

TECHNICAL REPORT SERIES

No. 297 November, 1989

Toward the Object-Oriented Textbase

B.N. Rossiter and M.A. Heather

Abstract

Text is an important component in most types of information systems.
Between “free text” methods with no regard. to content and fully
intelligent natural language processing lies a range of computational
methods for handling the structure of text. These rely on semantic data
typing and constructing machine models of document architectures and
draw on database technology and the object-oriented approach. The
object-oriented textbase aims to provide a best possible computer
representation of the unreduced information communicated and stored in
the medium of text.

Series Editor: M.J. Elphick

© 1989 University of Newcastle upon Tyne.

Printed and published by the University of Newcastle upon Tyne,
Computing Laboratory, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7TRU, England.

'Biblio.graphical details

ROSSITER, Brian Nicholas

Towards the object-oriented textbase. [By] B.N. Rossiter and M.A.
Heater

Newcastle upon Tyne: University of Newcastle upon Tyne: Computing
Laboratory, 1989.

(University of Newcastle upon Tyne, Computing Laboratory,
Technical Report Series, no. 297)

Added entries

UNIVERSITY OF NEWCASTLE UPON TYNE.
Computing Laboratory. Technical Report Series. 297

HEATHER, Michael A.

Abstract

Text is an important component in most types of information systems. Between “free
text” methods with no regard to content and fully intelligent natural language
processing lies a range of computational methods for handling the structure of text.
These rely on semantic data typing and constructing machine models of document
architectures and draw on database technology and the object-oriented approach. The
object-oriented textbase aims to provide a best possible computer representation of the
unreduced information communicated and stored in the medium of text.

About the author

B.N. Rossiter is a lecturer in the Computing Laboratory in databases and systems
analysis.

M.A. Heather is senior lecturer in law at Newcastle Polytechnic where he has been
responsible for computers and law since 1979.

Suggested keywords

COMPLEX OBJECTS

DATABASE SYSTEMS
OBJECT-ORIENTED DATABASES
RELATIONAL MODELS
SEMANTIC MODELS

TEXT MANAGEMENT

Suggested classmarks (primary classmark underlined)
Dewey (18th): 001.6442 348.02 029.7
Uip.C 681.322.06 340.13 651.838.8

Towards the Object-Oriented Textbase

B N Rossiter M A Heather
Computing Laboratory Sutherland Building
Newcastle University Newcastle Polytechnic
Newcastle upon Tyne Newcastle upon Tyne
England NE1 7RU England NE1 8ST

email: B.N.Rossiter@newcastle.ac.uk

1: Abstract

Text is an important component in most types of information systems. Be-
tween ”free text” methods with no regard to content and fully intelligent natu-
ral language processing lies a range of computational methods for handling the
structure of text. These rely on semantic data typing and constructing machine
models of document architectures and draw on database technology and the
object-oriented approach. The object-oriented textbase aims to provide a best
possible computer representation of the unreduced information communicated
and stored in the medium of text.

2: Introduction

Little attention has been paid to text as structured data. Much of admin-
istrative data is in the form of textual strings but these tend to be treated as
atomic entities independent of any relationship between words. Text retrieval
packages and hypertext systems are built on physical divisions in documents
and the physical position of words and can make use of features like inversion,
position operators and physical connections. There is little regard for the log-
ical structure that lies beneath the physical form. A need for more advanced
file handling techniques has been brought about by the large quantities of elec-
tronic text which are being generated in full text information systems, electronic
publishing, e-mail, office automation, bulletin boards and conferencing.

Advanced filing techniques as found in database systems can be applied to
a wide class of data but current database technology has been developed for
the simple data objects found in the narrow category of administrative data.
There is a broad class of other data, sometimes called general data, that cannot
be readily normalized even though it may contain a high degree of structure.
Recently, it has been recognized by various writers that database technology
needs to be extended from its present emphasis on simple objects for it to deal
with general data involving complex objects such as text itself [Stonebraker,
Anton, & Hanson 1987], [Heather & Rossiter 1989a], CAD/CAM [Lorie et al
1985], [Kemper & Lockemann 1987], CASE [Earl et al 1986] and knowledge
bases [Zaniolo et al 1986]. In designing a model to manipulate general data more
effectively, it is important to observe the principles of software engineering. If
there is a natural structure of information applicable to all types of general data,
an effective model should allow for the design of a single integrated database for
storage and manipulation of all data. Furthermore a test of a model is not just
its formal completeness but how natural it is in modelling the real world and
how successful it is in preserving real-world data without losing information.

As a first step to formulating a full data model for text, the demands made
by textual applications on the technology of filing systems are reviewed here by
drawing on applications at Newcastle and elsewhere.

3: Demands of Textual Applications on Filing Systems

The first major database application at Newcastle to manipulate full text
was in the legal area. Law in its various forms of statutes, cases and litigation
exhibits two major features of full text data - volume and complexity. The
volume of statute law currently in force is of the order of 300Mb for England &
Wales alone. In America and Europe, large bodies of statute law are also found
so that the law merits international attention. Case reports are a valuable source
of precedents in many countries and these are produced in printed form by a

2
number of publishers.

Figure 1 shows an extract from the case report of Wings Ltd v. Ellis where
there was a straightforward issue of whether an incorrect description in a travel
brochure constituted a criminal offence. This case illustrates the kind of infor-
mation that is relevant to this question and the various other legal sources that
may have to be consulted in resolving it. In order to represent readily its com-
plex structure, the case report employs an elaborate presentation of text with
diverse formats and multiple character sets and sizes. To capture adequately the
detailed structure, sophisticated modelling techniques are required and these will
be explored later. This figure also shows the place for database techniques in
electronic publishing and typography. The printed version presents a fixed view
of the structure which has to be accepted by all readers although different orga-
nizations of the text data are appropriate for different users. The way to exploit
the power of computers for logical re-organization is by holding the complete
structure of each statute and case in database records. Then, for example, the
display format can be readily changed to meet new circumstances: presentation
of output to the human eye requires quite different forms from operation in a
machine-machine mode, where the output is directly into a word-processor or
mark-up language, or where one machine interrogates another for information
[Connolly 1985].

Users of a law database require selective retrieval of information. Where this
can be performed using relatively non-procedural languages, such as relational
calculus (e.g. with SQL) or relational algebra, the user may state what is wanted
and let the system decide for itself how the request should be met. Thus, very
high-level languages should be available which are relatively easy to learn and
apply by users with no special training in computing skills. Alternatively an
additional 'user-friendly’ interface perhaps employing near-natural language and
statistical techniques to resolve ambiguities can be built upon high-level query
languages [Newton 1981] to provide simple access to users with no training.

Searches will be made typically for words, word stems and phrases contained
within the text. With searches for the co-occurrence of two or more words,
context is important: words matched may be required to co-occur within a given
physical /logical unit of text such as a paragraph. Physical distances between
words may also be used as search criteria so that one word may be required to be
within a certain proximity of another. Facilities provided by current information
retrieval systems may facilitate the user’s task in optimizing his search request.
Thus the maintenance of temporary result stacks and an iterative searching
capability are essential components of the user interface.

In full-text retrieval, an area of long standing controversy [Salton 1986] is
the relative performance of systems employing manual and automatic indexing
methods. In the former, keywords are added to documents as tags for retrieval;
in the latter, the words of natural language occurring in the text are used as

Figure 1

Extract from Case Report ”Wings Ltd v. Ellis”

Types of Text are indicated as follows:

unmarked

enclosed in angular
brackets

underlined with
solid line

underlined with
broken line

whole-text
short-text

force-text

loose-text

€L

-~

S

P13 9L W TNV 1 [ewel] 1y 0T M T [vmel] uoisimg
YouIg 5,u3N]Y Yl Jo WNO) [euOIAIG) JO uoIsSLIQ
. . e I “(>-e867
‘1-0967 ‘4067 ‘4-agy7 ‘dd “1sod) uoswos o) paredwnwwos
SE L udym w96l JO BV Yl Jo pi uondIs o sasodind ayy
10j 2pEW AJUO $1IUdWANEIS B JBY) sased [je 0) dqeddde me| jo
uousodosd jesaudd e se Jpap 01 suodind u se e} 05 UL daey
PapLAp kj23wiod sem 7o¢ 'O [pLel) Pr7 sdvpioy uoswoy
A "82) "40014¥e() JO UOPUEIQ PIOT] PUE UBWIIEIS PioT] ‘yuny
JO YiaY pao] D] AuogIhiEW IS Jo weysjieH pio] 134
(Y10t ‘200t ‘dd 1s0d) passons ues ayeisiw
JO 32UYIP ' 210j3¢ p7 UONII Ul PIYdADS sAdUBISWNIND y)
3aoid pue peajd jsnw pasndde ay| “aaneun 1 241 Ul paiamsue
4 pinoys uonusanb payad ayy uewddway pioy 1o
‘(o-aygez "d “1s0d)
ueunedg p1o] 4q pasodosd Jauuew Y1 Ul pa1amsue 3q piROYS 1t
‘Spuels)t se pasamsue 39 ued uonsanb payniad ayl 1eys 3unooy
g uQ (1) (4-3g6z 'd 1sod) | 'saA.. Idws ' yum pasamsue
3q pinoys 1 ‘Aem Byl Ul PIpuUdWE Sy _'Iew O} PINUNUOD
J2Yye21oY) sey ay Iwn IIe| AwOs e Asie) S JO mouy
0} W0 UlABY YOIYm 1ng "1t PR ISIY Y UIYm IS|B) SEM mouY
00U PIP Y Yoiym ‘judwdgers [y Fununuod B dpew sey ay
udym g961 1Py suondudssag apes sy jo (p)(1)p] uondas 1apun
U0 UE JO PADNIAU0D 3G Apiadosd Aew juepudjap e 1aiaym..
1SMO[|0] Se papuawe 3 pinoys pue passaidxa Apdsur sem
uonsanb payiuad ayj (1) "yovigyeQ Jo uopuelg P10 dig
(3~ap6z d “1s0d) Jueurejdwod sy £q 113331 51;
01 10ud Juepuajap Y £q pasuoyine pue papuaiul s3uInbasuvd
Jo ureyd> ay) jo ped sem Juewejdwod 3y Aq Suipeas ayp ey
papiaosd pue 10y Yl JO p7 UCHDIIS IIPUN IDUDJIP |NYSSIOINS
B pasies sey juepu3ajap 3y ssajun “sap , dules Aq uonedyienb
B Witm NG JANEULIYIE Dyl Ul pIIImSUE 2Q pInoys uonsanb
P3Yhia0 34| "D uoqalAiely IS JO weysjiey pio] 4id
- N) N s ‘paidde
VD ‘tes @0 [viel] pr7 sdopyoy uoswoy] “adoy
(94867 "0-2067 *3067 4187 dd 1s0d) os op jou
PIP 11 InQ *s30u3j3p A10)INIE)S Y} 13pun Jjne} Jo yde| a0id 0} N
0) uado sem 31 *)|NEJ JO JUDOULI SEM)1 JBY) PA1aPIsuod Auedwod
Yl J1 1Byl ‘uead)ais sem paysyqnd sem It udym Judwaers
Y jo Ausie) ay) Jo semeun sem Auedwod 241 jeyy 1de) Iy
PUE PIUOHIPUOD JIE SEM UONEPOWIWONE [210Y Yl IBY) e
0} s[e) sem 11 mIuy udyl Auedwod Yl 23NEIN UOISEIIO jey)
UO PABWWOD SEm DUDHO Y1 JBYl 'JUIWIEIS Y1 JO SISEY IY)
uodn Auedwod 3yi yim ssauisng Juop dqad 3y Jo 1aqudw
pa1sa131ut ue “jueuiejdwod 3yl £Q peas sem Jt udym ssauisng
Sit JO 351m03 3yi ur Auedwod Yy Aq pew sem Isje) Sem YIym
wawels e (§ooiqie() JO uopuelg PIOT puE uBULIEIS PO
‘|UD Jo qua) pio] 22d) duls gyel Jo PV 3y Jo (B)1)vl
UONDIS JIpUn U0 ur FuNIWWED Jo pIdIAucd Apydu uaaq
pey Auedwoo juepudjap ayi ey ‘|eadde sy Sumoye ‘plagy
—:|eadds 5 J0n3es0ud ay) uQ
Jueutgjdwod
oYy Aq pear sem JUSWIEIS Yl UIYm W Y I8 Ause)
3y Jo mauy Ing uonedqRd Y1 JO W Y 1B JUAWAEIS Y jO
Ausjey ayi jo adpagmouy ou sey Iy uaym gosl PV suonduxag
spei] oy o (P){T)pl UONDIIS I2PUN DUIMO UR JO PIIINAUCD
3q A1adoud Aew Juepuajap B 1ay1aym payIIad sem me| Jo Juiod
3umo]10} 3y pue Y Y Jo (2)(1)p] UONIIS 1IPUN UOHDIAUCD

