
Constructing Standards for Cross-Platform Operation

B.Nick Rossiter
Computing Science

Newcastle University, NE1 7RU, UK
email: B.N.Rossiter@ncl.ac.uk; tel: +44 (0)191 222 7946

Michael Heather
Sutherland Building

University of Northumbria at Newcastle, NE1 8ST, UK

1 Abstract

A universal representation is developed, based on the ISO standards for Information Resource
Dictionary System (IRDS), with the aim of providing a complete definition of an information
system from the physical data values held to the concepts employed for data and function
description and real–world abstractions. It is discussed how such a multi–level model can be
used to control the evolution of information systems by creating an environment where het-
erogeneous systems can be compared. Current trends towards more structured programming
techniques and more disciplined software engineering environments lead to the potential for
considerable benefits from using an IRDS approach. This potential, however, will only be
realized if a formal underpinning of the IRDS standard is achieved and then only reliably if
the formal is constructive and the underpinning is enabling not just supporting..

The application of standards to interoperable systems is frustrated by their complexity.
Consistency across integrated levels in open environments can be satisfied by a single reference
model but only if it has natural closure. Standards can usually be relied on when applied
to closed systems but there is not the same guarantee in mixed systems based on different
standards. The purpose of a reference model is to support corporate information systems by
integrating the different standards but formal verification may need to go beyond first-order
logic. The ISO standard Information Resource Dictionary System (IRDS) can be shown to
have the appropriate formal basis to perform the role of a universal reference model

About the author

Nick Rossiter is lecturer in the Department of Computing Science with particular interests in
databases and systems analysis.

Michael Heather is senior lecturer in law where he has been engaged on research into computers
and law since 1979.

Suggested Keywords

Heterogeneous Systems, Computerized Information, Cross-platform Compatibility, Client/server
Integration, Data Consistency, Category Theory, Natural Transformations, Policy Closure,
Reference Model Standards.

1



2 Introduction

Interoperability is not simple, linear or Boolean. It is multi-level, distributed and usually
made up of heterogeneous embedded micro-kernels. For consistency, security and safety,
highly-reliable local subsystems may be inadequate. For overall assurance there must also be
reliable interoperable connections at the global level.

There is both a theoretical and a very practical dimension. If a company’s information
system fails, the company fails. Liquidation of the whole enterprise often quickly follows.
Robustness is therefore critical particularly in high-consequent computing. The cross-platform
software must be able to cope with demands that may not be specifiable in advance. The
functionality may be supporting or it may be enabling. If it is supporting it is self-organizing
and naturally reacts to the unforeseen. If merely enabling it can only respond as pre-specified.
For reliance across levels in the real-world the linking software needs to provide either a natural
closure or full information of all limiting constraints.

Examples at the message level of a top layer of awareness needed to deal with the widest
possible type of client/server system can be seen in relational databases. Transformations
within the relational model are generally performed using the ISO standard query language
SQL but there are different flavours of SQL. With object databases the situation is more
difficult with no ISO standard emerging although attempts are being made at formulating
an industrial consensus[2]. This gives rise to difficulties in relating complex objects between
different object-oriented methods1 like the BM (Bosch Method), OMT (Object Modelling
Technique) and OOSE (Object-Oriented Software Engineering) which cannot be easily uni-
fied across heterogeneous platforms. Standards like CORBA[4] (The Common Object Request
Broker Architecture) are therefore to be used with care. Although it is a standard for inter-
face specification in support of interoperable distributed computing, CORBA does not, for
example, provide an inherent security specification. Problems experienced with Java provide
another striking example[5]2.

The question is how to unify the methods not just the language[11]. These difficulties
show that a logical level is incomplete without an associated formal reference level to describe
the representation of real-world entities, properties, relationships, typing, etc. It was for this
type of purpose that the ANSI Standard Reference Model (X3.138) was developed in the
1980s, emerging in 1993 as an associated part of the ISO standard for a framework for the
Information Resource Dictionary System (IRDS).

