager). In general, the supertypecategory will be identi�ed by one or more properties in the data and the subtypecategory (being a weak entity) by an identity functor to give an object identi�er. Inmore concrete terms, s can therefore be considered as the mapping between the key ofthe supertype category CLS3 and the identity functor 1CLS4 of the subtype category:s : K30 �! 1CLS4Since a coproduct can, in turn, be the base of another cone, it is a simple matter toconstruct inheritance hierarchies [Nelson, Rossiter & Heather 1994]. The ancestry ofeach class in the hierarchy is preserved in the construction of pushouts. Note thoughthat, with our scheme at present, multiple inheritance is not permitted as the disjointunion would not include properties or arrows that appeared in both categories at thebase of the cone. At present therefore, our model provides inheritance through thearrangement of categories in a partial order restricted to hierarchical constructionsrather than the more general poset of Cardelli [1984].25



For convenience, we consider the additional g class categories (CLSi : c + 1 � i �c+ g), such as CLS3 +CLS4 above, created as coproducts to comprise the family ofcategories UNI.Polymorphismat its simplest level is achieved by the coproduct construction. Methodsde�ned for CLS3 as arrows in the set (HomCLS3p; q) are also available automaticallyin the set (HomCLS3p; q +HomCLS4p; q).3.2.6 CompositionComposition including aggregation is the creation of new classes from a collection ofother classes. The method of composition is 
exible varying from standard math-ematical operations such as products or unions on classes [Kuper & Vardi 1993] toquali�ed operations such as relational joins. The basic ways of representing thesecompositions have already been introduced such as universal product, disjoint union,quali�ed product and amalgamated sum.3.3 TypingArrows and attributes are typed, as described earlier, by specifying the categoriesfrom which their values will be drawn. These categories may be other classes, basicpools of values such as integer and string, or domains of arbitrary complexity such ascomplex objects, arrows, lists, graphs and sets.3.4 Message PassingWe consider message passing to be a function from one arrow to another arrow, wherethe arrows may be within the same category (intra{class) or in di�erent categories(inter{class). This function is best viewed in category theory as a morphism in thearrow category [Barr & Wells 1990] which is written C! to view the arrows of C asobjects in C!. For example, suppose the arrow �j takes a value from an arrow for themethod mk in the class CLSi to an arrow for the method mn in the class CLSj whereCLSi and CLSj are not necessarily distinct. This is viewed in the arrow category asa morphism between objects in CLS!i and CLS!j as shown below:�j : mk �! mn (mk 2 CLS!i ;mn 2 CLS!j )We can show that message passing is performed in a consistent manner if the diagramin Figure 14 commutes, that is mn � �ja = �jb �mk.The form of Figure 14 is the same as that for the natural transformation target squareshown earlier in Figure 9 as the message passing function is a natural transformation26



between objects in the category of arrows [Simmonds 1990]. A simple way to realisethat inter-arrow morphisms are natural transformations is to consider that the map-ping between CLS and CLS! is a functor; hence a mapping between CLS { CLS!pairs is a natural transformation.dom(mk) dom(mn)
cod(mn)cod(mk)

�ja
�jb mnmk --? ?Figure 14: Commuting Square for Message �j betweenmk andmn in Arrow CategoriesCLS!i and CLS!j respectivelyThe constructions above provide a sound framework for investigating aspects of mes-sage passing such as control of types of initiators/ receivers and a formal basis forre
ective systems.3.5 ObjectsObjects represent the extensional database holding values which must be consistentwith the intension (the class structures).There is a mapping Vi from each class CLSi to the instances for each object{typeOBJi which ensures that the constraints speci�ed in the intension hold in the exten-sion. The mapping is a functor as it is between categories. The functor Vi takes eacharrow f in CLSi to a set of arrow instances Vi(f) in OBJi, each domain dom(f) inCLSi to a set of instances Vi(dom(f)) in OBJi, each codomain cod(f) in CLSi toa set of instances Vi(cod(f)) in OBJi, the key K0 to a set of instances Vi(K0), eachnon{key attribute (Ki j 1 � i � r) to a set of instances Vi(Ki) and each functionaldependence (di j 1 � i � r) to a set of arrow instances Vi(di). All assignments by thefunctor Vi are of values for arrows, domains and codomains.For each class CLSi, the functor Vi should preserve limits with respect to the func-tional dependencies, that is the diagram in Figure 15 should commute for every conewhere QA is the product of (Vi(K0) � Vi(K1) : : : � Vi(Kr)), (�j j 0 � j � r) is a27



