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Abstract

Information systems are anticipatory systems providing knowledge of the
real world. If e-science is to operate reactively across the Grid it needs to be
integrable with other information systems and e-commerce1. Theory suggests
that four strong-anticipatory levels of computational types are sufficient to pro-
vide ultimate systemic closure with a single strong anticipation. Between the
four levels are three layers of adjoint functors that relate each type-pair. A
free functor allows selection of a target type at a lower level and its right ad-
joint determines the higher-level type. Because of the uniqueness a higher-level
anticipates a lower level and a lower level a higher. Type anticipation can be
provided by left (F) or right (G) adjoint functors. These however are weak an-
ticipation. Strong anticipation needs both left and right adjoints at each level
or by composition of adjoints for the system as a whole. The ISO standard for
the Information Resource Dictionary System (IRDS) is itself an anticipatory
system with this four-level architecture of universal types which can be used
for design of interoperability across the Grid. The sufficiency of middleware
tools for the Grid can be anticipated by reference to this same architecture.
Thus for instance RDF, the Resource Description Framework, for the markup
language XML seems to lack the top level abstraction of IRDS and to have only
left-adjoint functionality and therefore not to qualify as a strong anticipatory
system.

Keywords: computational types, strong anticipation, category theory, Grid, XML.
1This paper was presented initially at CASYS01, 5th International Conference on Computing

Anticipatory Systems, Liege, August 2001, Dubois, D M, (ed.); it is currently in press as The Antic-
ipatory and Systemic Adjointness of E-Science Computation on the Grid, Proceedings CASYS‘01,
Liege (2002).
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1 Introduction

Computers are anticipatory systems [20] predicting reactive processes in the real-
world. Now high computing power is required for quite average projects in physics,
biotechnology, medicine, the environment, economics modelling and business. The
success of the Web (as one gigantic anticipatory system) for information has promoted
the idea of the Grid for computation [3].

This means we are entering a new era in databases well suited to applications of cur-
rent interest like biological and medical data, environmental and geophysical data,
image and moving picture, tele-immersion and virtual reality data. These are both
large in bulk and extensive in complexity and require enormous computing power.
Long-distant data transmission rates used today in grid computing attain about 400
megabits per second. Grid computing is being adopted for e-business in engineering,
pharmaceutical and petrochemical industries, for e-science with over 20 projects un-
derway in the US and Europe involving academic institutions and research councils
utilizing middleware like the Globus Toolkit developed for NASA’s Information Power
Grid and in commercial and industrial collaboration using high security distributed
systems like IBM’s eLiza which claims high security and the ability to self-correct its
own local faults.

Distributed servers can satisfy a world thirst for knowledge. Why not then a global
hunger for more processing? Parallelism popular in the 1980s never came to fruition
because it was made redundant by more powerful supercomputers but it threw up
problems which were never resolved and which must re-emerge with the construction
of the Grid as an implementation of an anticipatory system. It is essential to get the
theory right from the outset. Even the name Grid, taken by analogy with national
power networks, is a little misleading. The connection is not an orthogonal co-ordinate
frame and not just a syntax connection. It is more than a subset of system processors.
For there is processing in the connections as well as in the distributed computing
elements themselves. It is a mini-universe operating constructively in the same way as
the real universe operates. Like the real universe it needs to be internally connectable.
E-science may have its own special requirements but should not be separate from
other information systems using the same routers at the physical level on the Internet
and the same virtual resources as in the World Wide Web. E-science shares many
common characteristics of e-business. It would need therefore to be built with the
same tools throughout. Early examples of possible components can be found in XML
markup for mathematics MathML [6] or for chemistry [15] where the same language
can cope with structures from the molecular structure up to the structure of the
published document describing it. What is the formal description of the Grid? Is
XML adequate to implement it?