The aim of this paper is to investigate whether there is a formal model, for the ISO
standards for Information Resource Dictionary System (IRDS), and to see if it can provide a
complete definition of an information system from the physical data values held to the concepts
employed for data and process representation and client/server architecture. We shall see
how such a multi-level model can be used to control the evolution of information systems
by facilitating the comparison of heterogeneous systems. For current trends towards more
structured programming techniques and more disciplined software engineering environments

1UM (the Unified Method) was confidently predicted for the near future at OOPSLA95 but at Software
Development 96 it was admitted that it was only the language and not the methods that were ready for
unification. A draft of the unified notation is available at [22].

2Although Java checks that a code is valid it then expects all code that passes the validation tests to be
properly constructed under the rules. This provides an opportunity for rogue applets to carry into a system
any type of computer virus.

2



are leading to considerable benefits by the use of an IRDS approach. This potential, however,
can only be realized if a formal underpinning of the IRDS standard is achieved[19].

Interoperable systems belong to a class of complex objects that require advanced consider-
ations when developing standards. They even raise the question of standards for standards in
certain issues: for example, if a system is to be autonomous it must be able to select its own
standard. For the system that is truly decentralized there cannot even be a choice imposed
by some overall command. There is the need to go beyond the simple concept of a standard
to that of the reference model. It seems that the only universal standards are natural ones as
found in mathematics. There is the particular problem of how to deal with transitions across
levels where there are traditional difficulties in selecting appropriate formal methods. The
argument here is that only a constructive formalism is adequate for computational systems
and this paper takes a constructive approach relying on recent results from category theory.

Current developments from VLSI to ULSI (ultra large scale integration) in hardware with
CMOS technology moving to 0.15µ m processing means that in a short time it will be pos-
sible to mix diverse functions like analogue and digital logic, power capabilities and non-
volatile memory technologies all within a single integrated chip of less than one centimetre
square – all calling for internal cross-platform support. Furthermore the sheer complexity
and colossal problems facing designers means that previous designs will have to be reused.
Plug-compatibility of design macro cells will need to be developed. Verification for the use of
recycled designs for business process re-engineering can only be possible by the use of cross-
platform multilevel formalisms[20].

One immediate advantage of a formal representation of the IRDS is for use to control
transformations in reusable or recycled systems, written in either a database, network or
programming paradigm, with consistency and integrity. Indeed IRDS merges these quite
different paradigms.

3 Rationale

There is a problem in dealing with layers or levels and transitions between levels in developing
reference models. Interoperable systems require reference models rather than just standards.
This does not mean that standards are superseded but rather subsumed. For example the
ISO family of OSI standards[16] are widely accepted and successfully used as a convention for
cooperative work but their value is limited to the syntactical level. For while there is internal
consistency in the standard there is no guarantee that the application of the standard will
result in a self-consistent system. This need not cause too much concern for implementers
in a local system where everything is under their own control. A programming language or
a LAN protocol is a close enough approximation to a closed system where little difficulty
may be experienced in practice. However, as soon as any kind of openness or independent
autonomicity is introduced, another level appears requiring closure at an even higher level.
In terms of logic, higher-order is needed: first-order logic will just not do to connect between
levels. The result is a need for a meta-meta level. Otherwise cross-platform operation is
inadequate.

What is needed is a reference level in its most abstract form which can give this provable
ultimate closure. Mathematics gives us this third-level closure through constructive methods
for defining the reference model for applications like client/server systems. This need has

3



been recognized to a limited extent by standards bodies who have produced reference models
which relate local standards across a number of levels. However, true reference models are
still few and far between.

It is important to bear in mind what is meant by a reference model[3]. If we consider the
client/server context as an example, the reference model for OSI is not itself the set of protocols
for a communications system. It is a framework for the identification and design of protocols
for existing or for future communications systems. It enables engineers to identify and relate
together different areas of standardization. OSI does not imply any particular technology or
methods of implementing systems. Put simply, the reference model helps engineers to design
protocols for computing communications systems.