projection coordinate from QA and fVi(di) : Vi(K0) �! Vi(Ki) j 1 � i � rg arethe postulated functional dependencies. The commuting requirement is for all Vi(Ki)where (1 � i � r) it is true that Vi(di) � �0 = �i.QAVi(K1) Vi(K2). . . . Vi(Kr)Vi(K0)�0
�1 �2 �rVi(d1)Vi(d2) Vi(dr)?AAAAAAAAAAAAU@@@@@@@@@@@@R�����������������
�������������������*�����������������1Figure 15: Cone for extension QA in the Category OBJReferring back to our original discussion of limits, we are checking that the limit ispreserved when real-world data is examined: that is, all cones in our family of conescommute and therefore an in�mum can be constructed for the family of cones, in thiscase QA.In object{oriented terms, objects contain values consistent with their class de�nitions(including typing) and perform operations according to the methods de�ned in theirclasses. The classes are the intension, the objects the extension. This can be repre-sented generically by the diagram in Figure 16 where CLS represents a family of classcategories, OBJ a family of object categories and TYP a family of type categories.E;P and I are functors representing the mappings from object to class, from classto type and from object to type respectively. E (the dual of D) maps extensionto intension. I is an inclusion functor so that OBJ is a subcategory of TYP. Pindicates the typing constraints applied to classes and is a collection of arrows asindicated earlier in Categorical Concepts comprising:� fvi : 1TYPi �! Vig, representing the constraint that each instance vi of anobject Vi(1 � i � q) is found in the category TYPi.� ffi : 1TYPi �! Fig, representing the constraint that each instance fi of anarrow Fi(1 � i � k) is found in the category TYPi.28



TYP
OBJCLS IEP������������� AAAAAAAAAAAAK�Figure 16: Commuting Diagram for Consistency of Objects with Classes and TypesIn relational database terminology, each category TYP is a domain and each V isan attribute name. The database is consistent when the diagram commutes, that isP �E = I, representing the situation that our objects in the extension conform bothto the class de�nition in the intension and to the typing constraints.In a similar way, another functor R takes each pullback category ASS at the intensionlevel to its extension LNK. This functor also preserves limits so that the constraints,such as for monic, epic and multiple relationships must apply in every case to the ar-rows between the actual data values. Diagram chasing ensures that type declarationsare obeyed. Note how the model is not simply labelling constraints in the intension,it is enforcing them as limit or commuting requirements in the actual data values heldin the extension.3.6 Physical Storage StructuresIn a similar way to the mapping between classes and objects, it is straight{forward tode�ne mappings as functors between categories for objects and categories representingdisk structures, say, hash tables or indexes. In earlier work [Rossiter & Heather 1992],we considered the various approaches to hashing in categorical terms.3.7 Families of CategoriesShortly, we turn our attention to manipulation of our categories. For this purpose, itis convenient to introduce the concept of families of categories. In e�ect, we make thefollowing groups:� The category INT representing the intension as a family of c classes CLS, passociation de�nitions ASS and g coproducts UNI representing inheritance.� The category EXT representing the extension as a family of c objects OBJ andp association instances LNK. 29