The simple partitioning of computation between algorithms and data as traditionally
found in high-level programs or as in databases no longer holds in the new pervasive
non-local computational environment of the Grid. The ”how” and ”is” merge at
a higher level into distributed information systems. As these information systems
become more sophisticated, an underlying schema is needed to achieve the necessary
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integrity and security. A schema is no more than a structure of types and their inter-
relationships. There is a parallel strand of machine’s computation where the emphasis
is on data structures and universal typing. The universal feature of information
systems including most computational methods is the data typing. Data typing is
nevertheless still within the classic Turing Machine as embedded in the finite string
of symbols in the cells on the tape which are presented to the machine. The data
types may be algorithmic in that the sequence of symbols represents processing rules
or may have special significance as in modern implementations in the form of mark-up
languages such as SGML. Such strings however operate essentially at the syntactical
level while data-typing is at the semantic. To raise SGML to this semantic level,
XML has been developed with schema definitions added along with the facility to type
[25]. The significance of these abstract data types is their application to anticipate
features of the real world (both physical and metaphysical). These then emerge as
the pragmatic structure of a database schema.

In the context of anticipatory systems, standards perform the role of the abstract
machine. For example a FORTRAN standard seeks to provide a universal view of
particular Turing instructions. For high-level programming languages give the algo-
rithms for Turing machines. The ISO family of OSI standards [17] are widely accepted
and successfully used as a convention for cooperative work but their value is limited
to the syntactical level. For while there is internal consistency in the standard there
is no guarantee that the application of the standard will result in a self-consistent
system, that is with strong anticipation. This need not cause too much concern for
implementers in a local system where everything is under their own control and weak
anticipation is adequate. However, as soon as any kind of openness or independent
autonomicity is introduced, another level of types appears requiring closure at an
even higher level. In terms of logic, higher-order is needed to develop a reference
level in its most abstract form which can give a provable ultimate closure, that is with
strong anticipation. Mathematics (as the archetypal anticipatory system) gives us this
third-level closure through constructive methods for defining some reference model for
systems with heterogeneous information and processing as required in e-science and
e-commerce. This need has been recognized to a limited extent by standards bodies
who have produced reference models which relate local standards across a number of
levels. However, true reference models are still few and far between.

It is important to bear in mind how anticipation is given by a reference model [2, 8].
If we consider some examples, the reference model for design and implementation
of databases is not itself the set of schema available. It gives a potential means for
providing compatible components for different systems. However, while these may
be compatible, there is no guarantee that they are consistent. This is because the
collection of designs provides a reference model but not a universal reference model.
Using higher-order logic in the context of the ISO standard Information Resource
Dictionary System (IRDS) [9, 10] we build on previous work [8, 21] in this paper to
investigate the proposed Grid for criteria of reliability for applications of interoper-
ability and cross-platform software in the belief that with a constructive formal basis
the scientific community will be able to rely on its operation and results as a sound
anticipatory system.
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The Grid from our perspective is more than just a reactive system. In such a system,
feedback would be an important feature in the form of perhaps an error signal record-
ing the difference between actual and expected inputs ([20], at p. 41). Although the
system would then attempt to react to unexpected circumstances to satisfy users’
requests, it would be acting on events that had already occurred. A more powerful
Grid would anticipate events.

2 Types and Meta Data

System catalogues play an important role in anticipation by relating data types.
Nearly all catalogues today are active in the sense that they are a dynamic automatic
source of naming and typing information for programs accessing the system, rather
than a passive static reference. In relational systems meta-data is the relationship
between data in the schema and the constructs used (tables, attributes). Providing in-
teroperability between one relational system and another is relatively straight-forward
and there are commercial systems that provide this capability. Wrapper constructions
are increasingly used to provide a meta-level by encapsulation of programs with pre-
determined interfaces. The freeness of the object-oriented paradigm means that the
meta-level needs to be constructed with great care though to control the representa-
tion of classes, objects, properties, references, inheritance, composition and methods.

3 The Information Resource Dictionary System IRDS

Before embarking on a full formal description of the IRDS as an anticipatory system,
some understanding and informal insight into its interpretation might be useful. The
IRDS is constructed on four levels [4, 5]. Each type level taken with its adjacent type
level acts as a level pair so that there are three level pairs across the four levels. This
means that each point at each level is directly related to a point at the other level in
the level pair.

The top level is the Information Resource Dictionary Definition Schema (IRDDS), in
which concepts relating to policy and philosophy are defined. For example, object-
oriented abstractions are to be declared at this level. In principle, only one instance of
an IRDDS need be defined for a platform. In a coherent system there can be only one
collection of such types. With the open-ended nature of object-oriented structures,
however some extensibility may be required.