This multi-level context of the reference model also raises problems in the development
of the theory which is always needed to give underlying confidence in matters of consistency
and reliability, etc. Formal methods where limited to set-based approaches with axiomatic
sets and first-order logic may well be satisfactory in theory for localized systems. However, in
practice first-order predicate logic involves considerable mental effort, is difficult to learn and is
viewed as an academic language whose application is to some extent an art[10, 12]. Relational
and functional theories are much more suited to representation of real-world activities and
relationships[17] but have been rather neglected.

Current formal methods lend themselves to partial solutions which may breakdown when
their limits are tested; they involve complex manipulations because of their reliance on first
order logic; such logic is not natural to practitioners; methods involving relations and functions
may be better building blocks as ordering. It may therefore be appropriate to question
the faith in formal methods that are not constructive. The interim UK defence standard
DEFSTD 00-55 makes the use of formal methods mandatory and this has been followed in
other countries. However, experiment has shown that use of formal notation does not lead
inevitably to improving the quality of specifications. Unless they are solidly based on empirical
evidence, formal methods can be dangerous and costly[6]. It should be emphasized in passing
that this need for an empirical basis for formal methods arises because the formal methods
employed are axiomatic. Constructive formal methods should be reliable without the support
of empirical data which may not be always available.

In addition theories of distributed cross-platforms need characteristics like self-referencing
and multilevel closure. It is therefore necessary to look to mathematical operations like
functors, adjunctions and natural transformations as found in the constructions of category
theory[1].

In this paper we seek to show that the IRDS has a constructive formal basis and can
be relied on for this reason. It is therefore a valid method for formalizing a cross-platform
perspective of the construction and implementation of information systems.

4 Levels in the Universal Reference Model

As indicated above, it is always necessary to go one level up to address the physical level
from a logical standpoint. A minimum requirement is to know names, constraints, typing,
etc. In modern client/server systems for example, this is the function of the system catalogue
which for a relational database system, for instance, includes descriptions of the relation
names, attribute names, attribute domains or types, key i.e. identifying attributes, other

4



constraints, views, storage structures and indexes. In a network database, information held in
the catalogue includes descriptions of record types, set types and physical organization. In a
COBOL program, the data division is held in a catalogue giving information on record types,
field types and their pictures. In C++ or Java, classes define data structures, methods and
their abstractions.

For client/server systems, the specification includes:

• the overall layout of the system including mainframe-centric or network-centric organi-
zation;

• hardware components;

• the segmentation and allocation of functions between client and server;

• distributed database design;

• participating client/server operating systems (Unix, Windows 95, Windows 5.x, Win-
dows NT, XWindows, AIX, OS/390, OS/2, etc);

• selection of middleware (CORBA, ODBC, COSE, GUI builders, CDE, etc);

• declaration of network technology (SNA, ISDN, LAN, internet, ETN, TCP/IP, EDI-
FACT, etc);

• client and server program structure (e.g. documentation of Scripts).

For instance nearly all system catalogues today are active in the sense that they are a
dynamic automatic source of naming and typing information for programs accessing the sys-
tem (rather than a passive static reference). This makes the catalogue the cornerstone of the
information system, often being subjected to a very high rate of searching activity. Clearly
a major advantage of active catalogues is that system type changes are made once in the
catalogue rather than replicated through many source programs.

However, a logical level is incomplete without an associated formal reference level to de-
scribe how it represents real-world entities, properties, relationships, typing, etc. This refer-
ence level deals with meta-meta data. Another way of looking at this level is to view it as
dealing with the policy of the model: why is a particular construction in the model available
and what semantic capability does it handle?