� The functor D mapping from category INT to category EXT. This functoris called D (for database) because this is e�ectively the purpose of a databasemanagement system.Between any two intension categories INTi and INTj (not necessarily distinct), mmessage passing routes can be de�ned using arrows of the form � described earlierbetween the corresponding arrow categories INT!i and INT!j respectively.In future work, we intend to employ the concept of the categorical topos to representthe families described above.3.8 ManipulationA fundamental di�culty in current object{based systems is that of closure. It is noteasy to obtain an output from a database that can be held as objects with associatedclass de�nitions such that the new structures rank equally pari passu with those in theexisting database. Another di�culty with some object systems is that the output isa subset of variables in an object without any consideration of the arrows (functions)which are an equally important part of the data. This latter di�culty is readilyhandled in a formal manner by subcategories which provide a means of selecting someof the objects and arrows in a category and hence give in a natural manner the basisfor a query mechanism. We remind ourselves that category INTj is a subcategory ofcategory INTi if:objINTj � objINTi ^ HomINTj(p; q) � HomINTi(p; q) (8p; q 2 objINTj)Query operations can be de�ned at two levels: intra{object and inter{object. Incategorical terms, in the general sense, there is no di�erence between the two as bothare handled by arrows. The query language that we have developed is therefore basedon arrows as in a functional data model such as DAPLEX [Shipman 1981], but ourarrows are higher-order mappings from one category to another. Our arrows are infact functors between the input structure and the output structure. The input foreach operation is a category and the output is another category or a subcategory.A functor arrow will return a category. It is therefore the norm that the output ofa query on a category will be another category complete with arrows and objectswhich can be held in the database in the same way as other categories. The outputor target category could contain structured values not present in the source categoryand assigned by another functor. It is therefore possible to create complex categoriesthrough manipulating values from a number of database categories. Alternatively, aforgetful functor applied to a category forgets some of the structure and this could beused, if the user desires, to forget the arrows and return simple tables of values as isthe normal practice in network and some object{oriented databases.30



An example of a query is given in the next section.3.8.1 Query ExampleWe take the supplier{parts example given earlier, augmenting it with an inheritancestructure where electrical parts are a specialization of parts in general. The followingcategories are de�ned:� INT1 for the class CLS1 for suppliers: identi�er K10arrows:f1 : K10 �! snamef2 : K10 �! saddressf3 : K10 �! no.sharesf4 : K10 �! share.pricef5 : (no.shares � share.price) �! capitalizationwhere sname, saddress, no.shares, share.price 2 A; capitalization 2 U ;f1; : : : ; f4 2 D; f5 2M . A;U;F;M are de�ned in section on Classes.More detailed typing is not shown here.� INT2 for the class CLS2 for parts: identi�er K20arrows:f6 : K20 �! pnamef7 : K20 �! sizef8 : K20 �! weightwhere pname, size, weight 2 A; f6; : : : ; f8 2 D.� INT3 for the pullback ASS1 of suppliers and parts over orders as in Figure 10:identi�er K10 � OK20arrows:�l : K10 � OK20 �! K10�r : K10 � OK20 �! K20f : K10 �! Og : K20 �! O{ K10 is the identi�er for the supplier class CLS1.{ K20 is the identi�er for the parts class CLS2.{ O is the powerset of orders.{ Instances for O are of the form f< k10; k20; o >j f(k10) = g(k20); k10 2 K10 ; k20 2K20 ; o 2 }Og.� INT4 for the class CLS3 for electrical parts { a specialization of parts withobject identi�er 1INT4 as the identity functor on INT431