(I TH) AU “s P shum

V1

i

||

L

a|

1
<|

VEBTOZET I 3v i1yl S gNol DY sl ey

g jo Juwysenb ayi Jo padsar wi pajeadde soindesosd g
"SUONMAUCD) paysenb pus [sadde
Y1 pamoje uoISIAl] Youdg sudnd) Y JO UNOD [BUOISIAL]
3y Auedwoo ayy 4q [eadde uQ 896l Jo PV 3y Jo (M)l
uondIs 0) AJENUOCY PIUCHIPUCY B I3 SWOOCIPAQ [0y
Y} 1Byl UONEJIPUI UR SEB UINE) 3q O A[IN1| SBM YMym ‘NY0q
2y) w ydeidojoyd ayy £joweu 12104 W) 1B UOHEPOWILIODE)
JO 1mEU 3Y) 0] SE Is|E] SUM YJIYm JUIWINRIS B Ipew A|ss313I21
A3y 1eys pue :gy6] PV suondusag apeiy g jo (m)(eX1)ri
UONDIS 0} AIRNIUOD *UNY201q Y} Ul |20y Y) JO uondulsap Yy
ul D'V, USWIRIS Yl APWeU ‘[2104 241 1B UCHEPOWILICIOE
Yl JO uUNJRU Y] O} SB I5[8) 3q O} MUY AY) YMYm JUAUEIS
E Jpew A3y) ‘ssaursng 10 PRI} B JO IMNOO AP W ‘7R
Krenuer ¢ uo 1eys Juida)je 130yjo spaepuws Juipen g Lq way
isutede pawajasd suoneuuojut uo susnl £q paPALCO sBAM
Auedwod Y] "2inYd01q Y1 Ul PIGUIEIP SE PILOUIPUCD JIE 10U
SEM 2104 241 1By} 10Yj0 spiepusis Supen) ® 0) pus Ausdwoo
3y 03 pautejdwod Yy ‘BYUEF] UG WO WNIA SIY UD "ANYI0
Yl Ul SI0MI Y JO PO} JIAIU sem ‘Juale [2asn Y yInoan
paeucd 3q Ajuo pinod oym ‘jusuiejdwod Y| ‘siuade [aamn
ydnosy) Auedwod 3yl yuam 310y 2 1w Keploy ® payooq pue
any>o1q papudweun uw peas jueureidwod Yyl ‘786l Asenuef
€1 uQ "33 Aq YEISIW Y} JO PIULIOJUI OS[R A [0Y A 1
shepijoy pa30oq Apeasje pey oym siawoisn)) “auoydajal Lq Iprwr
319m sBuiyooq Aepijoy udym 510113 3y} JO RI2WOISND pur sluade
[9ae1) uuojul 0} sjuade sajes FundnsSUl pUR SUNYIOIQ 1Y)
puswe 0} wayl Junonnsut yeis Auedwod jjB 01 Jus sEm ‘861
aunf | palep ‘wnpuwiowsdw Yy ‘suade jaaen o1 painquisip
U23q pey SAUNYI0Iq Y41 Ie [g6] AR [IUN PIIIACISIP 10U
219m SIOLI2 Y] 'PAUONIPUOD IIE SEM WOOS Y] IBY PABIPUI
‘siau ounbsow 10 sue} Fuiao PEIYIIA0 SB YONS ULOLE|LUMA
apisino Aue jo sudis ou 2aed) se iE) Os i ‘Yoym |2
1 18 woos € jo leyl 2q 01 Juiuodind AjBucim ydeido;
® pue . D°V. SI2U3] 3ped 3yl jo 0 Lq pauonipucd e se
eYUET US Ul [210Y B PaqUISIP £|Is]e) uNnyd0iq) ‘vonediiqned
jo swm g e Auedwod Y uIyim uUOAUE O] WmOuYU()
“uoNEpPOWWOIR [10Y jo sydesdoioyd pue suondursap pauieiucd
Yoiym unydoiq [Paen e paysiqnd ‘ssoiesado 1ol Kepijoy
SB SSUISNQ 1124) JO un0d 1 ur ‘Ausdwoo JuBpuP YL

-_ E::D.MR&.ctsa%iuch
2pos] —udwios aspof Suryouws ASuimouy Aupdiuo>” Lyym
—40442 [0 saawopsmd wisoul o) suoudnisul yiim sius¥o puo Jjois
sapps Sunuiofur Aupduio)—ioils Jo Kianodnq—ainyd04q |IADiy

ul suowapis_aspp] Surysiignd A Sunjmun Auoduo)—sadiaids

pup 5211100,
uswajdwa L P10 PUE JOOIQYE(Q JO UopuRig

UOUDPOWIWIOIS Y —SqUITD [aD) [—uORdIISH] Iped]

Pi0T “uRULIEDS PIOT "YU JO YIIRY Pi0T] YA =)

7T WOQIHKIEN 1§ JO WeyS|IH pio] ‘9z ‘sz aua[a6l

g |W—N—'|.—ml
anv’

g uEl |wo2—§mn

[sauo1 30 asnow]
Isee1l

ut

Wings Ltd. v. Ellis (H.L.(E.)) 11985)
The following cases are referred to in their Lordships’ opinions: T A
Coupe v. Guyen [1973] 1 W.L.R. 669; [1973] 2 All E.R. 1058, D.C. =
Gammon :{e:.. Kong) Lid. v. Attorney-General of Hong Kon
1 [1984] 3 W.L.R_437, T1984] 7 Al E.R_ 503, P.C.
Jackson v. Horizon Holidays Lid. [1975] 1 W.LR. 1468, [1975] 3 All E.R.
92, C.A.
Jarvis v. Swans Tours Lid. [1973] Q.B. 233; [1972] 3 W.L.R. 954; [1973] 1
ATER.TT, CA. : B
M.F.I. Warehouses Lid. v. Nattrass [1973] 1 W.L.R. 307; [1973] 1 Al ER. ——
762, D.C.
Mousell Brothers Lid. v. London and North-Wesiern Railway Co. [1917] 2
K.B. 836, D.C.
Reg. v. Miller [1983] 2 A.C. 161; [1983] 2 W.L.R. 539: [1983] 1 All E.R.
978, H.L.(E.

Reg. v. Thomson Holidays Lid. [1974] Q.B. 592; [1974] 2 W.L.R. 371; C
[I97[1TATER. 8253, CA. -

€g. v. Treacy [1971] A.C. 537; L. ; [1970] 3 All E.R.
205, C.A.; [1971 2 [1971] 2 W.L.R. 112; [1971] 1 Al E.R.

o [1970] 1 W.L.R. 1037; [1970] 2 All E.R. 410, ,_M{
Sweet v Parsley [1970} A.C. 132: [1969] 2 W.L.R. 470; [1969] 1 All E.R.

347, HL(E) .
Tesco Supermarkets Lid. v. Naturass [1972] A.C. 153; [1971) 2 W.L.R. 1166;

197112 ATER 127, HL(E))

. m

The following additional cases were cited in argument:
Birkenhead and District Co-operative Sociery Lid. v. Roberts [1970] 1

W.LR 197, [90[3 ATER ®T, D.C. -
Britsh Airways Board v. Taylor [1976] 1 W.L.R. 13; [1976] 1 All E.R. 65,
Coppen v. Moore (No. 2) [1898] 2 Q.B. 306. D.C.
Derry v._Peek (1889) 14 App.Cas 337, H.L.(E.) F

mmussioner [1969] 1 Q.B. 439:

Fagan v. Metropolitan Police Co
LR ; . 442, D.

A APPEAL from the Divisional Court of the Queen's Bench Division. d
This was an appeal, by leave of the House of Lords (Lord Diplock,
Lord Brandon of Qakbrook and Lord Tem leman) given on 1 March G
1984, by the appellant, David Kenneth Ellis, the prosecutor, from the =~
judgment dated 2 December 1983 of the Divisional Court of the Queen’s
Bench Division (Robert Goff L.J. and Mann J.) allowing an appeal by
the respondents, Wings Lid., quashing their convictions of two offences
under section 14 of the Trade Descriptions Act 1968 by justices at
Plymouth Magistrates” Court on 17 January 1983. The appeal related to
the m.az. of two offences of contravening section 14 of the Trade
Descriptions Act 1968, namely, the conviction under section 14(1)(a) of
the Act. The Divisional Court certified that the following point of law of
general public importance was involved in their decision, namely:

Iz

275
1A.C. Wings Lid. v. Ellis (H.L.(E.))
“Whether a defendant may properly be convicted of an offence
under section 14(1)(a) of the Trade Descriptions Act 1968 where he
has no knowledge of the falsity of the statement at the time of its
publication but knew of the falsity at the time when the statement
was read by the complainant.™

The facts are stated in their Lordships’ opinions.

Anthony Scrivener Q.C. and Nicholas Nardecchia for the appellant.
The appeal raises two issues relating to the true construction of section
14(1)(a) of the Trade Descriptions Act 1968. They relate respectively to

(T) the expression “to make a statement,” and (2) the words that
immediately follow, “which he knows to be false.” So far as making a
statement is concerned, it was thought by prosecutors throughout the
country that the meaning of this expression was well established by Reg.
v. Thomson Holidays Ltd. [1974] Q.B. 592 as meaning that a statement

was made for the purposes of section 14(1) when it was communicated
10 a customer or consumer and not at the time of publication. As
regards the second question, there have been problems. The proper
approach to this question is by way of the doctrine of vicarious liability.

Reliance is placed on the following propositions: (1) The offence in
section 14(1)(a) of the Trade Descriptions Act 1968 is a “conduct”
offence and not a “result™ offence and @ sfatement is made when it is
communicated t0 someone in the course of a trade or business.
Accordingly, the respondents made the false statements on 13 January
1982 when their servants or agents communicated them to the
complainant.

(2) The respondents knew that the statements were false because: (a)
the wording of section 14(1)(a) of the Act provides: (i) “. . . which he
knows to be false™ and does not provide “knowingly to make a statement
. ..". It follows that only knowledge of the falsity of the statement is
required, and (ii) the subsection relates to knowledge of a fact and not
to an intent. (b) The justices found as a fact, and were entitled to find,
that the respondents knew that the statements were false. In particular,
the respondents had tried to correct the falsity of such statements prior
to 13 January 1982 which showed such knowledge. Alternatively, (c) at
the time when the statements were made the respondents’ servants or
agents knew that they were false and the respondents are vicariously
liable for the conduct of their servants or agents acting in the course of
their employment. In the further alternative, (d) if the offence is a
“result™ offence then between the publication and when the statements
were communicated to the complainant it was proved that the respondents
knew that the statements were false or that the respondents’ servants or
agents, to whom the respondents were vicariously liable, knew that the
statements were false, or it is a continuing offence.

(3) On the facts the respondents were entitled to seek to establish
the defences in section 24 of the Act, but did not attempt to do so. In
particular, (a) if the commission of the offence was due to the mistake of
a “director, manager, secretary or other similar officer” of the
respondents, then the respondents could have sought to prove the
defence in section 24(1)(a) and (b), or (b) if the commission of the

6

the tags. Manual systems are further sub-divided into those where the choice of
keywords is tightly controlled by a thesaurus and those where the indexer has
a free choice of terminology. The free index approach is usually enhanced by
the use of stop lists which prevent common words being used as index entries.
A secondary commercial source of information such as the INSPEC abstracts
electronically published by the IEE includes both free and controlled keywords
as well as full text. All these need to be handled by soine generalized system.

3.1 Cross-referencing

Some parts of the legal text in Figure 1 make reference to other texts in the
same or different documents. Thus, in paragraph C on page 273, subsequent
paragraphs of the same case are cited in the manner:

(post, pp. 281F, 290E, 297C-D, 298F-G)

In addition to these intra-case citations, there are inter-case citations as
“itemized on page 274 which have been divided by the author of the case report
into two categories: those referred to by the Lord Justices in their opinion, for
example:

Coupe v. Guyett [1973) 1 W.L.R. 669; [1973] 2 All E.R. 1058, D.C.

and those used by the respondent and appellant in their arguments, but not
referred to in the judgments, for example:

Coppen v. Moore (No. 2) [1898] 2 Q.B. 306, D.C.

There are also citations to other types of legal document. Paragraph G on
page 272 cites the statutory text contained in the Trade Descriptions Act, 1968.
Interestingly the citation takes two forms, a relatively informal presentation
within the text:

section 14(1)(a)(ii) of the Trade Descriptions Act 1968

and the more standardised form in a footnote to the long headnote of the
case:

Trade Descriptions Act 1968 s. 14(1).

The texts cited above may, in turn, cite other texts in a recursive manner and
the searcher can follow conceptual paths through the law before returning in his
dialogue to an earlier position. This navigation can be considered as a form of
hypertext and is greatly assisted by symbolic identification of units of the text.

¢

With symbolic keys, each unit of text is identified uniquely by its position in the
framework of legal sources which enables the searcher either to display directly
text by entering its symbolic identifier or to refer to it from another text by
asking the system to resolve a reference displayed on the screen. With a physical
method for identifying units of text such as buttons or pointers, the binding
between one text and another is early, the order of loading of texts is critical
and permissable data volumes are low (10-20Mb) because of the difficulties of
authorship. With the logical method of symbolic keys, binding is late, texts
may be loaded in any order, there is no limit on data volumes and referential
transparency can be readily achieved. The difference should be noted between
symbolic keys and the labels provided by many systems to names units of text:
the absence of primary rules controlling label values prevents the construction
of integrated cross-referenced texts.

An outstanding example of the demand for referential transparency is found
in dictionaries and encylopaediae. These works of reference do not themselves
usually provide the full text of the primary source but may often refer to full
text documents to be found elsewhere. If a question arises on the meaning of a
legal term as part of a legal problem that a lawyer is engaged on for a client, the
lawyer might turn to Osborne’s specialist dictionary [Heather & Rossiter 1988]
for law as a starting point but a single dictionary entry would rarely provide a
final answer. Cross-references to other entries in Osborne require the reader to
turn to these. An electronic dictionary should be able to have these ready for
display or even have them all concurrently displayed. However, Osborne also
refers to external references such as statutes and cases. In an all-encompassing
integrated full text medium such as the 'docuverse’ envisaged by Nelson [Nelson
1988], these references should also be automatically retrieved without the user
having to initiate fresh searches.

Other dictionaries present similar opportunities and problems. Thus the
Oxford English Dictionary contains references both to other dictionary entries
and to other sources in which examples of usage are cited. Raymond and Tompa
show the problems with addressing a variety of external sources in a hypertext
environment [Raymond & Tompa 1988], many of which would be at least par-
tially solved by the use of symbolic keys in a database approach.