This comparison of logic and principles is performed against a reference or neutral layer
which contains a superset of the facilities for a particular platform or application model. The
reference layer contains as data the principles for data and activity representation and for
each application the concepts which capture these principles. There is therefore a mapping
from principles to schema intension for each application model in turn.

In relational systems with all data held in tables, the meta-meta level is implicitly part
of the model. The freeness of the object-oriented paradigm, on the other hand, means that
the meta-meta level needs to be constructed explicitly to control the representation of classes,
objects, properties, inheritance, composition, methods, etc. In a COBOL system, wrapper
constructions are increasingly used to provide encapsulation of programs with pre-determined
interfaces to emulate object constructions. Other examples are the class of shell scripts and

5



functions like Korn shells and similar patches for unix or motif widgets in XWindows. How-
ever, these shells and wrappers are at the meta level: the meta-meta level would describe the
purpose of wrappers and the facilities used for their construction. This also seems to be the
crux of the problem with Java mentioned above. Applets are at the meta level and it is the
metameta level which gives the overall reliability.

These are particular examples of the message level which provides a top layer of aware-
ness which has to be developed further to deal with the widest possible type of information
systems. It was for this kind of purpose that the ANSI Standard Reference Model (X3.138)
was developed in the 1980s[8], emerging in 1993[14] as an associated part of the standard
for a framework for Information Resource Dictionary System (IRDS) developed in 1990 and
1993[13]. Among early language bindings in IRDS were specifications for Pascal, COBOL, C
and SQL. Language bindings can in principle be defined for any language. However little use
seems to have been made of the IRDS but this may be because only recently has there been
much need to cross levels in systems work.

In the meantime attention has been concentrated on the OSI seven-layer model for open
systems because it provides a potential means for commercial suppliers to provide compati-
ble components for different systems. However, while these may be compatible, there is no
guarantee that they are consistent. This is because the OSI set of standards together provide
a reference model but not a universal reference model. The IRDS on the other hand has the
internal characteristics of a universal reference model.

The four levels of the IRDS can be shown to capture the universal nature of the reference
model because it can be demonstrated that these can be constructed formally. Before we
attempt to show this we should examine closer the four levels and their inter-relations to see
how they bear out the discussion so far.

6



5 The Information Resource Dictionary System IRDS

Before embarking on a full formal description of the IRDS, some understanding and informal
insight into its interpretation would be useful. Reference should be made to the diagram in
the original standard[13]. The IRDS is constructed on four levels. Each level taken with its
adjacent level acts as a level pair so that there are three level pairs across the four levels. This
means that each point at each level is directly related to a point at the other level in the level
pair as shown in Figure 1.

level terminology instances interpretation example
(relational
model)

1 meta-meta
/policy
level

usual abstractions (ag-
gregation, composition,
inheritance, association,
etc)

mission (natural con-
cepts)

real-world
abstrac-
tions

2 meta/ oper-
ational level

abstractions at policy
level

organizational
(high-level oper-
ational/analytical
tools)

available
constructs

3 Intension
level

network features and
functions

formal declaration,
schema and labels

data names

4 Extension
level

data values satisfying
the intension

the information itself data values

Figure 1: Interpretation of Levels in the IRDS

The top level is the Information Resource Dictionary Definition Schema (IRDDS), in which
concepts relating to policy and philosophy are defined. For example, object-oriented abstrac-
tions are to be declared at this level. In principle, only one instance of an IRDDS need be
defined for a platform. In a coherent system there can be only one collection of such concepts.
With the open-ended nature of object-oriented structures, however, some extensibility may
be required.

The second level is the Information Resource Dictionary Definition (IRDD) in which schema
facilities are defined. The context of each platform will have its own IRDD definition. For
example a COBOL IRDD would declare that record-types were an aggregation of single-
or multi-valued data field-types while one for SQL would declare that table-types were an
aggregation of single-valued data fields.