arrows:f9 : 1INT4 �! voltagef10 : 1INT4 �! capacitywhere voltage, capacity 2 A; f9; f10 2 D.� INT5 for the union (coproduct) UNI1 = INT2 + INT4: identi�er K20arrows:f6; : : : ; f8 from INT2f9; f10 from INT4s1 : K20 �! 1INT4The natural language query is "What are the names and identi�ers of suppliers withcapitalization greater than one million pounds who supply an electrical part with volt-age rating of 90 volts?".The series of functorial operations is given below. As is usual in database systems,these operations are de�ned in intensional terms but later, in order to introduce theclosure concept, we look in more depth at what is actually involved in a query interms of deriving an intension-extension mapping.1. X1 : INT6 �! INT5(Hom-set in INT6 = f9; s1; subobjects in INT6 = (K20 ;1INT4; voltage j voltage =90));2. X2 : INT7 �! INT3(Hom-set in INT7 = �l; subobjects in INT7 = (K10 �OK20 ;K10 j K20 2 INT6));3. X3 : INT8 �! INT7(Hom-set in INT8 = fg; subobject in INT8 = K10);4. X4 : INT9 �! INT1(Hom-set in INT9 = f1; f3; f4; f5; subobjects in INT9 = (K10 ; sname, no.shares,share.price,capitalization j capitalization > 1000000));5. X5 : INT10 �! INT9(Hom-set in INT10 = f1; subobjects in INT10 = (K10 ; sname j K10 2 objINT8));The �rst functor X1 derives the subcategory INT6 from INT5 by taking the com-position of the arrows s1 : K20 �! 1INT4 and f9 : 1INT4 �! voltage to determinewhich part identi�ers K20 are associated with a voltage of 90.The second functor X2 derives the subcategory INT7 from INT3 by restrictionson INT3 to the arrow �l and on the source of �l to cases where the part is in thesubobject K20 derived by X1. 32



The third functor X3 takes the output INT7 from X2 and restricts it further toproduce the subcategory INT8 with no arrows and subobject K10 . This subobjectrepresents suppliers who supply parts rated at 90 volts.The fourth functor X4 produces subcategory INT9 from INT1 with the arrowsf1; f3; f4; f5 and subobjects, including (K10 ; sname), for which the application of f3; f4; f5to K10 gives a capitalization of more than a million pounds.The �nal functor X5 produces the answer in a new subcategory INT10 which is asubcategory of INT9 with arrow f1 and subobjects (K10 ; sname) such that the valuesfor K10 are found in the category INT8, e�ectively giving an intersection betweenINT8 and INT9 over K10 .Note that the strategy involves a selection of both arrows and objects rather thanjust objects as in the relational approach. The selection of arrows is achieved throughde�ning hom{sets and the selection of objects through de�ning subobjects. Further,subobject speci�cations can involve predicates of arbitrary complexity to facilitatesophisticated searching techniques. All operations produce new subcategories. Resultscan also be injected into other categories so that new categories of arbitrary complexitycan be constructed through free functors.3.8.2 Closure in QueriesSo far we have seen how intensional subcategories can be de�ned as results for searches.But can we store the results obtained in our example queries back in the database intheir current form to be used in exactly the same way as existing classes?The answer is that we have de�ned a series of subcategories INT6 : : : INT10 in inten-sional terms but have omitted to de�ne the corresponding extensional subcategories.The relationship between each intension INTi and extension EXTi is given by themapping Di : INTi �! EXTi. Therefore for a query earlier, say no.4, we can writein more detail: D1 : INT1 �! EXT1D9 : INT9 �! EXT9as functors for the query representing intension and extension mapping respectively.Each query therefore involves a mapping between an intension{extension pair as sourceand an intension-extension pair as target. We can represent this structure as shownin Figure 17 with the query now represented by the natural transformation �4.33



INT1 EXT1INT9 EXT9D1D9�4 --?Figure 17: The Query �4 as a Natural Transformation with source D1 and target D9To be a natural transformation, the square introduced earlier as Figure 9 and shownas Figure 18 for our current query �4 should commute for every arrow fj : dom(fj) �!cod(fj) in the source category INTi (1 � j � k; 1 � i � (c+ p + g)).D1(dom(fj)) D9(dom(fj))
D9(cod(fj))D1(cod(fj))

�4a
�4b D9(fj)D1(fj) --? ?Figure 18: The query �4 as a Commuting Target Square with CovariantNatural Transformation �4 from functor D1 to functor D9This means that for all fj in INTi then �4b � D1(fj) = D9(fj) � �4a that is our twopaths from the values for domains of arrows in the source category D1(dom(fj)) tothe values for codomains of arrows in the target category D9(cod(fj)) should be equal.One path A involving �4a navigates from domain values in the source category viadomain values in the target category to codomain values in the target category; theother B involving �4b has the same starting and �nishing points but navigates viacodomain values in the source category. 34