The second level is the Information Resource Dictionary Definition (IRDD) in which
schema facilities are defined. Each system will have its own IRDD type definition.
For example a COBOL IRDD would declare that record-types were an aggregation of
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Figure 1: Interpretation of IRDS in Schematic Form

single- or multi-valued data field-types while one for SQL would declare that table-
types were an aggregation of single-valued data fields.

The third level is the Information Resource Dictionary (IRD) which defines the inten-
sion for an application, giving name types and type constraints. There will clearly be
many intensions defined in an organization, one for each application. Typing of names
and other constraints will be applied to data objects, functions and procedures.

The fourth level is the Information Resource Data (APP) which gives the extension,
the data values. There will be one extension for each intension, the values being
consistent with the types of names and constraints of the intension. Data values may
be simple objects as in SQL or complex objects as in computer-aided design and
multimedia systems.

One instance of the Information Resource Dictionary System represents one platform,
paradigm or model. Take as an example the relational model. Level 1 would be real-
world type abstractions, level 2 the type constructs available, level 3 the data type
names and level 4 the data type values.

Between each level the mappings are strictly defined by their starting and terminating
points in the respective level types. These may not be immediately obvious in the
original standard but they are brought out in the informal diagram of Figure 1 together
with more explicit interpretations of the levels. In particular it should be noticed that
the interpretations of the mappings can only be appreciated by considering both
directions for each respective mapping. The bottom-up mappings are described in
the formal model. The top-down mappings in Figure 1 are as follows:

Between levels 1 and 2 (IRDDS and IRDD), there is the mapping of type Policy acting
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as a level pair. This level pair exists only in IRDS-type systems in which real-world
abstractions are related to constructive facilities in a system. For example, Policy
would indicate the maintenance of constraints such as type inheritance. Between
levels 2 and 3 (IRDD and IRD), there is the mapping of type Org acting as a level
pair. This level pair provides a standard data dictionary function of, for instance,
saying which classes are available in an object-based system or which servers are
available on a network.

Between levels 3 and 4 (IRD and APP), there is the mapping of type Data acting as
a level pair. This level pair can be thought of as the state of the art of an information
system: to link values to names so that data can be addressed by name rather than
by physical location. Between levels 1 and 4 (IRDDS and APP), there is the mapping
of type Platform acting as a level pair. This level pair short-circuits the navigation
through four levels by giving a direct mapping from real-world abstractions to data
values. Use of this mapping is described later.

The IRDS standard is the basis for relating heterogeneous types across platform sys-
tems, that is systems based on different paradigms. While there is only one instance
of the top level type (the IRDDS), this level is extensible and new concepts and ab-
stractions can be added as desired. From the point of view of information systems,
the IRDS provides the ability to run an organization with many different paradigms
all integrated through the type of structure shown in Figure 1. The critical map-
ping is type Platform, that is the arrow from IRDDS to APP, relating concepts to
values. By determining this mapping for all types of system, the problems arising
in re-engineering are avoided to some extent as all types of approach to information
systems can be run in an integrated fashion.

The next task is to formalize the diagram in Figure 1 so that a sound scientific basis
can be developed for the IRDS model to handle heterogeneous systems.

4 Formalizing the Level Types of the IRDS

Constructive mathematics attempts to develop logically what can work in practice
and can therefore provide the necessary universal typing for interoperability of het-
erogeneous data systems with consistency and quality assurance in the real-world.
Category theory [1, 14, 18, 20, 24] is particularly appropriate for modelling multi-
level relationships for it is essentially concerned with links between objects. It has
been shown, for instance, to cover adequately dynamic aspects in hypermedia [7].
Rosen ([20] at p.110-124) suggests the use of category theory to represent models.
He considers (at p.121) that there is an intimate relation between category theory as
a mathematical discipline and the general theory of modelling which includes Model
Theory itself. In particular the construction of a functor on a category establishes
the sense in which all objects in the category are related to one another so that an
implicit model can be produced of each of them. He further notes that a ”functorial
relationship ... is not in principle a reductionist kind of relation”.
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Category theory provides a universal construction for formalizing information systems
with rigorous typing. It is this uniqueness that provides the universality to form the
basis of a general consistent system. An example is now given for a prototype infor-
mation system focusing on the aspect of a cross-platform system as a heterogeneous
distributed database relying on the categorical product construct as a data-type model
[16]. In this approach, each class definition can be identified as a collection of arrows
(functions) forming a category IRD and each family of object values conforming to
a particular class definition as a category APP. The type mapping from the inten-
sion (class definition) to extension (object values) is made by a functor Data which
enforces the various constraints specified in IRD. Category IRD is the intension
corresponding to the third level in IRDS and APP is the extension corresponding to
the fourth level type.