3.2 Human Factors

The requirement for symbolic keys extends the searching requirements men-
tioned earlier. The symbolic key comprises a polynomial whose simplest repre-
sentation on the machine is a series of formatted fields holding integers. Any
representation is possible but most database implementations operate with a di-
rect mapping from primary keys to some internal quasi-physical address within
the system. Manual systems use alphanumeric keys. For instance a section in
UK statutes is usually referred to by the name of the act, a year and the number
of the section as in the earlier reference to section 14 (subsection 1) of the Trade

8
Descriptions Act of 1968:

Trade Descriptions Act 1968 s. 14(1).

However, the years relate to sessions of parliament which cross calendar years
and before 1963, these were also expressed in terms of alphanumeric regnal years
as for example:

Housing (Financial Provisions) Act 1958, 6 & 7 Elizabeth II.

Earlier acts make citations only using regnal years. Thus the Disabilities
Repeal Act (c. 43) 15 & 16 Victoria has the following preamble stating the
intention to repeal earlier legislation in the regnal years 1 George I (1714-5) and
6 George III (1765-6):

"An act to repeal certain disabilities under the First of George the First,
Chapter Thirteen and the Sixth of George the Third, Chapter Fifty-three.”

This situation illustrates the transitional problems in moving from old forms
of representation to new. Information already in existence cannot arbitrarily
be changed retroactively to bring it into line with some present-day standard.
Even where in principle it is possible to convert to some universally acceptable
form such as calendar dates, there are many situations where there is no natural
transformation to a numeric form as with legal cases which are referred to by the
names of the parties. For practical efficiency, the terms in a polynomial symbolic
key need to be alphanumeric and not just integers. The Queen’s printer, HMSO,
in parallel with their printed version also prepare data tapes and to correspond
with the manual identifier 1925 ¢.26 employ a form including an unprintable
character:

1925¢c. < ESC — D > 26

It is possible to use this form as a symbolic polynomial [Heather & Rossiter
1987a] but it has been found that while the manual format was appropriate
for human processing without machines, it was not necessarily appropriate for
human processing with the machine. The polynomial symbolic key used in our
work is shown in Figure 2. This gives the features necessary to identify uniquely
each unit of text and to order the units as in the printed version. Further, as will
be discussed later, addressing component values of the key provides the basis
for data manipulation operators such as aggregation.

3.2. 1 Cognitive Textual Types

The underlying objective in the use of text is ease of human expression
and communication. But for a machine, ease of expression and communication
involves quite different features from words to be found in text, rather words

Figure 2. Polynomial Symbolic Key for Legal Text

| SI | year | chapter | header | part no.| part no.|
| I | mno. | | start | High | wescowe

| schedule | schedule | subschedule | subschedule |

| no.start | no.high | no.start | no.high o
| section or para- | section or para- | subsection or sub- |
| graph no.start | graph no.high | paragraph no. |

which are sets of atomic data that can be manipulated by logical operations.
For humans, text expresses natural language and conveys meaning and under-
standing. Much of the cognitive value of text that enables the human mind to
process its semantic and pragmatic contents is provided in complex structures
and relationships between words.

Natural language syntax, the third structural domain recognized in basic
linguistic theory, is treated intuitively and usually unconsciously by humans but
is always implicitly present even in the most simple of expressions. Syntax is
much more amenable to computational methods and it is sensible to exploit this
to the full by making explicit in every way possible all syntactical relationships
in text. Mathematical models, like predicate logic [Sparck-Jones & Wilks 1985]
can assist with parsing but may give rise to problems of normalization and loss
of information in automated processing. Very important are the computational
tools of data modelling and abstract data typing. Indeed it seems that com-
puter models to analyse text structures are a preliminary requisite for the use
of the mathematical methods like predicate logic. For instance it is important
to anticipate the types of text in cognitive human terms.

The text in Figure 1 is classified into the four different categories of whole-
text, short-text, loose-text and force-text. Whole-text is unmarked, short-text
is enclosed in angular brackets, loose-text is underlined with a broken line and
force-text is underlined with a solid line. Whole-text is the ordinary full and
free expression of language and conforms to the accepted rules of such commu-
nication. Much of the text in Figure 1 is of this form as from paragraph D on

10

page 272 to paragraph C on page 273. Short-text is an abbreviated form of
whole-text in which the strict rules of grammar are relaxed: short-text usually
relies on knowledge common to the reader and writer for interpretation. The
terse information in paragraph H at the foot of page 273 and in paragraph G
on page 274 is of this type being incomplete grammatically but readily compre-
hensible to a lawyer. Loose-text consists of fragments of text in note form such
as headings, an example of which is the heading in paragraph A on page 272.

Force-text is text in which the writer is tightly controlled as to what may
be expressed. The need to distinguish between vocabulary that is either 'free’
or 'controlled’ was recognized in an earlier report [Heather & Rossiter 1987b).
A considerable number of the text entries in Figure 1 can be considered to be
of the type force-text:

e attributions of respondent or appellant (page 272, paragraph A),
e date of publication of case i.e. 1985 (272-A),

e where the case was heard i.e. House of Lords (272-A),

e dates on which the case was heard (272-B),

e the Lords of Appeal hearing the case (272-B),

o letters identifying sections within the case report A-H (272-A),

o the keywords and phrases assigned to the case (272-C),

e the footnote identifying the cited act (272-H),

o the title of the case (273-A),

o standard words of attribution to specific Lords (for example 273-G: "Per
Lord Templeman”),

e forward-pointers to subsequent parts of the case (for example 273-F: " post,
p.298F-G”),

o lists of other cases cited (274A-F).

An interesting hybrid form of text occurs where the whole- or short-text
contains passages which can also be viewed as force-text. Thus complete ref-
erences to statutes (272-G) and cases (273-H) are made in the main text. The
content of these references is logically constrained but the format is less formal
than usual. Some other references e.g. ”section 24 of the Act” in 275-H are
readily comprehensible to the human mind which can easily make the necessary
currency adjustments but are much more difficult for the machine to assimilate
antomatically. A passage within the whole- or short-text which cites other text
has only been considered to be force-text if it can be unambiguously resolved
by the machine without the assumption of currency indicators.

kil

The types of text described above can be regarded as true data types for they
represent different forms of text, each with its own set of operators for semantic
comprehension. Clearly the ease with which the machine could capture the
semantics of each type varies considerably. The meaning of force-text in its
use in symbolic identifiers, dates, and keywords can be deduced by programs
in one or two passes but that of whole-text requires extensive natural language
processing.

3.2. 2 Text in Human Behaviour

There are other demands made by text applications beyond the static forms
so far discussed. Whilst some bodies of text such as law are relatively static,
others such as News services involve very high volume of transient data with
constant additions of the most recent data, archiving of older data and in-place
modification of existing data. Although such updating poses many problems for
efficiency in use of disk space and CPU time, it presents few conceptual diffi-
culties. However, in other areas such as the electronic office, there are dynamic
structures to be considered which are of much greater significance for database
technology. Thus the flow of a letter through an office system can be repre-
sented by the data flow diagram shown in Figure 3 [Diamandis 1986]. Data flow
diagrams are made up of four basic elements:

e Data flows, represented by directed lines. The arrow represents the direction
of the data flow.

e Processes represented by circles.

e Storage of data irrespective of the kind of files in which it is stored. Thus,
stores of data could be either database files or ordinary files. They are
represented by open rectangles.

e Data sources and sinks, external entities acting as terminators of the global
process, represented by rectangles.

Thus, besides the simple in-place modification techniques traditionally used
in data processing, there is clearly also a need to control the behaviour of an
object through its life-cycle in the drafting process. Transaction processing in
the standard DBMS environment, in which units of work are defined that either
totally succeed or totally fail, can provide control over the life-cycle of an object.
However, even in relatively simple areas such as banking applications, there are
locking problems in complex transactions when concurrent access by a number
of users to records being modified is temporarily prevented. In the long life-
cycle of a report, locking problems would become severe with no ad hoc access
possible once the transaction had commenced and the complete back-out of all
work done if an error occurred at any point. Breaking the transaction up into a
series of smaller transactions would result in control over the whole process being
exercised at a much lower-level, for instance, algorithmically using a program

Figure 3.

Data Flow Diagram showing Behaviour of the Entity 'Letter’

revised Draft

Employee

f

Customer

A revise
Draft get
text content + compose preliminary Draft Names + Addresses, efc Reference
= = Reference
reference material orat / I data Directories
complete Letter Text of Draft + references
~J draft Letter
dispatch instructions
retriave complete Letter A
| S———————
Letter
L
Letter
, . preview —
electronic Letter transmit finad Lotter < Letter revised Letter
Letter :
+ email information
_ 9 draft Lotter o
printed Letter final Letter —
B Letter v
+ print instructions
saved Letter

12

13

written in a host langnage such as Pascal or C. A more modular method of
control in a robust declarative language is ideally required.

3.2. 3 Version Management and Views

With any text document but more particularly with ones which may take
many months or even years to complete, there is also the problem of version
management where different versions of the same text can be extant at a given
time. Clearly the status of a report with respect to modifications should be
available through the database system but this is not the whole problem : users
will need to revert to earlier editions of a document from time to time so temporal
aspects are also of vital importance in version management.

Version management also plays an integral part in the manipulation of par-
allel texts. The question immediately arises which version should be used as
the reference for all others. Because the electronic medium is essentially logi-
cally oriented rather than physically based, there is no necessity to select any
actual version as standard. It is possible to develop further the concept first
pioneered in biblical studies of the ’archetype’ [Heather & Rossiter 1989b]. In
this way, use can be made of an abstract document structure independent of the
text content in any particular version but an archetype to which the text of any
given version can be related. Thus, as in the hypertext representation of Figure
4(a), the Bible can be considered to consist of a logical file for the archetype
together with separate logical files for the English, Greek, Hebrew, Latin, and
other languages with as many versions for each language, manuscript families,
etc, as required. The archetype is an empty structure containing no text data
and only symbolic primary keys. It has to be the sum of all possible versions as
a superset of the other logical file definitions. This structure is never closed and
must remain open-ended to cater for structural nuances discovered later in other
versions. The archetype has to be constructed by a recursive process and the
machine can assist with a certain amount of automated learning. Thus during
the build of each version, error conditions can be intercepted and collected in
the database, and used to make additions and exceptions to the archetype and
the database structure.

For the Bible, the obvious symbolic key is the concatenation of the fields
'book’, 'chapter’ and ’verse’. Direct access to data in any version can be readily
obtained by the selection of the appropriate logical file and specification of the
full key. A principal requirement is to compare the text for any given verse. For
this purpose, virtual fields are defined in the archetype logical file which convert
the archetypal key into the 'verse.text’ data held for each version. Parallel
versions can then be readily displayed by specifying the archetypal key.

By defining a series of further subfiles, each accessing different combinations
of the virtual fields, it is possible to tailor quite closely a user’s view of the
biblical sources to suit his current application and interests. Thus another way

14

Targums

| Psalters | Patristics

Lexionaries

|

Encyclopaediae

Commentaries

Sermons

[}
I
1
1
I
[
1
1
1
I
I
I
I
]
I
I
1
I
1
]
|
}
1
]
I
I
]
|
I
I
I
1
]
I
]
I
I
I
]
]
1
1
I
I
|
|
1
[}
I
I
I
I
1
I
1
]
]
I

Figure 4(a). Hypertext Representation of the Bible.

<~ Hebrew -> <= Greek ->
Archetype —---c--emmmmmmmmm— oo e oeeoee
““““““ law| | | |gospels
| : : . . | Apocrypha |. . . i i
| i e w0 o . |acts
prophets| . | NEW
[. . . OLD TESTAMENT . . |. TESTAMENT .|pauline
| ¥ | |general
hagiographa| . e = . . .|epistles
: | |apocalypse
Original /
Languages = =---==cemmmme memmemmcmem= m——mme Seceen mmmemeee emeeeo
------- | Massoretic]| | |
| text | |
. . | |
|consonontal | | |
— | text | | |
Classical
Languages
| | coptic |old I | | | | |
| ola | . . | syriac | | | o1 |] | o1d
Latin } sahidic |pashito |Gothic|Armenian|Georgian|Ethiopic|Arabic|Slavic

fayyun |philoxn |

|atrican | akharmic|harklean]| |
|european| bohairic|palestin| |

Early
Editions

Middle
Editions

Later
Editions

Modern
Language
Families

English
Language
Versions

| Tregelles | Westcott
| & Hort

| Nestle |Internationall

| |
Lindisfarne| Saxon Wycliffe I Tyndale i Coverdale i
|
Great Bible| Genevan Bishops | Douai | KIV |
Bible Bible |
RV RSV

Jerusalem HInterpretatloT Amplified I

|
NEB |Living Bible | Good News |
| Bible |

| @aTsand | sayndsnuiw | syeydun]sa{n:sn§9w |

| 106219 | ST12ATDS | uepoS uoa |

anyiaa |sn1£ded|

1aded | jusuwydyed|

15

of looking at the implementation is that it provides different external views of
an archetype which can be thought of as the single conceptual schema for the
Bible. Such a model is well represented in Figure 4(b) in terms of the standard
ANSI/SPARC architecture [Tsichritzis & Klug 1978] developed to provide views
of data on three different planes in the database environment. At the lowest
level, there is an internal schema to describe the storage structure and contents
of each version of the Bible held in the database. The conceptual schema defines
the structure and contents of the reference form of the Bible, i.e. the archetype.
A series of mappings are maintained to indicate the relationship between each
conceptual and internal schema. In administrative databases, these mappings
are often concerned with the location of stored fields in the various files on disk.
In the Bible, they will take the form of predicates on values for 'book’, ’chapter’
and ’verse’ to represent how each stored version relates to the archetype.