In path A, the arrow �4a creates a subobject of the domains for arrows fj in EXT1to be assigned to the extension category EXT9. In path B, the arrow �4b creates asubobject of the codomains for arrows fj in EXT1 to be assigned to the extensioncategory EXT9. Referring back to the syntax used in our query examples, the hom-set of the target category is de�ned as the set of fj assigned by D9 and the subobjectsin the target category are de�ned as the union of dom(fj) and cod(fj) for arrows fjassigned by D9.The output from �4 is clearly a structure which can be held in our database, rankingequally with other classes and objects in the system. Typing constraints will continueto be enforced in the output structure. So the typing for objects and arrows in INT9will be based on that in INT1 with the additional constraint that capitalizationsmust be greater than one million pounds. In computing terms, we are expressing theconstraint that no object can exist in our database which is not fully described by aclass de�nition.In categorical terms, we are expressing a query as a natural transformation. Eachfunctor can be considered as a continuous function (in�mum preserving) betweentwo posets with limits : each structure Di : INTi �! EXTi is then viewed as aclosed cartesian category where Di is a continuous function preserving the in�mum(as key) within the poset INTi in EXTi. Closed cartesian categories have been usedin other areas of computing science, in formalisms such as Scott domains, as they areequivalent in theoretical power to the typed lambda calculus [Barr & Wells 1990].3.9 Views on ClassesThe mechanism required for views is similar to that for queries. In fact a snapshotview will be identical to a query. However, there are two other aspects of views thatneed further consideration:� The need to retain the de�nition within the database and produce views of thecurrent data on demand by the user.� The problems of updating the database by users who have limited views of thedata structures.The �rst involves creating a mapping in intensional terms only as we did with thequeries originally de�ned as X1 : : :X5. Thus the functors in the familyX de�ned ear-lier can all be construed as de�ned views. When a view is realised, the correspondingnatural transformation is activated to deduce the extension.The second involves the de�nition of another functor, say � , to relate the result fromthe query back to the main database values. Thus if we de�ne a view as shown inFigure 19, we can achieve updatable views on a class.35



A well{known special case of a view is that taken of the complete database. Inthis case for every Di : INTi �! EXTi in the database, the application of �ireturns an identical Di : INTi �! EXTi in the view. The application of �i to eachDi : INTi �! EXTi in the view should then faithfully return our initial database.If this is so, there is a natural isomorphism between � and � and our database isconsistent. INT1 EXT1INT9 EXT9D1D9�4 �4 --? 6Figure 19: The View �4 as a Natural Transformation with Updates through �44 ConclusionsThe conclusions can be stated brie
y. Mainstreammathematics with the developmentof category theory has now attained the same level of formal abstraction as neededfor databases. Category theory therefore provides a formal modelling technique thatis universal in the sense of mathematics.Category theory, for example, �lls in the gaps in current object models where thereis weakness in comparison to relational models in respect of formality, views, queryclosure, etc. We would claim that category theory actually provides a formal ba-sis for the object{relational model, underpinning work on systems such as Postgres[Stonebraker & Rowe 1986] and on the forthcoming SQL{3 standard.More speci�cally, we have provided evidence of the following:� multi{level theory gives natural handling of intension, extension and views;� imprecise descriptions of association, inheritance and aggregation can now berationalized and made formal; 36



� message passing can be represented by natural transformations between meth-ods;� queries with closure are natural transformations between intension{extensionfunctors;� views with updating are pairs of dual natural transformations between intension{extension functors;Orthogonality and consistency are achieved throughout by use of the single conceptof an arrow. We have kept carefully within the known theory rigorously establishedover the last 50 years by a number of pure mathematicians of world class. We haveresisted the temptation to customize the main stream mathematics or make up ourown de�nitions on the basis that any concept should be understood fully and testedin pure theory before it becomes applicable in applied mathematics (see comments byHoare in [de Moor 1992]).No doubt alternative modelling techniques could be developed to provide the samepower and multi{level capability available in category theory. But everything wouldneed to be proved from scratch. Because of the constructive nature of category theory,our diagrams are themselves formal proofs. The results obtained therefore by treatinga database as a functor show the advantages available to the database community fromcategory theory.