The intension category IRD is a family of category types, representing definitions of
classes, associations (relationships) and coproduct structures indicating inheritance hi-
erarchies. The arrows within it may be methods as in object-based systems, network
connections between clients and servers, logical connections as in network databases,
or functional dependencies as in relational database schemas. It should be emphasised
that categorical approaches naturally include procedures and functions through the
underlying arrow concept ensuring that both structure and activity can be modelled
in a multi-level manner with rigorous type. The category APP is also a family of
categories, representing object values and association instances. The functor Data
mapping from the intension to the extension not only connects a name to its corre-
sponding set of values but also ensures that type constraints specified in the schema,
such as functionalities of relationships and functional dependencies, all hold in the
extension.

It is relatively straight-forward in category theory to extend the intension and ex-
tension two-level structures in a universal manner to handle the four levels of IRDS.
In categorial terms each of the four levels of IRDS is defined as a category (i.e. a
type). Between each level there is a higher-order function, a functor, which ensures
that certain consistency requirements are met in the mapping between the source and
target categories. The abstractions level (top) is a category IRDDS which defines
the various abstractions available for modelling real-world data. The next level is a
category IRDD defining the various construction facilities available for representing
abstractions and data in a particular system. There is therefore, for one instance of
IRDDS, many instances of IRDD, one for each machine type.

The data functor (level pair) type change Policy maps target objects and arrows in
the category IRDDS to image objects in the category IRDD for each type of system.
This mapping provides at the meta-meta level the data for each kind of system, that
is to say how each abstraction is to be represented. We also label the functor pair Org
relating for each system the constructions in IRDD with the names in a particular
application in IRD. Combining these new constructions with the product ones above
gives the direct and universal representation of IRDS shown in Figure 2.
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Figure 2: IRDS Levels in Functorial Terms

The remaining functors MetaMeta, Meta and Name are the duals of Policy, Org
and Data respectively. MetaMeta for a given IRDD relates the data modelling
facilities provided by a system to the universal collection of abstractions defined in
IRDDS. Meta for a given IRD relates the schema definition (intension) to the
constructs available in the system defined in IRDD. Meta therefore relates a name
in the intension to a modelling concept in IRDD such as a class name to the class
construction. Name for a given APP relates a data value type to its property name
as defined in the intension IRD.

It will be noted that in Figure 2 all the mappings are two-way and that two composi-
tions emerge. In category theory, Figure 2 is a composition of functors with Platform
as the overall functor from IRDDS −→ APP, such that for each type of informa-
tion system the following compositions hold: Platform = Data ◦ Org ◦ Policy and
Sys = MetaMeta ◦Meta ◦Name

An obvious benefit is that we can relate concepts across platforms by comparing the
functors Platform : IRDDS −→ APP for each of our types of system. However,
for full type consistency we should consider the two-way mappings and ensure that
composition holds in both directions. Such consistency is achieved in category theory
by adjointness. The topic of adjunctions and their composition therefore needs now
to be discussed.

5 Adjointness between Category Types

Adjointness characterises the unique relationship between cartesian-closed categories
(that is categories of real-world objects). There is a lower-limit functor (F ) that
preserves co-limits and right-adjoint to F is an upper-limit functor (G) which preserves
limits.