A user’s actual access to the database is through an external schema which
defines a logical view of the underlying data. The view obtained is a function of
the mapping defined between the external and conceptual schema. This mapping
~ will also be a predicate on values of ’book’, 'chapter’ and 'verse’ in an analagous
manner to that between the conceptual and internal levels. To achieve maximum
flexibility, the external schema may be placed in a hierarchy as shown in Figure
4(b). Thus a scholar in studying the original may view the text mapped either
directly on to the archetype or via classical and modern views. An example
of a view composed of a selected set of text is the notion of the Western Text
which the nineteenth century textual scholars Westcott and Hort assumed once
physically existed. In the conceptual approach it is quite natural to keep open
the question of whether it actually existed. The Western Text exists in the
database as a virtual document. In addition to the mappings, the database
system also employs an integrated data dictionary to store meta-data on the
Bible. This will include structured commentaries on the relationships of the
various versions to each other and to the archetype.

In current database technology, another use of views is to provide abstrac-
tions such as generalization through external schema defined as a series of data
manipulation operations on the data items defined in the conceptual schema.
A similar capability is achieved with more elegance by semantic models and
discussion of this requirement is deferred until later.

3.3 Integrity and Security

Integrity is required. The data needs the usual protection through recovery
facilities from data errors or hardware failures during updates. Of equal impor-
tance are: referential integrity so that all cross-references can be resolved; and
entity integrity so that the uniqueness of entities can be guaranteed through
unique values for the primary key. The former is an important aid for authors
creating a hypertext environment in which it is essential that cross-references
are always resolvable. An example of the latter is found in the statute law where

16
Figure 4(b). Schema of Bible Versions (ANSI/SPARC Architecture).

Original-Classical view

|defn. Originall
| record-type |

|Mapping Orign. |
| -> Classical |

|defn. Class. |
| record-type |

Imapping Class. |

| => Modern [
T
multi- |
level v
external Modern-Arch.view Classical-Arch.view Original-Arch.view
SChoAl ————=—-—=-sosssmss | Smssssesssssesss 0 Gessssesssessssse
|defn. Modern | |defn. Class. | |defn. Orign. |
| record-type | | record-type | | record-type |
[=mmmmmmmmm e I B [| =mmmmmmm e r
Imapping Modern| Imapping Class. | |mapping Orign.|
| -> Archetype | | -> Archetype | | -=> Archetype |
T T T T
| | l I
mappings to conceptual Archetype and between external levels |
in form of predicate on Book, Chapter, Verse T |
I | I I I
v v v e
conceptual ---—---—- o)
schema ldefinition Archetype conceptual record-typel| integrated
= e e e [€== data
| mapping Archetype -> internal | \Qiffifnar
T T ™ I
I I | v
mappings to stored record-types in form of predicate on Book,
Chapter, Verse
I I I
J N 4
internal Hebrew Massoretic Greek LXX English KJV «v. 8tc.
schema ————————=—-=—mm—m= e (other
|defn. stored | ldefn. stored | |defn. stored |versions)

| record-type | | record-type | | record-type |

17

apparent duplicate records occasionally occur with the same symbolic key be-
cause certain nuances in the layout of the text are not fully captured in the
data structure. The effort required to modify the data structure may not be
justified to enable perhaps another 0.1% of the records to have unique symbolic
keys. However, it is essential whilst adding data to ensure that the apparent
duplicates are detected, added to the textbase and flagged as non-conforming
data.

Value integrity should also be enforced. In its simplest form, this can be
achieved by defining a domain of acceptable values that a data item may take.
Thus in the textbase holding information on English criminal offences and their
penalties [Rossiter et al 1988], codes used to represent categories of criminal
intent and presumed public policy should be held in a domain holding all valid
values. Besides the use of domains, value integrity can be achieved through many
other means such as abstract data typing, stop and go lists, and thesauri. More
complex integrity constraints are required in practice in some situations. For
example, in the statute law data tapes provided by HMSO, the text formatting
attributes indicated in the markup language are not assigned generally but are
applied only in certain contexts and these need to be enforced in construction of
the textbase. For instance, the declaration of footnotes for a statute is performed
within each act shortly after the global headings and any later declarations
should be flagged as potential errors.

Another feature required in an operational environment is security. It should
be possible to restrict access by users to whole files or on a more selective basis
to designated fields or indexes, with the ideal situation being to utilize data
values as an additional data-driven means of granting or denying access.

3.4 Textual Applications

Besides retrieval and update, users may examine texts to produce word fre-
quency lists and distributions of frequencies, and to apply statistical tests [Davis
1983| to analyse word co-occurrences, collocations [Linton 1982] and sentence
length. Thus, texts of Shakespeare and of the Bible have been analysed in great
detail. However, surprisingly, most of this analysis has not been performed using
database systems in spite of much of the information such as word frequency
counts being capable of being held in database tables. The main tool has been
packages such as the Oxford Concordance Program which construct the neces-
sary tables from scratch in each analysis of a text.

A clear difficulty in using database systems for analysis is that each appli-
cation involves subtleties such as a special way of combining textual fields or of
handling word stemming which the database kernel is unable to satisfy directly.
To handle such subtleties, the user must embed calls to the database system in
a host program written in a high-level language such as Pascal with abstract
data typing or in SNOBOL with text editing facilities. This separation of data

18

from function is an inherent feature of current data base architecture [Bloom
& Zdonik 1987]. There are clear advantages to be gained by integrating more
closely the host languages and the database kernel so that, for instance, the
database system would automatically adopt the data typing of a Pascal pro-
gram or provide string manipulation functions for texi transformation during
update, display, indexing and the construction of virtual textual data items.

3.6 Natural Data Loading

If textbases are to be quickly designed and built by users who have few
traditional skills in programming, data loading should use techniques that do
not involve substantial amounts of editing or procedural programming, The
loading of textbases follows hierarchical paths in the structure of the text and
implicit assumptions based on currency need to be made about the values for the
constituents of the symbolic key of each unit. Input languages which modelled
this structure in a natural manner would assist implementations. The use of
3GL host languages is common in this task but there is an impedance mismatch
between the database and programming language data structures. The variables
used in the programming language are not directly related to data field values in
the database and integrity is therefore enforced indirectly. To achieve a natural
capture of the hierarchical structure, the ideal is for automatic value inheritance
whereby the identifier of an entity is in part automatically inherited from others
which appear at higher levels in the tree structure.

3.6 Data Structures and Models

Textual data structures are described later in terms of semantic models and
class structures of objects. Examination of applications at Newcastle shows
that text plays an important part in many research databases [Rossiter et al
1988). The natural history data of the North of England held by the Hancock
Museum employs text at a vital elementary level: a text field is used to sup-
plement highly formatted data to record comments and observations which do
not fit the highly-structured classification scheme designed at the outset. Sim-
ilar considerations apply to the data held on Chinese provincial politicians by
the Department of Politics where formatted data on tours of duty is supple-
mented by less structured biographical data. Medical research databases, in
addition to storing many items of numerical and coded information on subjects
such as biochemistry, can hold large bodies of text to record complete details
of operations, surgical procedures and unexpected complications. Genealogical
databases involve complex relationships between people with identifiable objects
such as branch, family, marriages and individuals. Uncertainty over exact re-
lationships means that textual evidence such as wills and litigation should be
recorded verbatim.

In a further broad class of applications, text comprises the most important
part of each record. Thus in Hansard, the main data is the verbatim record

19

of business in the UK Parliament although ancillary classifiable data such as
dates and names of bills and speakers also need to be held in formatted form.
Identifiable objects in Hansard include days of business, debates, speakers and
speeches [Hudson 1985]. In the Bible, the text held in the verses is the critical
part of the data. Identifiable objects are testament, book, chapter and verse, and
a symbolic key comprising book, chapter and verse is a natural obvious method
of addressing verse data. However, for some biblical applications such as a
commentary, where opinion and factors influencing judgement are considered,
the structure of book, chapter and verse is too coarse: words and their variants
or even individual characters are the basic units [[eather & Rossiter 1989b].

The applications so far discussed in this section basically involve text in
hierarchical structures with a choice of unit size for manipulation ranging from
word or character up through various intermediate text units to documents in
their own right such as the New Testament. This gives rise to the major problem
of the choice of unit size.

3.8. 1 Unit Size

Unlike informal systems which might store text as a continuous character
stream, formal systems need an object unit [Heather 1986]. Traditionally a
choice has had to be made which is usually governed by the storage capability
of the system (e.g. track and block sizes, buffer restrictions, spanning facilities,
etc), by the human capacity for searching, retrieving and comprehending the
information [Blair & Maron 1985] and by the character of the document which
though will have often been determined by traditional printing techniques. Thus,
for example, the size of a legal statute is controlled by parliamentary business
and other political factors. However, one unit alone is insufficient for all pur-
poses. With text objects, it should be possible, in principle, to retain the ability
of natural language to keep the choice of unit dynamic and with the option
of lazy evaluation to have the power to postpone any decision until the full
circumstances and context of the use are known.

3.6. 2 Non-hierarchical Text Structures

There are texts for which hierarchical structures are inadequate. Shake-
speare and legal texts are good examples. Such texts are later represented in
terms of semantic models. Their essential characteristic is that units may need
to be linked to multiple units at higher levels of the tree structure rather than
the single unit allowed in hierarchical structures. Such structures suggest the
need to examine models described later where words are considered as atons of
data to be built dynamically into a variety of complex molecular objects.

3.8. 3 Generalization and Specialization

Linked particularly with the navigation requirements described earlier is

20

the need to generalise when describing text structures. Thus, for example, in
a hierarchical text structure, any one part of the tree may usually cite any
other part. The textbase will need to be viewed at two levels: generalisation
for an overview in which any type of text object cites any other type; and
specialization for the system implementation in which a specific type of text
object cites another specific type. The two levels provide abstract and concrete
views respectively of the citation process and are discussed in more detail later
when semantic models are introduced.

3.7 Multi-Media Systems

Of increasing importance in the future will be the storage and manipulation
of textual, image, formatted and other forms of data in an integrated fashion
by a single system. For example, in computer-aided manufacturing (CAM), the
image data is often accompanied by text for specifying semantic detail which
cannot be readily expressed in a graphical mmanner. In examining new approaches
to textbases, it is therefore essential to bear in mind that an integrated holistic
approach is needed to handle the different sorts of data. Image data in systems
such as CAD/CAM are discussed in the next section to illustrate the similarities
and differences between text and image data. However, even in pure text sys-
tems some of the principles of a multi-media approach may need to be adopted.
Thus in the study of politics, diplomacy and literature, multilingual textbases
involving languages such as Russian, Chinese, Greek and Japanese present some
of the problems of multi-media systems with the need to hold both ideographic
representations of their character sets and to handle diverse interpretations of
such basic text entities as characters and words.

3.7. 1 Structures in Engineering Data

The problems in manipulating engineering data by relational systems [Lorie
1981] have been established for some time:

1. In drawings, graphs, and designs, the prevalent structures are represented in
the form of complex objects.

2. If relational database systems are used for storing and manipulating the data,
there are severe performance problems in reconstructing designs on screen
from data held in relations. These result from the large number of joins
required to reconstruct data which have been excessively fragmented through
the normalization process. The poor performance is of critical importance
in CAD/CAM applications because of the long time taken to draw designs
on screens.

3. So far less emphasis has been placed on searching for particular features than
in text systems but there is likely to be an increasing need to match on certain
shapes. Work by Eakins [Eakins 1989] has demonstrated the potential and

21

problems of shape matching. To facilitate retrieval, surrogate representations
are made of the images and matched against similar constructions of the user
requirements. Whilst this technique enables searches to be made and items
retrieved, there are problems which are analagous to those in information
retrieval of bibliographic items: perfect recall and precision is not possible
because matching is being performed at a syntactic rather than a semantic
level.

Besides identifying the problems with conventional database technology, Lo-
rie [Lorie et al 1985] attempted to adapt the relational model to manipulate
engineering data. To augment the native atomic structuring of the relational
model designed for simple administrative objects, Lorie proposed extensions to
provide molecular structures more appropriate for representing the complex ob-
jects described above. The molecular structures serve two purposes:

e to structure objects hierarchically; and

e to improve performance through the provision with each object of reference
attributes containing backward and forward pointers between each level in
the tree.

The molecular structures are not, however, a complete solution to all problems in
the manipulation of complex objects. The functionality of the reference system
is strictly hierarchical so that shared subobjects are not handled well and, even
with the pointers, poor response times can occur if considerable aggregation is
required.

3.8 Summary of Requirements

Figure 5 summarizes the requirements for textbases from the viewpoint of
users. At present, there is a piecemeal approach to satisfying these needs with,
for instance:

1. free text retrieval systems concentrating on Boolean searches and very large
record sizes,

2. database systems emphasising safe updating with the rigorous maintenance
of integrity and security and providing alternative views of the same stored
data,

3. hypertext systems specializing in methods for navigation, and

4. expert systems attempting to interpret the semantics of the text in terms of
rules.

The effectiveness of these approaches in satisfying user requirements can be
evaluated by considering examples of the way they have been applied to legal

22

texts.

4: Approaches to the Modelling and Manipulation of Text

4.1 Free Text Retrieval Systems

Because lawyers deal in words, the law early attracted the attention of work-
ers in the field of text. One of the first attempts to manipulate law by computer
involved the design of free text retrieval systems such as STATUS, STAIRS
and LEXIS. These systems were closely tailored to contemporary ideas of the
requirements of users. Thus it was perceived that textual structures were basi-
cally hierarchical of the form for statutes of:

chapter— > paragraph— > sentence— > word

A basic requirement was fast access on words contained within the text so
priority was given to the development of inverted files to hold word indexes
and for the operation of Boolean logic. Figure 6 shows the hierarchical record
structure of a statute together with the typical structure of an inverted file to
provide fast access in word searching. The inverted file structure mirrors the
hierarchical structure of the text and can readily provide matching on two or
more words in context through appropriate selection of columus for examination.
Thus, in what would be termed a projection in relational systems, a search for
the two words X and Y in a section would use the columins WORD, CHAP#,
YEAR, P# and S# and ignore columns SS# and POSITION. A search for X
and Y within a particular number of words of each other would use all columns
in the inverted file.

