Nick Rossiter, Michael Heather Typing in Information Systems

Computer Science and Digital Technologies Northumbria University, Newcastle NE1 8ST, UK

Nick.rossiter1@btinternet.com

http://nickrossiter.org.uk/process/index.html http://computing.unn.ac.uk/staff/cgnr1/index.htm

GRAPH OPERADS LOGIC

AGMP X GOL Tallinn 25-28 June 2013

Typing

- Most important property in computing science
- Defines for an attribute:
 - Permissible values
 - Permissible operations

• A type is a category of any complexity, including a discrete category

Simplest Typing in Category Theory

(a) A category with a terminal object

(b) The opposite category with typing arrows

Cartesian Closed (potentially) Identity Functor (potentially)

Nature of Typing

- Where does typing come from?
- Typing resides in the system itself.
- Typing is of the nature of the system and forms part of the Universe.
- Typing must therefore reside in nature and arise from relationships in nature.
- The Universe consists of entities related one to the other.

4

Thus each entity affects every other.

Existence and Cartesian Closure

- Existence is not just a first order effect but needs an inherent higher order formalism.
- The relationship between any pair of entities depends on every possible path between them.
- In category theory this is the property of cartesian closure found in the highest structure possible -- the identity natural transformation designated as the topos.
- However if every entity is related to every other it follows that the relationship is both ways but not just a simple inverse relationship as appears from the laws of physics.

Duality

- A category **C** of objects and arrows between the objects will have a dual **C**^{op} with arrows reversed.
- The whole universal structure of both-ways relationships will then be represented by the product C^{op} x C.
- This gives rise to the principle of duality throughout the Universe.
- C^{op} x C is cartesian closed, with products, terminal object and exponentials

Ubiquity of Duality

- Duality is a common enough concept in mathematics, philosophy and most of the sciences with some renowned examples like the mind-body duality.
 - It also appears in other versions of contrast as between the dynamic and the static and between global and local.
- To capture the full effect and subtleties of opposing views and relationships a single view of the duality is needed as a process (e.g. a monad).

Duality and Variance

- Duality is not a closed Boolean view.
 - Rather it encapsulates opposite orderings within a single (functorial) concept of variancy.
 - These may be conveniently labelled covariant and contravariant but only relative one to the other and not as absolute descriptions.
- Systems theory is a case in point where these different views need to be integrated.
 - Thus for object-oriented computing systems, covariance is assumed for specialisation (looking forward) and contravariance for generalisation (looking back).
- The natural categories of process as advanced by Whitehead encompass this contravariancy found in reality.

Covariant and Contravariant Functors

Opposite **Covariant F** C Cop Cop D а а Fa a F Ffop fop fop Fb b b b C D Fa C a D Fa a f FfF \overline{F} $\overline{F}f$ f Fb h Fb b **Covariant F** Contravariant F-bar 🥃

Contravariancy

- Highlighted by Lawvere in 1969 as basic property in the intension-extension relationship
 - Governing data values in the context of their name and type
 - Basic property of universe
- Lawvere defined the relationship between intension and extension in terms of adjoint functors with contravariant mapping
 - Used concept of hyperdoctrine
 - Some 'translation' needed for applied science

Why Contravariant?

- The extension is of the form:
 - value \rightarrow name N:1
- The intension is of the form:

name \rightarrow *type* N:1

- If these arrows were reversed, they would not be determinations (functions) so can reject such forms:
 - $name \rightarrow value$ 1:N
 - type \rightarrow name 1:N

Turn around one arrow

But the common attribute in extension and intension – *name* – is codomain in extension and domain in intension.

So cannot do simple covariant mapping of one to the other.

Need to turn around the arrow in the intension

 $name \rightarrow type \longrightarrow type \rightarrow name$ And map this onto value $\rightarrow name$ in extension
So that value is related to type in the context of a
common name 12

Contravariancy Technicalities

composition

Ultimate Contravariancy

• A three-level structure is sufficient to provide complete closure with internal contravariant logic providing a generalisation of negation.

Further levels are redundant

- Contravariancy across levels provides more sophisticated reversals such as reverse engineering.
- The ultimate contravariancy is to be found in the universal adjointness
 - between any pair of functors contravariant one to the other
 - to provide both the quantitative and qualitative semantics of intension-extension logic.

Worked Example of Three-level Architecture

- Choices for realisation in formal terms
- Informal look at structures and relationships
- Outline in informal categories
- Two-way mappings as adjunctions
- Examples of Contravariancy

Downward arrows are intension-extension pairs Figure 1: Informal requirements for Information System Architecture

Formalising the Architecture

- Requirements:
 - mappings within levels and across levels
 - bidirectional mappings
 - closure at top level
 - open-ended logic
 - relationships (product and coproduct)
- Choice: Category theory as used in mathematics as a workspace for relating different constructions

blue – category, red - functor, green - natural transformation

Figure 2: Interpretation of Levels as Natural Schema in General Terms

black - objects

Figure 4: Defining the Three Levels with Contravariant Functors and Intension-Extension (I-E) Pairs

(Organisational interoperability)

Figure 3: Example for Comparison of Mappings in two Systems Categories: CPT concepts, CST constructs, SCH schema, DAT data, Functors: P policy, O org, I instance, Natural transformations: C3 20 ~

Level	Template	Property	Relational Data-	Abstract Data
			base (aggrega-	Type (encapsula-
			tion)	tion)
CPT	$name \longrightarrow type$	attribute \longrightarrow	table \longrightarrow aggre-	$ADT \longrightarrow encap-$
		property	gation	sulation
P'	\sim	\sim		\sim
CST	value \rightarrow name	registration_no	$birth_type \longrightarrow ta$ -	$BST \longrightarrow ADT$
		\rightarrow attribute	ble	
O'	Z <	~ <		<u> </u>
SCH	$name \longrightarrow type$	$car_reg \longrightarrow regis-$	$birth_record \longrightarrow$	aTree \longrightarrow BST
		tration_no	birth_type	
I'	Z <	\sim	~ <	Z <
DAT	value \rightarrow name	'x123yng' \longrightarrow	<'Smith', 25 mar	instance of tree
		car_reg	1980, 'Torquay' $>$	$(nodes/links) \longrightarrow$
			\longrightarrow birth_record	aTree

Figure 5: Examples of Levels in the Three Level Architecture

Cross-over arrows indicate contravariant mapping

If functors are adjoint, there is a unique relationship between them (a natural bijection).

Figure 6: Composition of Adjoints is Natural

Can write for instance IOP -| P'O'I' and OP -| P'O'

Adjointness

- Probably the most important feature of category theory
- Deals with relative ordering in duality between functors
- For dual functors L and R written (if holds):
 L --| R

meaning L is left adjoint to R and R is right adjoint to L

- Unique solution to dual relationship between functors
- Full expression is a 4-tuple <L, R, $n_{23} \epsilon$ >

Adjointness between Functors F and G mapping Categories L and R

F - G

Composition Triangles in Detail

a) unit of adjunction 9% b) co-unit of adjunction 2%

If isomorphism, diagram collapses with $\eta = 1$ and $\epsilon = 0$ 1_L = GF(L); FG(R) = 1_R