The critical comparison is between the arrows (f) in category type A and the arrows
(g) in type B. It is defining the f in terms of the functors F and G and the arrow
g. We compare a with the result of G ◦ F (a), written simply as GFa, as assigned
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to category A. In effect an object in A is compared with the result obtained by
applying functor F and then in turn functor G to the result. This comparison is a
natural transformation (η) involving a type change from a −→ Fa −→ GFa. This
arrow η is the unit of adjunction.

a GFa

Gb

ηa

Ggf

FGb b

Fa

εb

gFf

-
@
@
@
@
@@R?

-

6

@
@

@
@
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Figure 3: Adjointness – unit and counit perspectives

The comparison is made in the context of the corresponding object G(b) which maps b
in B to A so that the left-hand diagram in Figure 3 commutes under the conditions of
adjointness, that is Gg ◦ ηa = f . Another view [1], based on equation solving, is that
there is a functorial way to relate any arrow f : a −→ Gb to an arrow g : Fa −→ b in
such a way that g solves the equation f = G(x) ◦ ηa and that the solution is unique
for either some arrow x or object x in category B.

An asymmetry, between categories A and B, apparent between the left-hand and
right-hand diagrams of Figure 3, arises in the different viewpoint taken from each side
of the adjointness. The perspective of the mapping f can be adjusted to that of the
mapping g as in the right-hand diagram of Figure 3. This diagram commutes when
εb ◦ Ff = g. The arrow ε is the counit of adjunction and a natural transformation
comparing F (G(b)) to b. The view, based on equation solving, is that there is a
functorial way to relate any arrow g : Fa −→ b to an arrow f : a −→ Gb in such a
way that f solves the equation g = εb ◦F (y) and that the solution is unique for either
some arrow y or object y in category A.

Examples of left adjoints are enrichments such as taking a graph to a category, a set
to a group, a set to a preorder and a collection of record keys to hashed addresses.
The corresponding right adjoints qualitatively identify the enrichment, ensuring that
a number of type restrictions are satisfied.

The notation we use here for an adjunction is as follows. Consider object a in category
A and object b in category B and mappings: F : A −→ B, G : B −→ A

Then if there is an adjunction between F and G (F a G), we write the 4-tuple
< F,G, ηa, εb >: A −→ B to indicate the free functor, underlying functor, unit of
adjunction and counit of adjunction respectively. From an application viewpoint, a
useful view of an adjunction is that of insertion in a constrained environment. The
unit η can be thought of as quantitative creation, the counit ε as qualitative validation.
There is then a relationship between the left and right adjoints such that η represents
quantitative identification and ε qualitative identification.
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An example of adjointness given below to illustrate this property for the pullback
category is based on Mac Lane [14] (at p.87 in the second edition). A pullback is
shown in Figure 4 with the left-adjoint ∃ : C×C −→ C taking a pair < a, b > to
a+b and a right adjoint ∀ : C×C −→ C taking a pair < a, b > to a×b. The pullback
shows a relationship between objects a in A and b in B as ordered pairs < a, b > in
C×C and as a coproduct in C.

Identification is supplied by a pair of insertions i : a 7→ a + b and j : b 7→ a + b so
that objects in A and B are inserted into C the co-product. The sums are mapped
onto the product by the diagonal δ : c 7→ c× c. The upper triangle of the diagram in
Figure 4 commutes when ηa = ∆ ◦ i, a composition of the insertion and the diagonal.
The types are identified as components of the coproduct by the arrows: c + c 7→ c,
i−1 : i(c) 7→ c, j−1 : j(c) 7→ c and of the components of the product by projections:
a × b 7→ a, a × b 7→ b. The square of the diagram in Figure 4 commutes when
εc×c = j−1 ◦ i ◦ πl.

The pullback not only applies universally between each level type but also internally
at any level. It describes the component subtypes or sorts. Any type can be consid-
ered as a limit in C×C of fundamental subtypes of the colimits in C (which need
not be restricted to sets). The type logic is geometric as between categories. That is
the internal language of a topos. The universal pullback, developed through hyper-
doctrines, fibre products and sheaf theory, is a general form of an anticipatory system
subsuming theories such as Russell’s type theory, Martin-Lȯf’s theory of types and
typed lambda calculus [13, 11]. However, it is the phase space of computation that
is to be found in the pullback. Another aspect of the anticipation of the system is
computability. That is analagous to the halting problem for the Turing Machine that
leads to the confines of NP computability, that is to the limits of predictability in an
anticipatory system. We are not necessarily concerned here with the question of how
time-dependent is the computation in the real-world but rather with the matter of
consistency and certainty in type computation.