The third level is the Information Resource Dictionary (IRD) which defines the intension for
an application, giving names and constraints. There will clearly be many intensions defined in
an organization, one for each application. Names, types and other constraints will be given to
data objects, network connections, protocol names and signatures, server and client functions,
etc.

7



The fourth level is the Information Resource Data (APP) which gives the extension, the
data values. There will be one extension for each intension, the values being consistent with
the names and constraints of the intension. Data values may be simple objects as in SQL or
complex objects as in computer-aided design and multimedia systems.

The whole diagram represents one platform, paradigm or model. Take as an example the
relational model. Level 1 would be real-world abstractions; level 2 would be the constructs
available; level 3 would be the data names; and level 4 would be the data values. The four
levels with their terms, instances, interpretation and the corresponding components of the
relational model can be summarized in the table of Figure 2.

Between each level the mapping, between the level pair enables data at one level to be
related to data at a lower level. For the same example of the relational data model, the level
pair between levels 1 and 2 would be the association of an abstraction (say aggregation), with
a constructive facility in the model (say table in this case); the level pair between 2 and 3
would be the association of a construction in the model (say table) with the name of a table;
and the level pair between 3 and 4 would be the association of a data name with a data value.
Figure 2 shows schematically the mappings between the various levels.

level IRDS standard mapping example of level-pair
1 concepts aggregation

↓ Policy ↓
2 constructs table

↓ Org ↓
3 intension name of table

↓ Data ↓
4 extension data value

Figure 2: Mappings between Levels in the IRDS

Between each level the mappings are strictly defined by their starting and terminating
points in the respective levels. These may not be immediately obvious in the original standards
diagram but are brought out in the informal diagram of Figure 3 together with more explicit
interpretations of the levels. In particular it should be noticed that the interpretations of the
mappings can only be appreciated by considering both directions for each respective mapping.
Starting from the top level in the downward direction we can further expand the mappings
shown in Figure 2.

• Between levels 1 and 2 (IRDDS and IRDD), there is the mapping Policy acting as a level
pair. This level pair exists only in IRDS-type systems in which constructive facilities
in a system are related to real-world abstractions. For example, Policy would indicate
how a network-centric capability is made available in a particular approach.

• Between levels 2 and 3 (IRDD and IRD), there is the mapping Org acting as a level pair.
This level pair provides a standard data dictionary function of, for instance, saying which
tables are available in a relational system or which servers are available on a network.

• Between levels 3 and 4 (IRD and APP), there is the mapping Data acting as a level
pair. This level pair can be thought of as the state of the art of an information system:
to link values to names so that data can be addressed by name rather than by physical
location.

8



• Between levels 1 and 4 (IRDDS and APP), there is the mapping Platform acting as a
level pair. This level pair short-circuits the navigation through four levels by giving a
direct mapping from real-world abstractions to data values. The use of this mapping is
described later.

Information Resource
Dictionary Definition

Schema (IRDDS)

Information Resource
Dictionary Definition

(IRDD)

Information Resource
Dictionary

(IRD)

Information Resource
Data
(APP)

mission

management

enterprise

information

?

6MetaMeta Policy

?

6Meta Org

?

6 DataName
?

6

Sys Platform

concepts

constructs

intension

extension

Figure 3: Interpretation of IRDS in Schematic Form

The IRDS standard is the basis for relating heterogeneous systems across platforms, that
is systems based on different paradigms. While there is only one instance of the top level (the
IRDDS), this level is extensible and new concepts and abstractions can be added as desired.
From the point of view of client/servers, the IRDS provides the ability to run an organization
with many different paradigms all integrated through the type of structure shown in Figure
3. The critical mapping is Platform, that is the arrow from IRDDS to APP, relating concepts
to values. By determining this mapping for all types of system, the problems arising in re-
engineering are avoided to some extent as all types of approach to information systems can
be accomodated and run in an integrated fashion. The way that federated database systems
are managed[7] is an example of this approach.