37



5 ReferencesAtkinson et al 1990, M.Atkinson et al, The Object{oriented Database System Manifesto,in a number of publication including: The Story of O2: Implementing an Object{orientedDatabase System, Morgan Kaufmann 1992.Barr &Wells 1990, M.Barr & C.Wells, Category Theory for Computing Science, Prentice{Hall.Beeri 1992, C.Beeri, New Data Models and Languages { the Challenge, Proceedings 11thACM Symposium on Principles of Database Systems 1{15.Cardelli 1984, L.Cardelli, A Semantics of Multiple Inheritance, in: Semantics of DataTypes, Lecture Notes in Computing Science 173 51{67, Springer Verlag.Cartmell 1985, J.Cartmell, Formalising the Network and Hierarchical Data Models { anApplication of Categorical Logic, Lecture Notes in Computer Science 240 466{492.Demetrovics, Libkin & Muchnik 1992, J.Demetrovics, L.Libkin & I.B.Muchnik, Func-tional Dependencies in Relational Databases: A Lattice Point of View, Discrete AppliedMathematics 40(2) 155{185.Dennis{Jones & Rhydeheard 1993, E.Dennis{Jones & D.E.Rhydeheard, CategoricalML { Category{Theoretic Modular Programming, Formal Aspects in Computing 5(4) 337{366.Elmasri & Navathe 1994, R.Elmasri & S.B.Navathe, Fundamentals of Database Systems,Benjamin/Cummings, Redwood City, 2nd edition.Freyd 1964, P.Freyd, Abelian Categories: An Introduction to the Theory of Functors,Harper and Row, New York.Freyd & Scedrov 1990, P.J.Freyd & A.Scedrov, Categories, Allegories, North{HollandMathematical Library 39.Gray, Kulkarni & Paton 1992, P.M.D.Gray, K.G.Kulkarni & N.W.Paton, Object-OrientedDatabases: A Semantic Data Model Approach, Prentice Hall.Heather & Rossiter 1994a, M.A.Heather & B.N.Rossiter, Applying Geometric Logic toLaw, Proceedings 4th National Conference on Law, Computers and Arti�cial Intelligence,Exeter 80{95.Heather & Rossiter 1994b, M.A.Heather & B.N.Rossiter, Category Theory: the Math-ematics for the Humanities?, in: International ALLC/ACH Conference, CONSENSUS EXMACHINA, Paris (Sorbonne).Kim 1990, W.Kim, Introduction to Object{oriented Database Systems, MIT Press.Kim 1994, W.Kim, On Object-Oriented Database Technology, ADB. Inc.Kuper & Vardi 1993, K.M.Kuper & M.Y.Vardi, The Logical Data Model, ACM TODS18(3) 379{413.Lellahi & Spyratos 1991, S.K.Lellahi & N.Spyratos, Towards a Categorical Model sup-porting Structured Objects and Inheritance, FIDE Technical Report, University of Glasgow,38