In STATUS and STAIRS, the main ambitions are to achieve dynamic con-
trol over the unit of data searched and to provide convenient interfaces to the
end-user so that a high level of abstraction is presented [Bain et al 1989]. Unfor-
tunately, there is a lack of unifying principles and an emphasis on improvisation
in achieving these objectives. Thus three kinds of file will be found in a typical
free text retrieval system: base text, index and thesaurus. Each will be de-
fined and manipulated in a different language so that, for example, the inverted
file is not a fully-fledged textbase table available for further applications and a
special language is required to access the thesaurus. In ANSI/SPARC terms,
the systems employ a single-level (flat) architecture at a level intermediate to
the internal and conceptual schemata. This reduces flexibility by not allowing
mappings to be introduced between the various ANSI/SPARC levels to provide
resilience and extensibility.

General filing techniques such as cross-referencing, symbolic identification
of data units and support for a wide range of data-types other than text are
available only in rudimentary form. It is thus difficult to capture all structural

Figure 5. Requi

1. Design of STRUCTU

2. Various formats f

3. RETRIEVAL

4. NAVIGATION throug

6. SEMANTIC factors

6. TEMPORAL manageme

7. VIEWS

8. INTEGRITY

9. SECURITY

10. Textual ANALYSIS

11. MULTI-MEDIA

rements for Textbases from Users’ Viewpoint

RE for holding text
unlimited size of fields and records
symbolic identification of records
data models

. hierarchical

. non-hierarchical
dynamic control of unit size
generalization and specialization
or DISPLAY
human
machine-machine (wp, mark-up)

fast
non-procedural interactive languages
words + phrases in text

. context

. proximity matching
keywords

. free vocabulary

. controlled vocabulary (thesauri, stop, go)
'formatted’ data
identifiers of text (symbolic key)
h texts following conceptual paths
referential transparency (hypertext)

parsing

predicate logic, machine translation

cognitive textual types

nt with consistent updating

in-place modification, addition of data, archiving
dynamic behaviour - control of document life cycle
version management

concurrent access

value inheritance for natural data loading

parallel texts

protection against hardware failures
referential
value

whole file
designated fields
data driven

function integrated with data

word frequency lists, distribution of frequencies
statistical tests e.g. sentence length

word co-occurrences

integration of text and other data (unified model)

23

24
Figure 6. Word Index in a Free Text Retrieval System

STATUTE record-type

CHAPTER
| __
| | CHAP# | YEAR | HEADINGS | TEXT |
| __
|
v
PART
| ____________________________________
| | P# | TEXT
I ____________________________________
|
v
SECTION
| ____________________________________
| I Sit | TEXT
| ____________________________________
I
v
SUBSECTION
| SS# | TEXT
Inverted File
| WORD | CHAP# | YEAR | P# | S# | SS# | POSITION |

detail in textbase design or to perform complex data manipulation. Whilst there
is flexibility in selection of unit size for searching purposes, there is considerable
inflexibility in the choice of unit size for other purposes. In all systems for
the purpose of storage, a document size must be selected at the outset which
defines the maximum unit for searching. The choice is essentially arbitrary. In
statute law, the choice of a document size as an act could involve data transfers
of 2-3 Mb so that some smaller unit must be selected with profound future
implications for the running of the textbase. It is symptomatic of systems which
only just achieve their initial specification that they fail in new subject areas.
Thus STATUS designed at Harwell for a small body of atomic energy law was
not equal to the task of providing a full service with the whole body of English
statutes and the commercial venture EUROLEX that attempted this failed.

LEXIS is a well-known free text retrieval system for law. It is dedicated

25

to this purpose and has not been generalized in the same way as STATUS and
STAIRS for handling applications other than full text. The system provides fast
matching on words in proximity to each other and in the context unit of a sec-
tion through the storage of word positions in inverted files in a similar manner
to that shown in Figure 6. However, the storage of what amounts to a physical
address of every word (except stopwords) leads to heavy overheads and the user
is restricted to some extent by the rigid selection for the basic document unit of
a section. The user cannot readily manipulate logical structures involving ag-
gregation of data at higher levels: the system has had to be patched to provide
this facility for statutes. Furthermore, structural information, such as identi-
fication of documents which could have been used for symbolic key purposes,
is not explicitly held in a classified form: section, schedule and other numbers
are held as free text within segments rather than as formatted values of type
integer. It is thus difficult to make cross-references from one text to another.
Finally, there is a heavy reliance on manual editing to convert data into a suit-
able form for inputting to the system. It can thus be concluded that the system
. is not extensible to handle novel applications and, in general, there is a failure
to exploit the benefits of automation, leading to high costs and under-usage.

4.2 Database Technology

A greater emphasis on logical form is found in database systems. Briefly
summarized, the main principles of database technology in this context are:

1. to create and maintain reliably databases holding large amounts of data
(1-500Gb) in a persistent storage medium.

2. to employ structured semi-formal methods to model the data at various
levels from semantic models, which provide highly abstract views, through
logical models, such as a relational design, to physical data structures, which
facilitate fast access for retrieval or modification.

3. to provide a non-procedural programming environment in which high user
productivity can be achieved,

4. to prevent unauthorized access to all or part of the data,
5. to provide concurrent access both for reading and writing, and

6. to maintain the integrity of the data as far as possible at all times.

Traditionally there has been an emphasis on formatted data with the support
of only a limited range of data types such as integer, real, character and date.

4.2. 1 Work at Newcastle

In Newcastle, the database inanagement system (DBMS) SPIRES has been
employed on a series of text-based applications since 1978. SPIRES can be

26

thought of as a semi-relational DBMS with flexible data-typing and indexing
facilities. It is semi-relational because it enables cross-references to be made by
value rather than by pointer but does not employ relational set languages. It
is a DBMS because it effectively provides a three-level architecture of external,
conceptual and internal schemata. The range of data-types includes a series of
some 30 pre-defined types (integer, real, word, date, personal name, institutional
name, etc) plus the facility for user-defined abstract data types employing the
SPIRES PROTOCOLS language which provides most of the standard SNOBOL
text editing functions but is also fully integrated with the database kernel. Data-
typing is enforced by action rules in the conceptual schema. The abstract data
typing and integration of function with data enables SPIRES to be viewed as
a rudimentary object base system. Indexing facilities include the ability to
construct word indexes with stop and go lists and thesauri. Fast prototyping is
available through a File Definer module.

Compared to free text retrieval systems, the data structuring facilities of the
SPIRES system enable a greater resolution to be made of the internal structure
of statutes. Greater flexibility in data structuring was obtained by defining a
non-homogeneous basic unit of record. Sections are used for main text, para-
graphs for schedules, footnotes are taken together as a single object and other
extraneous information made into objects in their own right. The ability to iden-
tify parts of the text by symbolic keys allows users to navigate [Rossiter 1987|
from one part of the law to another in a semi-relational manuner using the keys
as reference points. This is also important for referential integrity in updates.
The status of the navigation through the text can itself be held in database
records. This provides a complete anaphoric system which hypertext systems
are at present attempting to emulate. The retention of all detail contained on
the printed page enables new applications to be readily satisfied which had not
been anticipated when the database was established. Thus electronic publishing
needs can be catered for in a flexible manner, new selective indexes produced
and fresh analyses made of subsets of the text. The iterative searching facilities
assist users in retrieving parts of the text that are of interest to them using
Boolean operators and proximity matching. As described earlier, the three-level
architecture can be used to handle parallelism [Heather & Rossiter 1988] and
version management with the canonical form being held as a conceptual schema
and other versions as external schemata.

4.3 The Hypertext Approach

Because of the importance of document manipulation, hypertext has devel-
oped as a separate branch of computing. The same Osborne law dictionary re-
ferred to earlier has also been implemented by Wilson [Wilson 1988] in one of the
available hypertext systems, GUIDE, which employs directed-graph techniques.
It is therefore interesting to compare this with database methods. GUIDE rep-
resents logical connections in a physical manner using pointers and buttons. By

27

that method, cross-references may in advance be fully identified as in a net-
work database. In a conceptual database approach to hypertext, links are made
dynamically at run-time by the system locating a cited item either within the
dictionary database or in external data from some semantic identification of the
key value contained in the text. Both means provide for display and naviga-
tion through documents. The physically-oriented approach of GUIDE uses less
resources but the early binding of identifier to data is more of a static method
which allows less flexibility. A more flexible approach is to exploit the dynamic
power of late binding using the technology of databases.

4.4 Expert Systems

A very different approach to law and one which has been extensively investi-
gated recently is the development of expert systems which attempt to distil and
capture the intent and rules within a particular subject area. Projects [du Feu
1977, Hafner 1981] seeking to represent the knowledge contained in legal text
data were current with early expert systems like MYCIN and DENDRAL. One
of a long line of recent attempts to formalize law using the logic programming
language PROLOG is the expert system for the British Nationality Act where a
number of workers [Sergot et al 1986] found it quite some effort to capture only
some of the content of one relatively simple Act of Parliament. This example
illustrates well some of the problems with this approach. An accurate mapping
is not possible between the legal and PROLOG rules, the former being expressed
in natural language for the maximum of expressiveness and the latter in clear
unambiguous rules for the purpose of logic programming [Leith 1986]. Despite
attempts to avoid the problems raised by closed world assumptions in predicate
logic, the inherent failure of any formal reductionist system to prove negative
facts appears fatal for applications in areas like the law.

Even if it could be achieved, the difficulties of modifying current expert
systems to allow for continuing legislation and the effect of court cases on the text
are immense. The debate over the likely usefulness of legal expert systems has
mainly been between computer scientists [Kowalski & Sergot 1987, Leith 1988].
The only serious use reported in actual legal practice seems to be by practising
lawyers like Walter [Walter 1989] who have built their own expert systems which
they find very convenient when they themselves are fully conversant with the
capabilities and limitations of their systems.

5: Database Models and Textual Structures

The experimental work carried out using SPIRES has demonstrated the
potential of database technology for handling text and achieved a favourable
envitonment for formulating principles that can aid the development of a new
generation of textbases. Text applications involve large amounts of persistent
data of up to 100Gb. The texts need to be structured using a semantic or other

28

model such as the basic relational, network and hierarchical methods. There has
to be efficient access both on symbolic keys and on words. The semantic models
are more expressive than the basic models and their use will be considered first.

5.1 Semantic Models

There is a range of semantic models that has been proposed in order to
incorporate more features and constraints [Smith & Smith 1977] than can be
included in the basic ones in an attempt to represent more closely the real
world. These include RM/T [Codd 1979], the Chen Entity-Relationship Model
[Chen 1976], the Borkin Semantic Model [Borkin 1979], and Taxis [Mylopoulos,
Bernstein & Wong 1980]. Text because of its complex nature usually requires a
full semnantic model and a range of abstract data types to capture completely its
structure. Examples of Chen, Borkin and Mylopoulos will be considered here
starting with an examination of static aspects.

5.1. 1 Models for Expressing Static Aspects

The viewpoint of Chen is that database design is concerned primarily with
the occurrence of entities and the relationship between them. An E-R diagram
of a UK statute could be represented in the form of Figure 7 which follows the
style enhanced by Howe [Howe 1983] using rectangles to denote entity-types and
diamond-shapes to denote relationships. A relationship flagged "*’ is mandatory,
otherwise it is optional. In addition the idea of generalisation advanced by Sakai
[Sakai 1983] is employed with generic entity-types being denoted by ovals. The
generic structure defined here is ’text’ which is used to represent the specific
entity-types 'section’, ’subsection’, 'paragraph’ and ’subparagraph’ as one entity-
type if required. Its creation enables for instance the involuted ’cross.reference’
relationship to be simplified into an occurrence of the 'text’ entity-type may cite
another occurrence of the 'text’ entity-type. In the absence of the generalization,
sixteen 'cross.reference’ relationships would be required to handle all the possible
combinations: one of the occurrences of the entity-types ’section’, ’subsection’,
'paragraph’ and 'subparagraph’ may cite any other occurrence of the entity-types
'section’, 'subsection’, ’paragraph’ and 'subparagraph’.

The smallest object represented in the E-R diagram is 'word’ which is a
component of the five base entity-types 'section’, 'subsection’, 'paragraph’, ’sub-
paragraph’ and ’footnote’ but can be viewed more elegantly as a component of
the generic entity-type 'text’ and of the base entity-type footnote’ as shown in
Figure 7(a). The relationship between 'word’ and ’text’ is of functionality many-
to-many. Each word may appear in many texts and each text may contain many
words.

5.1. 2 Class Structures

The structure of the statutes shown in Figure 7(a) can be viewed as the

29

Figure 7. The Chen Entity-Relationship Model of Statutes:

(a) Diagram

Act

OF ity
o m_m_m_j_m\Av

30

Figure 7. The Chen Entity-Relationship Model of Statutes:
(b) Partially-normalized Table-types

Act (year, chapter, title, date, preamble, arrangements,
crossnotes, + 14 text.formatting attributes)

Part (part#, year, chapter, part.headings, part.subheadings,
crossnotes, footnotes.to.old.statutes, + 5
text.formatting.attributes)

Section (section#, year, chapter)

Section.in.Part (section#, part#, year, chapter)

Subsection (ss#, section#, year, chapter)

Schedule (schedule#, year, chapter, schedule.headings,
crossnotes, omissions, footnotes.to.old.statutes, + 29
text.formatting attributes)

Subschedule (subschedule#, schedule#, year, chapter,
subschedule.headings, crossnotes, omissions,
footnotes.to.old.statutes, + 20 text.formatting attributes)

Paragraph (para#, schedule#, year, chapter)

Para.in.subsched (parea#, subschedule#, schedule#, year, chapter)

Subparagraph (subp#, para#, schedule#, year, chapier)

Footnote (fooinote#, year, chapter, footnote.text)

Word (word)

Word.H1 (word, position, tezt.id)

Word.H2 (word, position, footnote#, year, chapter)

Text {section, subsection, paragraph, subparagraph}

Text (tezt.id, footnote#, marginal.note.other, crossnotes, omissions,
footnotes.to.old.statutes, + 20 text.formatting attributes)

Cross.reference (ciling.text.id, cited.lezt.id)
Notes: 1) The italicised attributes comprise the identifier.
2) The brackets define the scope of a generic entity-type.