The next task is to formalize the diagram in Figure 3 so that a sound scientific basis can
be developed for the IRDS model to handle heterogeneous systems.

9



6 Formalizing the IRDS

Constructive mathematics attempts to develop logically what works in practice and can pro-
vide the necessary universality for interoperability of heterogeneous data systems with consis-
tency and quality assurance in the real-world. Category theory[1] is particularly appropriate
for modelling multi-level relationships for it is essentially concerned with links between objects.

Category theory provides a universal construction for formalizing information systems.
Rather this should read the universal construction for the theory shows that there is only
one. It is this uniqueness that provides the universalness that provides the basis of a general
consistent system. An example is now given for a prototype information system focusing on
the aspect of a cross-platform system as a heterogeneous distributed database relying on the
categorical product construct as a data model. In this approach, each class definition can be
identified as a collection of arrows (functions) forming a category IRD and each family of
object values conforming to a particular class definition as a category APP. The mapping
from the intension (class definition) to extension (object values) is made by a functor Data
which enforces the various constraints specified in IRD. Category IRD is the intension
corresponding to the third level in IRDS and APP is the extension corresponding to the
fourth level.

In reality the intension category IRD is a family of categories, representing definitions
of classes, associations (relationships) and coproduct structures indicating inheritance hier-
archies. The arrows within it may be methods as in object-based systems, network connec-
tions between clients and servers, logical connections as in network databases, or functional
dependencies as in relational database schemas. It should be emphasised that categorical
approaches naturally include procedures and functions through the underlying arrow concept
ensuring that both structure and activity can be modelled in a multi-level manner. The cate-
gory APP is also a family of categories, representing object values and association instances.
The functor Data mapping from the intension to the extension not only connects a name to
its corresponding set of values but also ensures that constraints specified in the schema, such
as functionalities of relationships, membership classes and functional dependencies, all hold
in the extension.

It is relatively straight-forward in category theory to extend the intension and extension
two-level structures in a universal manner to handle the four levels of IRDS. In categorial
terms each of the four levels of IRDS is defined as a category. Between each level there is
a higher-order function, a functor, which ensures that certain consistency requirements are
met in the mapping between the source and target categories. The abstractions level (top)
is a category IRDDS which defines the various abstractions available for modelling real-
world data. The next level is a category IRDD defining the various construction facilities
available for representing abstractions and data in a particular system. There is therefore, for
one instance of IRDDS, many instances of IRDD, one for each type of model (relational,
network, COBOL, etc).

The data functor (level pair) Policy maps target objects and arrows in the category
IRDDS to image objects in the category IRDD for each type of system. This mapping
provides at the meta-meta level the data for each kind of system, that is to say how each ab-
straction is to be represented. We also label the functor pair Org relating for each system the
constructions in IRDD with the names in a particular application in IRD. Combining these
new constructions with the product ones above gives the direct and universal representation

10



of IRDS as shown in Figure 4

In category theory, this diagram is a composition of functors with Platform as the overall
functor from IRDDS −→ APP, such that for each type of information system:

Platform = Data ◦Org ◦ Policy

and

Sys = MetaMeta ◦Meta ◦Name

In order to relate concepts across platforms, we need to compare the functors Platform :
IRDDS −→ APP for each of our COBOL, network, relational, object-oriented systems, etc.
This comparison is a natural transformation.

IRDDS IRDD

IRDAPP
Name

Data

Policy

MetaMeta

P latform Org MetaSys

��

��

��

��

��

�� @@

@@

Figure 4: IRDS Levels in Functorial Terms

7 Implementation

As part of this work, an example prototype information system was developed called the Cat-
egorical Product Data Model (CPDM) which can formalize, for instance, the object-relational
model[18]. The purpose of this prototype was to test the theoretical representation given in
section 6 and to examine the ease with which such a representation could be implemented on
a computer.