FIDE/91/8.Lellahi & Spyratos 1992, S.K.Lellahi & N.Spyratos, Categorical Modelling of DatabaseConcepts, FIDE Technical Report, University of Glasgow, FIDE/92/38.Mac Lane 1971, Saunders Mac Lane, Categories for theWorking Mathematician, Springer{Verlag 1971.Mac Lane & Moerdijk 1991, Saunders Mac Lane & Ieke Moerdijk, Sheaves in Geometryand Logic, A First Introduction to Topos Theory, Springer{Verlag 1991.Manes & Arbib 1986, E.Manes & M.Arbib, Algebraic Approaches to Program Semantics,Springer Verlag 1986.de Moor 1992, O. De Moor, Categories, Relations and Dynamic Programming, OxfordUniversity Computing Laboratory Report PRG{98.Nelson, Rossiter & Heather 1994, D.A.Nelson, B.N.Rossiter & M.A.Heather, The Func-torial Data Model { An extension to Functional Databases, Technical Report no.488, Com-puting Science, Newcastle University.Rossiter & Heather 1992, B.N.Rossiter & M.A.Heather, Applying Category Theory toDatabases, presented to 8th British Colloquium for Theoretical Computing Science in March1992, published as Technical Report no.407, Computing Science, Newcastle University.Rossiter & Heather 1993, B.N.Rossiter & M.A.Heather, Database Architecture andFunctional Dependencies expressed with Formal Categories and Functors, published as Tech-nical Report no.432, Computing Science, Newcastle University.Shipman 1981, D.W.Shipman, The Functional DataModel and the Data Language DAPLEX,ACM TODS 6 140{173.Sibley & Kerschberg 1977, E.H.Sibley & L.Kerschberg, Data Architecture and DataModel Considerations, AFIPS Conference Proceedings, Dallas 1977, 85{96.Simmonds 1990, H.Simmonds, Lecture Notes for SERC School on Logic for InformationTechnology, University of Leeds.Smith & Smith 1977, J.Smith & D.Smith, Data Abstraction, Aggregation and General-ization, ACM TODS 2(2) 105{133.Stonebraker & Rowe 1986, M.Stonebraker & L.A.Rowe, The Design of Postgres, Pro-ceedings ACM SIGMOD Conference, 340{355.Tsichritzis 1978, D.Tsichritzis, ANSI/X3/SPARC DBMS Framework, Report of the StudyGroup on Data Base Management Systems, Information Systems 3.Ullman 1988, J.D.Ullman, Principles of Database and Knowledge-base Systems, ComputerScience Press 1. 39



6 Appendix I: Symbols employed for represent-ing database concepts

40



Level symbol instance range i conceptCategory ASS ASSi 1 : : : p association intensionCLS CLSi 1 : : : c classCLS! CLS!i 1 : : : c class with arrows consideredas arrow{objectsDEP DEPi 1 : : : c dependencies (in poset)EXT EXTi 1 : : : c+ p database extensionINT INTi 1 : : : c+ p+ g database intensionINT! INT!i 1 : : : c+ p+ g intension with arrows consideredas arrow{objectsLNK LNKi 1 : : : p association extensionOBJ OBJi 1 : : : c database objectPRJ PRJi 1 : : : c persistent variables(in powerset ordered by projection)PSU PSUi 1 : : : c pseudotransitivities (in poset)TYP TYPi � 1 typesUNI UNIi 1 : : : g coproduct (inheritance)Arrow D di 0 : : : r0 dependenciesF fi 0 : : : k all arrows within a classM mi 0 : : : s methodsP pi 0 : : : r00 pseudotransitivityS si 0 : : : g supertype{subtypeObject A ai 1 : : : n persistent variablesE ei 0 : : : r0 persistent variables in arrows DE 0 e0i 0 : : : r00 persistent variables in arrows PK i0 ki0 1 : : : c initial object (key) in CLSiK ij(1 � j � r) kij 1 : : : c non{key attributes in CLSiU ui 0 : : : n0 memory variablesV vi 1 : : : q all variablesFunctor D Di 1 : : : c+ p map intension to extensionE Ei 1 : : : c map object to classG Gi 1 : : : c map variables A to PRJG0 G0i 1 : : : c map variables E to DEPG00 G00i 1 : : : c map variables E0 to PSUI Ii 1 : : : c map object to typeP Pi 1 : : : c map class to typeR Ri 1 : : : p map association intension to extensionV Vi 1 : : : c map class to objectX Xi � 0 query mapping intension to intensionNatural � �i � 0 query/view deriving one INT : ENTTransform- pair as a `subset' of anotheration � �i � 0 dual of query/view �� �i 0 : : : m message from arrow{object in INT!ito arrow{object in INT!j41


