Nick Rossiter, Michael Heather
Typing in Information Systems

Computer Science and Digital Technologies
Northumbria University, Newcastle NE1 8ST, UK

Nick.rossiter1@btinternet.com

http://nickrossiter.org.uk/process/index.html
http://computing.unn.ac.uk/staff/cgnr1/index.htm

GRAPH OPERADS LOGIC

AGMP X GOL Tallinn 25-28 June 2013
Typing

• Most important property in computing science
• Defines for an attribute:
 – Permissible values
 – Permissible operations

• A type is a category of any complexity, including a discrete category
Simplest Typing in Category Theory

(a) A category with a terminal object

(b) The opposite category with typing arrows

\[
1_b : b \rightarrow 1_B
\]
Nature of Typing

• Where does typing come from?

• Typing resides in the system itself.

• Typing is of the nature of the system and forms part of the Universe.

• Typing must therefore reside in nature and arise from relationships in nature.

• The Universe consists of entities related one to the other.

• Thus each entity affects every other.
Existence and Cartesian Closure

• Existence is not just a first order effect but needs an inherent higher order formalism.

• The relationship between any pair of entities depends on every possible path between them.

• In category theory this is the property of cartesian closure found in the highest structure possible -- the identity natural transformation designated as the topos.

• However if every entity is related to every other it follows that the relationship is both ways but not just a simple inverse relationship as appears from the laws of physics.
Duality

- A category \mathbf{C} of objects and arrows between the objects will have a dual \mathbf{C}^{op} with arrows reversed.

- The whole universal structure of both-ways relationships will then be represented by the product $\mathbf{C}^{\text{op}} \times \mathbf{C}$.

- This gives rise to the principle of duality throughout the Universe.

- $\mathbf{C}^{\text{op}} \times \mathbf{C}$ is cartesian closed, with products, terminal object and exponentials.
Ubiquity of Duality

• Duality is a common enough concept in mathematics, philosophy and most of the sciences with some renowned examples like the mind-body duality.

 - It also appears in other versions of contrast as between the dynamic and the static and between global and local.

• To capture the full effect and subtleties of opposing views and relationships a single view of the duality is needed as a process (e.g. a monad).
Duality and Variance

● Duality is not a closed Boolean view.
 - Rather it encapsulates opposite orderings within a single (functorial) concept of variancy.
 - These may be conveniently labelled covariant and contravariant but only relative one to the other and not as absolute descriptions.

● Systems theory is a case in point where these different views need to be integrated.
 - Thus for object-oriented computing systems, covariance is assumed for specialisation (looking forward) and contravariance for generalisation (looking back).

● The natural categories of process as advanced by Whitehead encompass this contravariancy found in reality.
Covariant and Contravariant Functors

Opposite

- C to C^{op}
- C^{op} to D

Covariant F

- C to D
- C^{op} to D^{op}

Contravariant F-bar

- C to D^{op}
- C^{op} to D
Contravariance

- Highlighted by Lawvere in 1969 as basic property in the intension-extension relationship
 - Governing data values in the context of their name and type
 - Basic property of universe
- Lawvere defined the relationship between intension and extension in terms of adjoint functors with contravariant mapping
 - Used concept of hyperdoctrine
 - Some 'translation' needed for applied science
Why Contravariant?

The extension is of the form:

\[\text{value} \rightarrow \text{name} \quad \text{N:1} \]

The intension is of the form:

\[\text{name} \rightarrow \text{type} \quad \text{N:1} \]

If these arrows were reversed, they would not be determinations (functions) so can reject such forms:

\[\text{name} \rightarrow \text{value} \quad 1:\text{N} \]
\[\text{type} \rightarrow \text{name} \quad 1:\text{N} \]
Turn around one arrow

But the common attribute in extension and intension – \textit{name} – is codomain in extension and domain in intension.

So cannot do simple covariant mapping of one to the other.