A prototype[15] of CPDM was implemented using the platform of P/FDM[9], an imple-
mentation of the functional database model in Prolog, from Aberdeen University. Categories
and functors were implemented so that the two categories IRD and APP could be defined
together with the mapping Data between them. In the actual work described in [15] the
categories IRD and APP are called INT (for intension) and EXT (for extension) respec-
tively. It is relatively straight-forward in category theory to extend the product data model
CPDM, defined already as a two-level structure, in a universal manner to handle the four
levels of IRDS. A further demonstrator project is planned to illustrate the advantages of our
approach and to explore further the management of the four-level architecture for assisting in
the control of cross-platform operations.

11



8 Discussion

A formal universal description, based on the ISO standards for Information Resource Dic-
tionary System (IRDS), can therefore be developed and implemented to provide a complete
definition of an information system from the physical data values held to the concepts em-
ployed for data and function representation and real–world abstractions. Such a multi–level
formalism model can be used to control the evolution of information systems by creating an
environment where heterogeneous systems can be compared for cross-platform performance.
Current trends towards more structured programming techniques and more disciplined soft-
ware engineering environments can very usefully exploit the IRDS approach. This potential
which the IRDS possesses, however, will only be realized for consistent interoperability if a
formal underpinning of the standard is achieved.

The constructions of the IRDS in systems offer a certain path for improving our ability to
deal with heterogeneity. The universal basis provides a predictable and provable behaviour
which is such an important aspect if heterogeneous information systems are to be reliable and
productive. Essentially the formal basis for IRDS assists in developing a reference model to
relate policy statements in different models and environments with consistency and integrity.
This is the crux of interoperability.

A categorial IRDS achieves greater power than that envisaged in the original standards.
For instance Spurr[21] comments on the difficulties of using the IRDS standard dictionary with
CASE tools because of the lack in IRDS of a natural way of modelling object structures. Our
work[15] shows the natural correspondence between categorical databases and object struc-
tures making possible a complete and faithful representation of the object-oriented paradigm
across the four levels.

A possible difficulty is that this approach may require a complete knowledge of all features
of every type of system available. There are systems developed by current procedures of
software engineering which are fully documented in machine-readable form at a conceptual
level. However, some other systems developed under ad hoc procedures are likely to be
documented incompletely and in a non-conceptual manner. The top level IRDDS is always
available but an IRDD may not be available for all paradigms. There is clearly a limit to
the range of paradigms that could be covered in IRDD structures. This limit is the extent to
which a paradigm can be conceptualized. IRDD are likely to be defined in reasonable detail
provided the paradigm used is not too idiosyncratic, has clearly-defined schema facilities and
these have been used in the applications. Old COBOL programs, where data and program
divisions are defined, should present no problem here. Assembler programs with ad hoc data
definition structures are much harder because data structures and typing information only
appear as embeddings in character strings.

Even with a clearly-defined IRDD paradigm, there may still be difficulties if, in the original
system, there are problems with incomplete or conflicting schema information or code has been
written bypassing the conceptual tools of a system. Nevertheless there is no difficulty that
cannot be solved (at least in principle) by going to higher levels because of the infinite closure
property of the four-level approach.

We therefore see these techniques being more useful in coping with well-defined systems,
even if they are using outdated methods, than poorly-engineered historical software where the
case for a complete rewrite is obviously stronger. The improvements in languages, for instance
Microfocus COBOL and Visual BASIC, and the greater emphasis on formal schema design

12



in current software engineering both indicate that future problems will be more amenable to
the four-level approach.

It is, for this reason, suggested that current trends towards more structured program-
ming techniques and more disciplined software engineering environments should be leading
to greater use of this four-level IRDS standard with its formal underpinning. Our conclusion
is that theory shows that, for situations where there are heterogeneous systems as in cross-
platform operation, client/servers, legacy software, etc, which have to be coherently designed
and implemented, there is no other way forward than by this four-level closure path or an
equivalent framework to this categorical approach. For such systems presuppose universal
techniques to ensure consistency and integrity across time and distribution.