31

complex object shown in Figure 8 in which 'word’ is a subobject shared by
several classes, each word being considered in its own right as well as in its
use in a local and global context. The complex object structure illustrates the
problem of unit size in which a user may seek to aggregate data at any level of the
structure or search for data in the context of any simple or aggregated unit. This
problem is discussed in more detail later. Similar difficulties are encountered in
other texts such as Shakespeare’s plays where the terminology of overlapping
fields is used in the humanities to describe the structure shown in Figure 9. The
fields are neither contiguous to each other nor contained completely within 2ne
another: attributions, type of text and speeches overlap each other with no clear
structure other than that they each contain several lines of text. This structure
can be represented by the complex object shown in Figure 10. The complex
object comprises one subobject 'line’ shared by as many as five classes: 'verse’,
'prose’, ’song’, 'stage directions’ and ’attribution’. The generalisation 'speech’
enables text contained in a mixture of verse, prose and song to be viewed as
a single 'speech’ entity-type. Work in progress at Newcastle on implementing
Shakespeare’s plays in a relational database system [Mitchell 1989] shows that
the actual data structures are more complicated than those of Figure 10 as a
line may contain more than one type of text.

Figure 8. Class Structure for Objects Occurring in Legal Text

o._ ACT

,) I
TEXT o PART o’ o SCHEDULE
| S

|
\‘-1\\ |

SECTION o -0 PARAGRAPH o FOOTNOTE
I l |
l
o

SUBPARAGRAPH

SUBSECTION

The complete E-R model requires more detail than the diagram of Figure
7(a), in particular information on the attributes of each entity-type and which of
these comprise the identifier. Figure 7(b) shows this information for the statute
law but it should be noted that many of the tables are not fully normalised. Thus
many of the non-identifying attributes such as the text formatting ones can have
multiple values for each identifier value. To remove such dependencies through
further normalisation would require the creation of more entity-types which
would complicate the model considerably and produce an un-natural structure.

32

In other areas, the need for hierarchical tabular structures has been strongly
pressed [Dadam et al 1987].

The E-R diagram distinguishes between weak and strong relationships by the
positioning of the dot in the upper segment of the entity. Thus ’section.in.act’
is a strong relationship in which ’section’ must participate if it occurs. When
this happens, the section entity automatically inherits the identifier of the act
through property inheritance. In a weak relationship such as ’section.in.part’,
the participation of ’section’ is optional and a section does not automatically
inherit the part’s identifier. This is basically because null values would be posted
into a section’s identifier, so violating entity integrity when the section was not
contained within a part.

The choice of identifiers indicates the numbering system for the statutes, thus
section numbers continue to increment across parts whilst paragraph numbers
are reset to unity in each schedule but continue to increment across subschedules.
For the generalization ’text’, the identifier is ’text.id” which can be thought of
as a symbolic key similar in form to that defined earlier in Figure 2. The key
attributes of the relationship 'word.hl’ comprise the word itself 'word’ and its
logical position in the text as a concatenation of ’text.id’ the symbolic key of
the addressed text entity and ’position’ the physical position of the word within
the entity.

The E-R table types in Figure 7(b) can be mapped into a relational system
for implementation purposes. However, as will be described later, the transition
from the E-R to the relational mnodel involves a loss of semantic expressiveness
in aspects such as representing the generalizations.

Other semantic models have been used for modelling text at Newcastle in-
cluding the Borkin Semantic Model referred to above which is an enhanced
relational model. One advantage of this model is that it provides facilities for
expressing semantic information by typing the class of a given attribute using
what Borkin refers to as a 'characteristic’ for each attribute. Thus the rich tex-
tual data-typing mentioned earlier can be declared in the conceptual schema as
shown in the extract of a complete Borkin model [Heather & Rossiter 1987b] for
statute law in Figure 11. The predicate pairs indicate associations and the case
is significant: weak links are in lower case and strong links in upper case.

5.1. 3 Models for Expressing Dynamic Aspects

Major deficiencies of the E-R and Borkin models are that they have no
defined operations and thus cannot handle dynamic control of the life-cycle of
entities. Semantic models which enable such dynamic structures to be expressed
as well as static ones have therefore also been examined such as Taxis, the Event
Model and SHM+. The model Taxis illustrates the potential of this approach.
Thus some of the required features for control of the legal drafting process can
be expressed in a Taxis-like language by the definition shown in Figure 12. This

Figure 9. Schematic Outline of Text in Shakespeare’s Plays

Attribution Type of Speech Line
Text
| A1 | Verse | Speech 1 line 1
I I [2
| I B2
I | | 2 3
I I | 4
I |-~ I 5
| | Prose |]
| I | 7
| | | 8
I | | 9
| | =
| | | 3 10
e I I 11
| A2 I I 12
| i ==
I | Stage 13
| |== == 14
I | Verse | 4 16
| | |
|-~ I I 18
| Al | I 17

Figure 10. Class Structure for Objects Occurring in Shakespeare’s Plays

o PLAY

[

[

o ACT

I

[

o __SCENE
I

I

SPEECH o STAGE DIRECTIONS o ATTRIBUTION

0<_VERSE o

I
I
__PROSE “o_ SONG |
\\\I 2
- 1

34
Figure 11. Extract from the Borkin Semantic Model for Legal Text

Section

lin.act:0BJECT | I in.act :SUBTYPE |
lcontains.part: | contains.part:| |
| object | subtype| |
| | within.part: | within.part:subtype |
I I object | |
I	be section:SUBTYPE			
act	part	section		
force-text	force-text	force-text	whole-text	
year*	chapter*	number	number#	section-text

figure is divided into four sections and for economy of presentation the schedule,
paragraph and footnote definitions have been excluded. In the first, Figure
12(a), the base class of headings ’heading’ is defined consisting of a series of
identifiers for text: naturallD for human comprehension, symbolicID for the
machine and draftlD as a unique identifier for the machine during the drafting
process. In defining the other text headings, extensive use is made of the facilities
for generalization in Taxis. Thus ’act’ and ’'part’ are both considered to be
specializations of "heading’ since they inherit their identifiers from ’heading’.

In Figure 12(b), the components of legal documents holding text are defined.
The class "TextBody’ is defined as a specialization of '"Heading’ to inherit the
identifiers and has the additional properties of 'text’ to represent the whole-text
and 'xref’ to represent cross-references from one text to another. The data-type
of 'xref’ is 'SymbolicKey’ to enforce referential integrity. Classes for 'Section’
and ’Subsection’ are specializations of 'TextBody’ with characteristic properties
for section# and subsection#. Thus an entity belonging to the class 'TextBody’
can also be considered to belong to the class ’Subsection’ if it has a subsection#
greater than zero. The base class "Word’ has the single property 'wordValue’ to
provide a dictionary of all words appearing in the text. As introduced earlier in
Figure 7(b), the class "Word.H1’ represents the logical position of word values
in the text. It is a specialization of 'Heading’ to inherit part of its identifier
'symbolicID’ from that class.

The classes for the key structures are shown in Figure 12(c). These show
the sets of attributes comprised by each type of identifier referenced in Figure
12(a). The symbolic key class 'SymbolicKey’ is represented by a series of in-
tegers analagous to those defined earlier in Figure 2. The unique identifier for

35

Figure 12.
A Taxis-like Specification for Data Structures and Transactions in Drafting Statute Law:
(a) Headings.

define AnyDataClass Heading with
changeable
naturallD: set of NaturalKey
symbolicID: set of SymbolicKey
draftID: set of SymbolicKeyV
unique
textID: draftID

define AnyDataClass Part isA Heading with
part#: {| > 0 |}
section#: {| 0 |}
subsection#: {| 0 |}

changeable

partHeadings: LooseText
partSubheadings: LooseText
crossnotes: ShortText
footnotesToOldStatutes: ShortText
textFormattingAttributes: ShortText

define AnyDataClass Act isA Heading with
chapter: {| > 0 |}
part#: {| 0 |}
section#: {| 0 |}
subsection#: {| 0 [}
changeable
title: LooseText
date: Date
preamble: ShortText
arrangements: LooseText
crossnotes: ShortText
textFormattingAttributes: ShortText

the drafting process of 'SymbolicKeyV’ is a specialization of 'SymbolicKey’ to
inherit the basic identifier with the additional property of 'version#’ to differen-
tiate between different versions. The class 'NaturalKey’ represents the natural
form of the symbolic key for human understanding. The types of the properties
are non-integer in these cases to reflect the use of different numbering methods
such as by arabic number, roman number, or arabic letter. The class 'Natu-
ralKeyV’ posseses multiple inheritance: ’NaturallD’ is inherited from the class
'NaturalKey’ and 'version#’ from 'SymbolicKeyV’.

The production of logical word indexes (concordances) and dynamic as-
pects of the drafting process can be defined in Taxis by transaction-classes as
shown in Figure 12(d). The transaction-class '"WordID’ referenced from the class

36
Figure 12. Taxis-like Specification: (b) Text.

define AnyDataClass TextBody isA Heading with
changeable
text: WholeText
xref: set of SymbolicKey

define AnyDataClass Word with
unique
wordValue: Word

define AnyDataClass Section isA TextBody with
section#: {| > 0 |}
subsection#: {| 0 |}

define AnyDataClass SubSection isA TextBody with
subsection#: {| > 0 [}

define AnyDataClass Word.H1 isA Heading with
changeable
wordValue : set of Word
position: WordPhysicalPosition
unique
wordLogicalPosition: (wordValue, position, symbolicID)

'BreakText ToFormWordIndex’ produces a succession of values for each text ’t’
of individual words and their respective physical positions within the text. Each
pair of values is inserted in the class "'Word.H1’ which automatically inherits the
value of 'symbolicID’ to record explicitly the logical position of each word in the
text. The transaction is not executed unless the prerequisite that the supplied
symbolic identifier is an instance of the class 'SymbolicKey’ is satisfied.

The transaction AddNewVersionText is a prototype design of a method for
handling the dynamic aspects of version management. Prerequisites are defined
which must be satisfied before the transaction can be executed: the version
number for the text must be new and any cross-references made from the text
must satisfy the need for referential integrity. This transaction allows the user
to specify the natural key for identification of the text being updated. The
mapping between the natural and symbolic keys is handled automatically in the
transaction through the transaction-class 'Transform’ which converts natural
identifiers into their symbolic form.

5.1. 4 Implementations of Semantic Models

It is unfortunate that in spite of their expressiveness, general implementa-

tions of the semantic models are not readily available in commercial software
[Peckham & Maryanski 1988]. A direct implementation of the E-R model, for

37
Figure 12. Taxis-like Specification: (c) Keys.

define AnyDataClass SymbolicKey with

changeable
subsection#: {]| 0:999 |}
section#: {| 0:999 |}
part#: {| 0:2556 |}
year: {| 1988:2000 |}
chapter: {| 0:25656 |}

unique
symbolicID: (year, chapter, part#, section#, subsection#)

define AnyDataClass SymbolicKeyV isA SymbolicKey with
changeable
version#: {| 1:255 |}
unique
symbolicIDV: (symbolicID, version#)

define AnyDataClass NaturalKey with

changeable
subsection$: ForceText
section$: ForceText
part$: ForceText
act$: ForceText

unique
naturalID: (act$, part$, section$, subsection$, version$)

define AnyDataClass NaturalKeyV isA NaturalKey, SymbolicKeyV with
unique
naturalIDV: (naturallD, version#)

instance, would provide the framework for improved textbase initiatives. By ex-
plicitly recording the hierarchical structure of the text as well as providing base
relations for set manipulation, this model provides an effective data structuring
tool. However, the other important part of a model of operations is undefined
so it is not possible to describe the behaviour of objects. Such semantic models
as they stand are thus only a partial aid to improved textbase facilities and
it may be necessary to use semantic models with control over events for more
complete specifications of textbases. Some recent work [Nixon et al 1987] on
implementing Taxis is an important step in this direction.

5.2 Basic Models

None of the basic models is rich enough in capability to satisfy all require-
ments in manipulating complex textual structures. The hierarchical and simple
network models can be quickly discounted but a more detailed discussion is nec-

essary to illustrate weaknesses in a relational approach employing 'flattening’ of
data.

38
Figure 12. Taxis-like Specification: (d) Transactions.

define AnyTransactionClass BreakTextToFormWordIndex
(s:symbolicID, t:text) with
locals
wordFound: Word
wordPP: WordPhysicalPosition
prerequisites
symbolicIDIsValid? s instance0f SymbolicKey
actions
breakText: wordPP <- 1
do while wordPP < EOLN
wordFound <- WordID(t, wordPP)
insert-object in Word.H1 with (wordValue <- wordFound,
position <- wordPP)
wordPP <- wordPP + 1
enddo

define AnyTransactionClass WordID ...

define AnyTransactionClass AddNewVersionText
(nid: naturallID, v:version#, t:text, x:xref) with
locals
sid: symbolicID
prerequisites
versionDoesNotExist? (nid, v) notInstance0f NaturalKeyV
xrefIsValid? x instanceOf SymbolicKey
actions
addNewVersion: insert-object in NaturalKey with naturallID <- nid
insert-object in NaturalKeyV with version# <- v
sid <- transform(nID)
insert-object in SymbolicKey with symbolicID <- sid
insert-object in SymbolicKeyV with version# <- v
insert-object in TextBody with text <- t

define AnyTransactionClass Transform ...