C×C

B

C

A

πl

ηa

εc×c
π∗r

i

i−1

j

j−1

∆
∃

∀

��
��
��
��*

H
HHH

HHHHj

HH
HHH

HHHj

��
���

����

��
�
��

��
�*

HH
H
HH

H
HHY

�
-

-

HH
HH

H
HH

HY

�
���

�����

Figure 4: Pullback of j along i
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5.1 Composition of Adjoints

The IRDS application shown in Figure 2 involves the composition of adjoints, that is
an expression is derived in which two or more adjoints are adjacent to each other. It
is part of the power of category theory that adjoints can be composed in the same
way as other arrows. For example consider the adjoints shown in Figure 5.

A B C D
F F̄ ¯̄F

G Ḡ ¯̄G

@@ @@

@@ @@

@@

@@

Figure 5: Composition of Adjoints

Then we may have six adjoints (if the conditions are satisfied):
F a G, F̄ a Ḡ, ¯̄F a ¯̄G, F̄F a GḠ, ¯̄FF̄ a Ḡ ¯̄G, ¯̄FF̄F a GḠ ¯̄G
These adjunctions give the following isomorphisms:
D( ¯̄FF̄Fa, d) ∼= C(F̄Fa, ¯̄Gd) ∼= B(Fa, Ḡ ¯̄Gd) ∼= A(a,GḠ ¯̄Gd)
where a is an object in A and d an object in D. Each equivalent expression represents
the collection of arrows from source to target so D( ¯̄FF̄Fa, d) represents the collection
of arrows from ¯̄FF̄Fa to d in category D.

We can define these in more detail with their units and counits of adjunction as
follows:

1. < F,G, ηa, εb >: A −→ B

ηa is the unit of adjunction 1a −→ GFa and εb is the counit of adjunction
FGb −→ 1b

2. < F̄ , Ḡ, η̄b, ε̄c >: B −→ C

η̄b is the unit of adjunction 1b −→ ḠF̄ b and ε̄c is the counit of adjunction
F̄ Ḡc −→ 1c

3. < ¯̄F , ¯̄G, ¯̄ηc, ¯̄εd >: C −→ D

¯̄ηc is the unit of adjunction 1c −→ ¯̄G ¯̄Fc and ¯̄εd is the counit of adjunction
¯̄F ¯̄Gd −→ 1d

4. < F̄F,GḠ,Gη̄aF • ηa, ε̄c • F̄ εcḠ >: A −→ C

Gη̄aF • ηa is the unit of adjunction 1a −→ GḠF̄Fa and ε̄c • F̄ εcḠ is the counit
of adjunction F̄FGḠc −→ 1c

The unit of adjunction is a composition of:
ηa : 1a −→ GFa with Gη̄aF : GFa −→ GḠF̄Fa

The counit of adjunction is a composition of:
F̄ εcḠ : F̄FGḠc −→ F̄ Ḡc with ε̄c : F̄ Ḡc −→ 1c
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We have retained the symbol • indicating vertical composition [12] as distinct
from horizontal composition indicated by the symbol ◦ which is normally as
here omitted altogether.

5. < ¯̄FF̄ , Ḡ ¯̄G, Ḡ¯̄ηbF̄ • η̄b, ¯̄εd • ¯̄F ε̄d
¯̄G >: B −→ D

Ḡ¯̄ηbF̄ • η̄b is the unit of adjunction 1b −→ Ḡ ¯̄G ¯̄FF̄B and ¯̄εd • ¯̄F ε̄d
¯̄G is the counit

of adjunction ¯̄FF̄ Ḡ ¯̄Gd −→ 1d

The unit of adjunction is a composition of:
η̄b : 1b −→ ḠF̄ b with Ḡ¯̄ηbF̄ : ḠF̄ b −→ Ḡ ¯̄G ¯̄FF̄ b

The counit of adjunction is a composition of:
¯̄F ε̄d

¯̄G : ¯̄FF̄ Ḡ ¯̄Gd −→ ¯̄F ¯̄Gd with ¯̄εd : ¯̄F ¯̄Gd −→ 1d.