References

[1] Barr, M, & Wells, C, Category Theory for Computing Science, Prentice-Hall (1990, 2nd
edition 1995).

[2] Cattell, R, The Object Database Standard. ODMG Release 1.2, Morgan Kaufmann (1996).

[3] Clements, Alan, Standardization for Information Technology, BSI Catalogue no: PP
7315, at page 26 (1987).

[4] The Common Object Request Broker: Architecture and Specification, Object Management
Group, Framingham, Mass. (1993).

[5] Dean, D, Felten, E W, & Wallach, D S, Java Security: From HotJava to Netscape and
Beyond, Proc. Symp. Security and Privacy, IEEE CS Press, 190-200 (1996).

[6] Fenton, N, & Pfleeger, S l, Can Formal Methods Always Deliver?, IEEE Computer 30(2)
34 (1997).

[7] Fiddian, N J, Gray, W A, Ramfos, A, & Cooke, A, Database Meta-Translation Technol-
ogy: Integration, Status and Application, Database Technology 4, 259-263 (1992).

[8] Gradwell, D, Developments in Data Dictionary Standard, Computer Bulletin, September
1987.

[9] Gray, P M D, Kulkarni, K G, & Paton, N W, Object-Oriented Databases: A Semantic
Data Model Approach, Prentice Hall (1992).

[10] Gries, D, The Need for Education in Useful Formal Logic, IEEE Computer 29(4) 29-30
(1996).

[11] Heather, M A, & Rossiter, B N, Content Self-awareness in Distributed Multimedia Pub-
lishing: the Need for a Unifying Theory, in: Third International Workshop on Principles
of Document Processing (PODP’96), ed. Nicholas, C, & Wood, D, Lecture Notes in
Computer Science 1293 Springer-Verlag 35pp (1997).

[12] Holloway, C M, & Butler, R W, Impediments to Industrial Use of Formal Methods, IEEE
Computer 29(4) 25-26 (1996).

13



[13] Information technology - Information Resource Dictionary System (IRDS) framework,
Standard ISO/IEC 10027 (1990); 10728 (1993).

[14] Information technology - Reference Model of Data Management, Standard ISO/IEC
10032 (1993).

[15] Nelson, D A, & Rossiter, B N, Prototyping a Categorical Database in P/FDM. Proceed-
ings of the Second International Workshop on Advances in Databases and Information
Systems (ADBIS’95), Moscow, 27-30 June 1995, Springer-Verlag Workshops in Comput-
ing, edd. J. Eder and L.A. Kalinichenko, ISBN 3-540-76014-8, 432-456 (1996).

[16] Standards dealing with OSI (Open Systems Interconnection) include BS ISO/IEC TR
9571 to 9596 and BS ISO/IEC TR 10162 to 10183.

[17] Parnas, D L, Mathematical Methods: What we Need and Don’t Need, IEEE Computer
29(4) 28-29 (1996).

[18] Rossiter, B N, Nelson, D A, & Heather, M A, The Categorical Product Data Model
as a Formalism for Object-Relational Databases, Technical Report, Computing Science,
Newcastle University, no.505, 41pp (1995).

[19] Rossiter, B N, & Heather, M A, Data Modelling for Migrating Information Systems,
chapter 1, in: Legacy to Client/Server – Have You Chosen Wisely?, ed. Booth, A, Unicom,
London 1–12 (1996).

[20] Sangiovanni-Vincentelli, Alberto, The Methodology of Formal Verification, 33rd Design
Automation Conference, Las Vegas Convention Center (1996).

[21] Spurr, K, CASE Tools, Does the ISO Standard IRDS provide Sufficient Support? in:
Fourth Generation Systems, ed. S.Holloway, Chapman and Hall, Unicom 36-47 (1990).

[22] UML 1.0 at web address http://www.rational.com/uml/

14