Pure hierarchical systems are inadequate for complex data structures such
as those found in textual and administrative data because they only allow the
modelling of one-to-many relationships. Without object-oriented property in-
heritance and with only intra-record hierarchical structures available for linking
data together, record sizes become very large when for instance one act of the
statute law occupies over 0.5Mb.

The network model is more general than the hierarchical model for it allows
the modelling of many-to-many relationships. A large number of implementa-
tions exist and it has proved applicable in administrative and commercial areas.
To implement, however, a successful application of the network model needs the

39

involvement of professional programming staff even for record retrieval because
of the intimate knowledge that is required of the physical structure. In particu-
lar, network query languages are not suited to iterative searching and this may
be the chief reason why the network model has not been used extensively for
text.

5.2. 1 The Relational Model

The relational model [Codd 1970] on the other hand offers the power of the
network model but with a simple and elegant method of data manipulation.
Relational systems have been used with success in administrative areas where
fixed units are adequate although Codd in 1979 [Codd 1979] suggested that even
here variable units using a supertype-subtype approach would be useful.

The E-R model given earlier for law can be implemented directly by mapping
the table-types in Figure 7(b) on to conventional relations, each table-type being
represented by a relation. However, the semantics of the E-R diagram are now
represented implicitly; for instance, the structure of the objects:

act— > schedule— > paragraph— > subparagraph— > word

is represented by a series of relations whose attributes carry the inter-object
relationships so that the basic hierarchical structure is not explicitly conveyed
to the user as in the E-R diagram. To a user with detailed knowledge of relational
data structures and manipulation, a clear advantage of the relational model is
the ease with which keys in the form of formatted data can be manipulated giving
flexibility in the choice of units for display purposes and logical addressing on
symbolic keys for navigation purposes. Thus the use of standard set operators
can provide aggregation of data, dynamic variation of the unit of retrieval as
users’ needs change and cross-referencing [Rossiter 1986]. To a user with little
knowledge of relational structures, the disadvantage of the relational approach
is the dependence on views predefined as a series of external schemata by the
database administrator to achieve abstractions such as aggregation.

Of equal importance, not only with most current implementations but also
in developing flexible systems for the future, is the problem of indexing text in
a versatile manner, Word searching can be performed sequentially on any base
or aggregated unit but for speed of access in large textbases, it is essential to be
able to locate rapidly the exact positions of words in the text. Word indexes are
thus essential for most text applications. Relational systems provide indexing
facilities for simple data but are not too suited to the indexing of complex data.
There is no real concept of a ’global’ index in relational databases to hold values
from more than one relation: a single index cannot readily be constructed for a
series of attributes in different relations across the textbase to facilitate searching
on a particular generalized abstraction. Thus, in Figure 7(b), it is not easy to
build a single index on the abstraction 'text’. When it is considered that this

40

index should also be of data-type 'word’ and allowance is to be made for context
and proximity matching, the difficulties are increased.

5.2. 2 Extended Relational Approach

The logical approach to improving the flexibility of relational systems in
manipulating text is to flatten the data so that it is completely normalized down
to the word level. In principle, the existence of relations holding words, together
with their positions in the text, and of the base relations shown in Figure 7(b)
provides data structures which can satisfy most user requirements. However,
as indicated earlier, some features of Figure 7(b) are not easy to represent in a
relational implementation. Thus the key attributes 'text.id’, ’citing.text.id’ and
‘cited.text.id’ which are essential for generalization need to be specified in an
explicit manner that conforms to third normal form and entity integrity.

In the law example, five logical word indexes are needed in the form of
the fully-fledged relations shown in Figure 13. This number of word indexes
is required because the complex object 'act’ comprises five distinct paths to
'word’ via footnote’, ’subsection’, 'section’, ’subparagraph’ and 'paragraph’ re-
spectively. In free text retrieval systems, the requirement for separate paths is
generally glossed over by overlaying the different paths onto the single hierar-
chical structure shown in Figure 6, although there are exceptions such as Basis
[Bain et al 1989] in which the use of indexing prefixes enables multiple hierar-
chies to be contrived. Figure 13 also defines the relation 'request’ which contains
the words in the user’s search request and could also include other relation def-
initions for data such as thesauri and stop and go lists so that all data can be
declared in fully fledged relations.

The word indexes allow searches on words to be quickly satisfied. Further,
they enable the unit searched to be varied dynamically by taking views of the
index using the projection operator and dividing the viewed relation by the
relation 'request’ which contains the search terms. Thus if relation 'request’
contains the search terms A and B, a search for A and B in the same subsection
can be achieved by:

WORD.H3[YEAR, CHAPTER, SECTION#, SS#, WORD)] divideby REQUEST[WORD]
and in the same schedule by:

(WORD.H5[YEAR, CHAPTER, SCHEDULE#, WORD] divideby REQUEST[WORD])
UNION
(WORD.H6[YEAR, CHAPTER, SCHEDULE#, WORD)] divideby REQUEST[WORD])

A clear disadvantage of the approach of flattening the data is that no stan-
dard set operators exist for constructing the word indexes and it is not realistic
to expect users to input such structures manually. Operators to perform the
flattening of normal text could be user-written but this would involve additional

41
Figure 13. Relations holding Logical Word Indexes for the Paths in the Text Structures

Relations: (attributes comprising the primary key are italicised)
Word.H2 (position, fooinote#, year, chapler, word)

Word.H3 (position, ss#, section#, year, chapter, word)

Word.H4 (position, section#, year, chapter, word)

Word.H5 (position, subp#, para#, schedule#, year, chapter, word)
Word.HB8 (position, para#, schedule#, year, chapter, word)

Request(word)

Paths:
H2 H3 H4 H5 H6
I | | | |
| | | | |
o ACT o ACT o ACT o ACT o ACT
I | | I |
I | I I I
| o SECTION | o SCHEDULE o SCHEDULE
| | | I |
I | | | |
o FOOTNOTE | o SECTION o PARAGRAPH |
I I I | I
| o SUBSECTION | | o PARAGRAPH
I | I [|
I I | o SUBPARAGRAPH |
I I | | |
I | | | |
o WORD o WORD o WORD o WORD o WORD

effort and would be likely to result in inefficient code. Stonebraker [Stonebraker
1986] considers some of the extra facilities that are required by relational systems
to be effective in logical indexing. These include a BREAK operator, for creat-
ing a new relation to hold the words comprising a document and their position
within it, and a CONCAT operator to rebuild documents from word indexes.

Such facilities could also be provided by a standard programming language such
as SNOBOL using a combination of the BREAK and SPAN patterns.

In an earlier paper [Heather & Rossiter 1989a], we considered in detail the
manipulation of text in relational databases using the example of the Bible. In
that study, it was found feasible to normalize textual data to at least the word
level and to employ SQL or relational algebra for searching the data against
different unit sizes and for aggregating the data as necessary. The biblical data
were represented by a complex object with the single path shown in Figure 14
which is very much simpler to manage than the multiple paths of law shown in
Figure 13. However, even with the biblical example, the approach of flattening’
the data would be cumbersome for data manipulation, would hide the natural

42

structure of the data from the user and have adverse performance implications
when reconstituting aggregations for documents in large textbases. With the
more complex objects, the multiple paths and shared sub-objects found in the
law and Shakespeare, it is not clear how an acceptably high level of data abstrac-
tion can be presented to the user while providing the facilities with standard set
operators. A more detailed description of the fundamental deficiencies of the
relational model for handling text is given in a technical report in preparation
by the present authors [Heather & Rossiter 1989c].

Figure 14. Class Structure for Objects Occurring in Biblical Text

TESTAMENT

BOOK

o]

|

I

o

|

I

o CHAPTER
I

I

o VERSE
I
I
o]

6: Object Oriented Systems

In advanced high-level languages such as Ada and Simula, the concept of
class structure and variable unit size is well established through the extensi-
ble type system with the ability to declare abstract data types. Some of these
languages allow subobjects to inherit properties from higher-level objects (for
example, Simula) and to achieve communication between objects by messaging
(for example, Ada). These systems, often now called object-oriented, thus read-
ily allow objects to be built from other objects, iterative searching of complex
objects, multiple levels of abstraction and a natural ability to handle dynamic
aspects including integration in textual analysis of function with data, all im-
portant issues for the handling of textbases.

The use of object-oriented programs for database management is in its early
stages. Advances depend on programming systems being developed to handle
persistent data such as in the early work by Atkinson with PS-Algol [Atkinson,
Chisholm & Cockshott 1981]. One of the earliest developments was GemStone
[Copeland & Maier 1984] which is built on SmallTalk and uses the Opal language
for data definition and manipulation. Abstract data types can be defined, object

43

identity is preserved independent of value and objects participate in one or
more collections to provide a shared subobject facility. Behavioural aspects are
handled by messaging. Another early system is Vbase [Andrews & Harris 1987]
which provides the ability to define super-types, methods and procedures. In
relational database design, it is claimed that object-oriented techniques naturally
provide the required level of abstraction [Blaha, Premerlani & Rumbaugh 1988].

The strengths of the object-oriented approach lie in the ability to import
advanced programming techniques into areas of data modelling where database
technology has been traditionally weak. However, in the management of per-
sistent data, object-oriented systems have a number of significant weaknesses.
These include many of the standard functions which are an essential part of any
database system. Thus security, concurrency, transaction control, archiving and
some aspects of integrity are achieved by primitive methods, if at all. Optimisa-
tion of data storage and indexing are at an early stage perhaps analagous to that
of the first relational systems. For example, Maier [Maier 1986] has investigated
the indexing of different paths through a complex object such as that presented
earlier in Figure 13.

Of greatest significance, perhaps, is that owing to their procedural nature,
many object-oriented systems do not provide the non-procedural interactive lan-
guages that end-users require for data manipulation. Procedural interfaces re-
quiring some knowledge of high-level programming languages may be acceptable
in engineering applications where the users usually have a relatively sophisticated
programming background. However, in areas such as text, office automation and
CASE, it is considered that procedural interfaces are not appropriate to the en-
vironment. Clearly, ad hoc query languages could be designed for applications
by writing an interface program in a host language. However, the more durable
non-procedural languages have been based on mathematical methods, such as
relational calculus and algebra, applied to a conceptual model of the data. There
is thus, owing to a lack of emphasis on conceptual modelling techniques, a layer
of control missing from current object-oriented systems to provide the necessary
user environment.

Other work has centred on extending the relational model in an object-
oriented manner. Stonebraker has considered how relational systems can be
extended to be applied to a wider range of applications. In Postgres [Stone-
braker, Anton & Hanson 1987], abstract data types with property inheritance
can be defined by the user and attributes can be of type 'procedure’ calling
code written by the user in C or QUEL. This system also provides rules which
enable constraints to be readily applied and time-stamps all data as a first step
towards version management. One of the problems with the procedures is that,
on execution, multiple values may be returned which cannot be placed in a re-
lation directly so that the property of closure is lost. Further, the reliance on
procedures to achieve some abstractions rather than on higher-level modelling
constructions offends end-users who require non-procedural access. A similar

44

development can be seen with Generis [McInnes 1989] which builds a class struc-
ture and rule system on top of the relational model. This provides near-natural
language and menu interfaces so that users can be given a cleaner interface than
with many other object-oriented approaches including the elimination of logi-
cal navigation. However, the efficacy of the natural language approach must
be open to some doubt. For updating, it may be too uncertain for its use to
be justified as incorrect parsing could produce unintended changes to data. In
retrieval, users may obtain a response that looked plausible but was in fact only
partially correct. For certainty of retrieval and update, users may need to revert
to an alternative procedural interface.

7: Discussion

In contrast to Figure 5 which illustrates textbase requirements from the
users’ perspective, Figure 15 summarizes the required facilities for textbases
from the system viewpoint and shows the extent to which they are met by
the various techniques of free text retrieval, ISO-standard relational database,
extended relational database with facilities to flatten data, semantic models
oriented towards static and dynamic aspects such as E-R and Taxis respectively,
and object-oriented systems.

Examination of Figure 15 shows that free text systems suffer from limited
data structuring ability, lack of navigational aids and an inability to model
dynamic behaviour. Standard relational systems provide better data structuring
and navigational facilities but their performance in context searching, other than
on base units, is questionable and proximity searching is not available. Extended
relational systems with flattened textual data can achieve a better performance
and, through some ability to model complex objects, provide the basis of a
unified model for multi-media data. However, aggregation is a cumbersome task
for a user and dynamic behaviour is not considered. The E-R model has not
been generally implemented so the information in the figure has to be incomplete
but with the lack of defined operations there appears to be no real basis for a
complete answer to users’ problems.