6. < ¯̄FF̄F,GḠ ¯̄G,GḠ¯̄ηaF̄F •Gη̄aF • ηa, ¯̄εd • ¯̄F ε̄d
¯̄G • ¯̄FF̄ εdḠ

¯̄G >: A −→ D

The unit of adjunction is a composition of:
ηa : 1a −→ GFa with Gη̄aF : GFa −→ GḠF̄Fa with GḠ¯̄ηaF̄F : GḠF̄Fa −→
GḠ ¯̄G ¯̄FF̄Fa

The counit of adjunction is a composition of:
¯̄FF̄ εdḠ

¯̄G : ¯̄FF̄FGḠ ¯̄Gd −→ ¯̄FF̄ Ḡ ¯̄Gd with ¯̄F ε̄d
¯̄G : ¯̄FF̄ Ḡ ¯̄Gd −→ ¯̄F ¯̄Gd with

¯̄εd : ¯̄F ¯̄Gd −→ 1d

6 Results from Composed Adjunctions

The advantage in deriving compositions is that we have the ability to represent the
mappings in either abstract or detailed form [21]. The overall composition gives a
simple representation for conceptual purposes; the individual mappings enable the
transformations to be followed in detail at each stage and provide a route for imple-
mentation. The uniqueness of the components means that a right adjunction can be
resolved where there is a component missing. That is the weak anticipation between
level pairs provides a determinism but only in one direction.

If a further level E is added to Figure 5 with the adjoint
¯̄̄
F ¯̄FF̄F a GḠ ¯̄G

¯̄̄
G, cate-

gorically the five levels are equivalent to the four levels above because composition is
natural. The practical consequence is that a fifth level is equivalent to an alternative
fourth level. So there is ultimate closure at a fourth level. As already mentioned,
types are in the phase space of the Turing Machine. The halting problem trans-
forms to one of uncertainty and inconsistency. A higher-level is available to resolve
inconsistency and uncertainty at any lower level by natural transformation. So while
there is weak anticipation across any level-pair with either of the left- or right-adjoint
functors, there is locally strong anticipation if both left and right are known. The
four-levels consist of a single anticipatory system with the same weak (left or right)
or strong (left and right adjointness). This theory suggests that the meta-meta level
gives ultimate closure. This level is present anywhere and therefore underpins both
non-local and pervasive computing.
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The ability to compose adjoints naturally [14] means that we can combine well together
such diverse features as policy, organization and data in a single arrow. Returning to
the IRDS representation, we can see the following adjunctions need to be investigated
in more detail:
Data a Name( ¯̄F a ¯̄G)
Org aMeta(F̄ a Ḡ)
Policy aMetaMeta(F a G)
Data ◦Org aMeta ◦Name( ¯̄F ◦ F̄ a Ḡ ◦ ¯̄G)
Org ◦ Policy aMetaMeta ◦Meta(F̄ ◦ F a G ◦ Ḡ)
Data ◦Org ◦ Policy aMetaMeta ◦Meta ◦Name( ¯̄F ◦ F̄ ◦ F a G ◦ Ḡ ◦ ¯̄G)

We can construct the 4-tuple to represent the composed adjunctions defined in Figure
2:
< DOP,AMN,AM ¯̄ηirddsOP • Aη̄irddsP • ηirdds, ¯̄εapp •Dε̄appN •DOεappMN >
where P is the functor Policy, O Org, D Data, A MetaMeta, M Meta and N Name.

If the conditions of this adjunction are met, we can represent the composed adjunction
Platform a Sys by the 4-tuple < Platform, Sys, ηirdds, εapp >: IRDDS −→ APP
where Platform = DOP , Sys = AMN , ηirdds is the unit of adjunction and εapp is
the counit of adjunction.

This adjunction can be evaluated for each application giving a collection of 4-tuples.
Comparison of these 4-tuples then gives the mechanism for computational type clo-
sure.