Need to turn around the arrow in the intension

\[\text{name} \rightarrow \text{type} \quad \text{type} \rightarrow \text{name} \]

And map this onto \textit{value} \rightarrow \textit{name} in extension

So that \textit{value} is related to \textit{type} in the context of a common name
Contravariancy Technicalities

source arrow

Apply functor F

Turn source round

Map onto target

Square must commute

composition
Ultimate Contravariancy

• A three-level structure is sufficient to provide complete closure with internal contravariant logic providing a generalisation of negation.
 – Further levels are redundant

• Contravariancy across levels provides more sophisticated reversals such as reverse engineering.

• The ultimate contravariancy is to be found in the universal adjointness
 - between any pair of functors contravariant one to the other
 - to provide both the quantitative and qualitative semantics of intension-extension logic.
Worked Example of Three-level Architecture

- Choices for realisation in formal terms
- Informal look at structures and relationships
- Outline in informal categories
- Two-way mappings as adjunctions
- Examples of Contravariancy
Figure 1: Informal requirements for Information System Architecture

Downward arrows are intension-extension pairs

MetaMeta

Meta

Classify

Concepts

Constructs

Schema Types

Named Data Values

Policy

Organize

Instantiate
Formalising the Architecture

• Requirements:
 – mappings within levels and across levels
 – bidirectional mappings
 – closure at top level
 – open-ended logic
 – relationships (product and coproduct)

• Choice: Category theory as used in mathematics as a workspace for relating different constructions
Figure 2: Interpretation of Levels as Natural Schema in General Terms

- blue – category
- red – functor
- green – natural transformation
Figure 4: Defining the Three Levels with Contravariant Functors and Intension-Extension (I-E) Pairs
Figure 3: Example for Comparison of Mappings in two Systems
Categories: CPT concepts, CST constructs, SCH schema, DAT data,
Functors: P policy, O org, I instance,
Natural transformations: \(\alpha, \beta, \gamma \)
<table>
<thead>
<tr>
<th>Level</th>
<th>Template</th>
<th>Property</th>
<th>Relational Database (aggregation)</th>
<th>Abstract Data Type (encapsulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>name → type</td>
<td>attribute → property</td>
<td>table → aggregation</td>
<td>ADT → encapsulation</td>
</tr>
<tr>
<td>P'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CST</td>
<td>value → name</td>
<td>registration_no → attribute</td>
<td>birth_type → table</td>
<td>BST → ADT</td>
</tr>
<tr>
<td>O'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCH</td>
<td>name → type</td>
<td>car_reg → registration_no</td>
<td>birth_record → birth_type</td>
<td>aTree → BST</td>
</tr>
<tr>
<td>I'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAT</td>
<td>value → name</td>
<td>'x123yng' → car_reg</td>
<td>'<Smith', 25 mar 1980, 'Torquay' > → birth_record</td>
<td>instance of tree (nodes/links) → aTree</td>
</tr>
</tbody>
</table>

Figure 5: Examples of Levels in the Three Level Architecture

Cross-over arrows indicate contravariant mapping
If functors are adjoint, there is a unique relationship between them (a natural bijection).

Figure 6: Composition of Adjoints is Natural

Can write for instance \(\text{IOP} \dashv \text{P'O'I'} \) and \(\text{OP} \dashv \text{P'O'} \)
Adjointness

• Probably the most important feature of category theory

• Deals with relative ordering in duality between functors

• For dual functors L and R written (if holds):
 \[L --| R \]
 meaning L is left adjoint to R and R is right adjoint to L

• Unique solution to dual relationship between functors

• Full expression is a 4-tuple \(<L, R, \eta, \varepsilon>\)
Adjointness between Functors F and G mapping Categories L and R
Composition Triangles in Detail

a) unit of adjunction \(\eta \), b) co-unit of adjunction \(\varepsilon \)

If isomorphism, diagram collapses with \(\eta = 1 \) and \(\varepsilon = 0 \)

\(1_L = GF(L); FG(R) = 1_R \)