The object-oriented approaches appear to offer the most promise whether in
the guise of semantic models like Taxis or databases such as GemStone. Such
systems handle quite naturally variable unit size, shared subobjects, dynamic
behaviour and integration of function and data, and could provide the basis for
an initiative in multi-media modelling. However, so far, object-oriented systems
have presented relatively procedural interfaces to users, are rather limited in
standard database functions such as providing concurrent access and have not
proved themselves in terms of performance. The optimum solution for users of
textbases would therefore appear to be a merger of advanced database technol-
ogy as in semantically-enriched relational systems with advanced object-oriented
programming to create object-oriented textbases. Such textbases should be

45

Figure 15. Requirements for Textbases from System Viewpoint

Free Relational Semantic Object-
Text oriented
stand. extend. E-R Taxis
extend.
1. Structures
. unlimited yes not so mnot so - = -
data size far far
. symbolic id no yes yes yes yes yes
. aggregation no SQL+ SQL+ no yes yes
(inter-object) views views
. generalization no no no yes yes yes
. hierarchical yes yes yes yes yes yes
. shared sub- no no with yes yes yes
objects difficulty
3. Retrieval
. non-procedural yes in part in part B no no
(relatively)
. fast yes only on yes - = .
base
context yes yes yes = yes yes
. proximity yes no yes - yes yes
. formatted data limited yes yes E yes yes
4. Navigation no yes yes yes yes yes
6. Temporal
. in-place update yes yes yes - yes yes
. dynamic no no no no yes yes
behaviour
. concurrent yes yes yes # limited limited
access
. value no no no yes yes yes
inheritance
7. Views no yes yes = yes yes
10. Analysis
. function no no no - yes yes
integrated
with kernel
11. Multi-media
. unified model no no possible possible possible possible

Note: © ’-? jindicates no information available.

46

thought of as object-bases [Heather 1989] rather than pure database or object-
oriented systems. It should not be pretended that such a merger will be easy.
The cultural differences between the two approaches present many difficulties
[Tsichritzis & Nierstrasz 1988] and much research of a fundamental nature is
still required to attain a single complete multi-media model.

8: References

[Andrews & Harris 1987| Andrews, T, & Harris, C, (1987), Combining Language and
Database Advances in an Object-oriented Development Environment, OOPSLA ’87
Conference Proceedings, ACM SIGPLAN Notices 22(12) 430-440.

[Atkinson, Chisholm & Cockshott 1881] Atkinson, M P, Chisholm, K J, & Cock-
shott, W P, (July 1981), PS-Algol: an Algol with a persistent heap, ACM SIGPLAN
Notices 17(7); also available as Technical Report CSR-94-81, Computer Science Re-
port, Edinburgh University.

[Bain et al 1989] Bain, M, Bland, R, Burnard, L, Duke, J, Edwards, C, Lindsey, D,
Rossiter, N, & Willett, P, (1989), Free Text Retrieval Systems, A Report and Evalu-
ation, Taylor Graham, London.

[Blair & Maron 1985] Blair, D C, & Maron, M E, (1985), An Evaluation of Retrieval
Effectiveness for a Full-Text Document-Retrieval System, CACM 28 289-299.

[Blaha, Premerlani & Rumbaugh 1988] Blaha, M R, Premerlani, W J, & Rumbaugh,
J E, (1988), Relational Database Design: Using an Object-oriented Methodology,
CACM 31(4) 414-427.

[Bloom & Zdonik S B (1987)] Bloom, T, & Zdonik, S B, (1987), Issues in the De-
sign of Object-oriented Database Programming Languages, OOPSLA 87 Conference
Proceedings, ACM SIGPLAN Notices 22(12) 441-451,

[Borkin 1979] Borkin, S A, (1979), Equivalence properties of semantic data bases for
database systems, Technical Report of Laboratory for Computing Science, MIT, TR-
206.

[Chen 1978] Chen, P P-S, (1976), The Entity-Relationship Model - towards a unified
view of data, ACM TODS 1(1) 9-36.

[Codd 1970] Codd, E F, (1970), A Relational Model of Data for Large Shared Data
Banks, CACM 13(6) 377-387.

[Codd 1979] Codd, E F, (1979), Extending the Database Relational Model to capture
more meaning, ACM TODS 4 397-434.

[Connolly 1985] Connolly, R, (1985), The statute law on property database: an imple-
mentation of a full text data base on a relational data base management system, M.Sc.
Dissertation, Computing Laboratory, University of Newcastle upon Tyne, D313.

[Copeland & Maier 1984| Copeland, G, & Maier, D, (1984), Making SmallTalk a
Database System, Proc ACM/SIGMOD International Conference on the Management
of Data 14(2) 316-324.

[Dadam et al 1987] Dadam, P, Kuespert, K, Andersen, F, Blanken, H, Erbe, R, Gue-
nauer, J, Lum, V, Pister, P, & Walch, G, (1987), A DBMS Prototype to support
Extended NF2 Relations: An Integrated View on Flat Tables and Hierarchies, ACM
SIGMOD 356-367.

[Davis 1983] Davis, D, (1983), Keyword analysis of legal text, M.Sc. Dissertation, Com-
puting Laboratory, University of Newcastle upon Tyne D245.

47

[Diamandis 1986] Diamandis, I, (1986), An electronic filing system for an office envi-
ronment using SPIRES, M.Sc. Dissertation, Computing Laboratory, University of
Newcastle upon Tyne, D327.

[Eakins 1989] Eakins, J, (1989), SAFARI: A Shape Retrieval System for Engineering
Drawings, 11th Colloquium on Information Retrieval Research, Huddersfield Poly-
technic.

[du Feu 1977] du Feu, D, (1977), A Computer-based Welfare Benefits Information Sys-
tem, in: System Documentation, IBM UK, Scientific Centre, Peterlee; Hafner, C
D, (1981), An Information Retrieval System based on a Computer Model of Legal
Knowledge, Ann Arbor.

[Earl et al 1986] Earl, A N, Whittington, R P, Hitchcock, P, & Hall, A, (1986), Specifying
a Semantic Model for use in an Integrated Project Support Environment, in: Software
Engineering Environments, Sommerville, I, (ed), IEE Computing Series 7, London.

[Heather 1986] Heather, M A, (1986), Future Generation Systems in the Service of the
Law, in: Automated Analysis of Legal Texts, eds. Martino, A A, Socci Natali, F,
North-Holland, Amsterdam 643-660.

[Heather 1989] Heather, M A, (May 1989), Law as a Knowledge-Object Base, Interna-
tional Conference on Law & Artificial Intelligence, University of Bologna, Italy.
[Heather & Rossiter 1987a] Heather, M A, & Rossiter, B N, (1987), Database tech-

niques for text modelling: the document architecture of British statutes, University
of Newcastle upon Tyne, Computing Laboratory Technical Report no 227.
[Heather & Rossiter 1987b] Heather, M A, & Rossiter, B N, (1987), The Textual
Environment and Database Management Systems, in: Empirical Foundations of In-
formation and Software Science III, edd. Rasmussen, J, & Zunde, P, Plenum, New

York 45-62.

[Heather & Rossiter 1988] Heather, M A, & Rossiter, B N, (1988), Specialist Dictio-
naries in Electronic Form, Literary & Linguistic Computing 3(2) 109-121.
[Heather & Rossiter 1980a] Heather, M A, & Rossiter, B N, (1989), Syntactical Rela-

tions in Parallel Text, in: Proceedings 15th International ALLC Conference, Choueka,
Y, (ed.), Jerusalem 1988.

[Heather & Rossiter 1989b) Heather, M A, & Rossiter, B N, (1989), A General-
ized Database Management Approach to Textual Analysis, in: Proceedings 2nd In-
ternational Colloquium, Bible and Computer: Methods, Tools, Results, Champion-
Slatkine, Paris-Geneva 519-536.

[Heather & Rossiter 1989c| Heather, M A, & Rossiter, B N, (1989), Managing General
Data in Business Information Systems: Mediating the Relational Model for Text in
the Legal Office, University of Newcastle upon Tyne, Computing Laboratory Techni-
cal Report (in prep.)

[Howe 1983] Howe, D R, (1983), Data Analysis for Data Base Design, Edward Arnold,
London 126-167.

[Hudson 1985] Hudson, G, (1985), Establishment of a data base containing the informa-
tion of Hansard using a hierarchical data base management system SPIRES, M.Sc.
Dissertation, Computing Laboratory, University of Newcastle upon Tyne, D289.

[Kemper & Lockemann (1987] Kemper, A, & Lockemann, W M, (1987), Object-
oriented Database System for Engineering Applications, Proceedings ACM Special In-
terest Group on Management of Data, 1987 Annual Conference, Dayal, U, & Traiger,
I, (edd.), SIGMOD Record 16(3) 299-310.

[Linton 1982] Linton, A S J, (1982), The use of collocates as an aid to text retrieval, M.Sc.
Dissertation, Computing Laboratory, University of Newcastle upon Tyne, D226.

48

[Lorie 1981] Lorie, R A, (1981), Issues in databases for design application, IBM Research
Report RJ3176.

[Lorie et al 1985] Lorie, R, Kim, W, McNabb, D, Plouffe, W, & Meier, A, (1985),
Supporting Complex Objects in a Relational System for Engineering Databases, in:
Query Processing in Database Systems, Kim, W, Reiner, D S, & Batory, D S, (edd.)
145-155, Springer-Verlag, New York.

[Kowalski & Sergot 1987] Kowalski, R, & Sergot, M, (1987), Leith and Legal Logic Pro-
gramming, Computer Journal 30(3) 285; Leith, P, (1988), Legal Logic Programming,
Computer Journal 31(1) 92-93.

[Leith 1986] Leith, P, (1986), Fundamental Errors in Legal Logic Programming, Com-
puter Journal 29(6) 545-552.

[Maier 1986] Maier, D, (1986), Indexing in an Object-Oriented DBMS, Proceedings
International Workshop on Object-Oriented Database Systems, IEEE 171-182.
[McInnes 1989] Mclnnes, S, (1989), The Generic Relational Data Model: A new Frame-

work for Knowledge Representation, Deductive Systems Ltd, Technical Report 01-89.

[Mitchell 1989] Mitchell, J, (1989), Implementation of a Relational Textbase, Disser-
tation submitted for M.Sc., Computing Laboratory, University of Newcastle upon
Tyne.

[Mylopoulos, Bernstein & Wong 1980] Mylopoulos, J, Bernstein, P A, & Wong, H
K T, (1980), A Language Facility for Designing Database-Intensive Facilities, ACM
TODS 5 185-207.

[Nelson 1988] Nelson, T H, (Jan 1988), Managing Immense Storage, Byte 225-238.

[Newton 1981] Newton, J E, (1981), A "user friendly” interface for a law data base
retrieval system, M.Sc. Dissertation, Computing Laboratory, University of Newcastle
upon Tyne D212.

[Nixon et al 1987] Nixon, B, Chung, L, Lauzon, D, Borgida, A, Mylopoulos, J, & Stanley,
M, (1987), Implementation of a Compiler for a Semantic Data Model: Experience
with Taxis, ACM SIGMOD 118-131.

[Peckham & Maryanski 1988] Peckham, J, & Maryanski, F, (1988), Semantic Data
Models, ACM Computing Surveys 20(3) 153-189.

[Raymond & Tompa 1988] Raymond, D R, & Tompa, F W M, (1988), Hypertext and
the Oxford English Dictionary, CACM 31(7) 871-879.

[Rossiter 1988] Rossiter, B N, (1986), Full Text Database Management Systems: A
Model and Implementation for Law, in: Automated Analysis of Legal Texts, edd.
Martino, A A, & Socci Natali, F, North-Holland, Amsterdam 899-916.

[Rossiter 1987] Rossiter, B N, (1987), Machine Awareness in Database Technology,
Proceedings Symposium VI, Meta-intelligence and the Cybernetics of Consciousness.
XI International Congress of Cybernetics, Namur 1-9.

[Rossiter et al 1988] Rossiter, B N, Davis, P, Goodman, D S G, Ward, M K, & Heather,
M A, (1988), Generalised DBMS as a tool for research, University Computing 10(2)
71-79 & 11(2) 116.

[Sakai 1983] Sakai, H, (1983), Entity Relationship Approach to Logical Data base Design,
in: Entity Relationship Approach to Software Engineering, North-Holland 155-187.

[Salton 19886] Salton, G, (1986), Another Look at Automatic Text-retrieval Systems,
CACM 29 648-656.

[Sergot et al 1986] Sergot, M J, Sadri, F, Kowalski, R A, Kriwaczek, F, Hammond, P,
& Cory, H T, (1986), The British Nationality Act as a Logic Program, CACM 29
370-386.

49

[Smith & Smith 1977] Smith, J, & Smith, D, (1977), Data Abstraction, Aggregation
and Generalization, ACM TODS 2(2) 105-133.

[Sparck-Jones & Wilks 1985] Sparck-Jones, K, & Wilks, W, (1985), Automatic Natural
Language Parsing, Ellis Horwood.

[Stonebraker 1986] Stonebraker, M, (1986), Document Processing in a Relational Data
base System, The INGRES Papers, Addison-Wesley 357-375.

[Stonebraker, Anton & Hanson 1987] Stonebraker, M, Anton, J, & Hanson, E, (1987),
Extending a Database System with Procedures, ACM TODS 12(3) 350-376.

[Tsichritzis & Klug 1978] Tsichritzis, D C, & Klug, A, (edd), (1978), ANSI X3/SPARC
DBMS Framework, Report of the Study Group on Data Base Management Systems,
Information Systems 3.

[Tsichritzis & Nierstrasz 1988] Tsichritzis, D C, & Nierstrasz, O M, (1988), Fitting
Round Objects into Square Databases, ECOOP ’88 Proceedings, in: Lecture Notes
in Computer Science, Springer-Verlag 322 283-299.

[Walter 1989] Walter, C, (1989), Legal Abstractions in PLEX, a Legal Expert System

* for Determining the Validity of Patents, International Conference on Law & Artificial
Intelligence, University of Bologna, Italy.

[Wilson 1988]) Wilson, E, (1988), Justus: towards a Workstation for Information Re-
trieval in Law, Preproceedings 4th International Congress on Law and Computers,
Session X, Italian Ministry of Justice, Rome.

[Zaniolo et al 1986] Zaniolo, C, Ait-Kaci, H, Beech, D, Cammarata, S, Kerschberg, L,
& Maier, D, (1986), Object Oriented Database Systems and Knowledge Systems, in:
Kerschberg, L (ed), Expert Database Systems: Proceedings from the First Interna-
tional Workshop, Benjamin Cummings, Menlo Park.