7 The Construction of the Grid

To produce finite results, the Grid must have closure which the universal construc-
tions of category theory show to be natural transformations arising from the adjoint
relationship between categories. These categories can be processors or connections on
the Grid, that is objects or arrows. The overall adjointness at the level of the system
as a whole is constructed as it arises and cannot be determined by any proactive
planning at such a high level although the individual components can be efficiently
organised from a local perspective. This overall adjointness is a four-level structure
that can be resolved into the composition of its constituent lower-level adjoints. Table
1 shows the levels involved in the Grid and their interpretation.

Table 1: Interpretation of Levels in the Grid

Level Intension Extension
1 Grid Policy Program Purpose
2 Grid Organisation Program Standard
3 Grid Implementation Program Specification
4 Grid Operation Program Execution
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Like any system the Grid will have contravariant functors between its intension (rather
like a global database schema) and the extension of the programs operating across
it. The sufficiency of middleware tools for the Grid can be anticipated by reference
to the four-level architecture. Many tools ultimately rely on a markup language such
as XML or HTML. In the eXtensible Markup Language (XML), the following basic
constructions exist [22, 23]:

1. data enhanced with the XML markup tags.

2. XML document, data marked up with XML tags (a subcategory of HTML) for
identifying document semantics.

3. DTD (Document Type Definition) defining the XML document, structures, rules
and elements; used to define the tags in an XML document.

4. schema, an alternative to DTD, enabling elements (objects), properties and
relationships between elements to be defined.

5. RDF (Resource Description Framework) [19], integrating a variety of web-based
metadata activities, providing machine-readable interoperability; resources can
be bags, sequences or alternatives.

In terms of our four-level architecture, the data is the category APP, the docu-
ment is the mapping Data : IRD −→ APP, the DTD or Schema is the mapping
Org : IRDD −→ IRD and RDF is a mapping from (Data ◦ Org : IRDD −→
IRD −→ APP) to another (Data ◦ Org : IRDD −→ IRD −→ APP)′. This map-
ping appears to omit the top level of IRDS, that is IRDDS, suggesting that only
local interoperability can be achieved. This assignment is summarised in Table 2.

Table 2: Interpretation of Levels for XML on the Grid

XML feature function 4-level assignment
Data data APP
Document marked-up data Data : IRD −→ APP
DTD or schema definition of document (objects, proper-

ties, relationships, rules)
Org : IRDD −→ IRD

RDF Resource Description Framework inte-
grating schema

mapping from one (Data ◦
Org) to another (Data ◦
Org)′

8 Conclusions

Information as a utility available on demand like electricity, gas and water will be a
’pipe-dream’ unless it is constructed to account for the complexity shown up by the
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theory. There is a vision of the Grid as a world-wide virtual laboratory to process
petabyte quantities of heterogeneous data projected to pour from particle-physics
experiments like CERN’s new large Hadron Collider; genomics, bioinformatic and
health applications; vast collaborative engineering projects for next generation aircraft
and space stations at orders of magnitude even up to geophysical scales; and real-time
control of robotic telescopes for real observers distributed across the globe. However,
the structure of the Grid has to be understood for successful interoperability for the
processing and management of this knowledge corpus.

The application to the Grid of the categorical representation of the four-level archi-
tecture as found in IRDS shows that the top level of the abstraction is apparently
missing in the current three-level proposals. Only local interoperability would be
achieved with such a limitation. The same is true for the use of middleware tools in
XML in its present limited version.

The underlying philosophy of the constructive version of category theory is that the
structure of the Grid as outlined here is not just a potential scenario but is the
limit of all possible systems up to natural isomorphism realisable in the cartesian
closed category of the real-world where we live. Within this limit there is scope for
much further development in the form of implementation of the Grid. For instance
its internal logic will be intuitionistic with a Heyting lattice-like structure. For as
mentioned earlier it is a topos both within the extensional and between the intensional
and extensional of Table 1. It is possible to traverse vertical and horizontal potential
paths which must be composable in what is sometimes referred to as 2-categories
[12, 14]. These are important not only for more technical aspects but the e-business
and commercial operation of the Grid and for its management and legal regulation.
These are not just add-ons but need to be fully integrated and anticipated from the
beginning in letter and in spirit of an immense anticipatory system.
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