From Classical to Quantum Databases with Applied Pullbacks Nick Rossiter Seminar – PSSL, 15th February 2003 http://computing.unn.ac.uk/staff/CGNR1/ nick.rossiter@unn.ac.uk

Database Theory

- Usually based on sets (Jeffrey Ullman, Chris Date, Ted Codd)
 - Relational databases
 - Sets of tuples
 - Functions for dependencies
 - First-order safe predicate calculus for manipulation (SQL)
 - Also an equivalent algebra
 - Network databases
 - Graphs for structures
 - Navigational (traversal) languages for manipulation
 - Object-oriented databases
 - Set-based class and object structures
 - Navigational (traversal) language for manipulation (OQL)

Definition: Database Model (as it varies!)

- Database Model: a representation of policies in a structured form according to some perceived view of reality e.g.
 - Relational model world is tabular
 - Hierarchical model world is tree-like
 - Security model world is task-based
 - Object model world is based on o-o paradigm

Relationships

- Main classifying feature of databases is how they represent relationships:
 - Relational including a foreign key (primary key of another table) in the set of attributes
 - Network including the address of an object in another object (pointer-based)
 - Object-oriented having a function from one class to another (references)

Challenge of Interoperability

• Interoperability:

the ability to request and receive services between various systems and use their functionality.

- More than data exchange.
- Implies a close integration
- No longer possible for systems to be standalone

Motivations

- Diversity of modelling techniques
- Distributed businesses may exercise local autonomy in platforms
- Data warehousing requires heterogeneous systems to be connected
- Data mining enables new dependencies to be derived from heterogeneous collections

Simple Problem in Interoperability

- Homogeneous Models
 - the same information may be held as attribute name, relation name or a value in different databases
 - e.g. fines in library;
 - could be held in a dedicated relation Fine(amount, borrowed_id)
 - or as an attribute Loan(id, isbn, date_out, fine)
 - or as a value Charge(1.25, 'fine')

Complex Problems in Interoperability

- Heterogeneous models
- Need to relate model constructions to one another, for example:
 - relate classes in object-oriented to user-defined types in object-relational
- All problems are magnified at this level.

Use of the term Meta Data

- Meta means 'about'
- The basis of schema integration
- Sometimes treated as an object (MOF -Meta Object Facility)
- Better viewed as a relationship:
 - Name (data files)
 - Classify (database classes)
 - Meta (data dictionary)
 - MetaMeta (classify data dictionary)

Mappings are two-way

Downward arrows are intension-extension pairs

Formalising the Architecture

- Requirements:
 - mappings within levels and across levels
 - bidirectional mappings
 - closure at top level
 - open-ended logic
 - relationships (product and coproduct)
- Candidate: category theory as used in mathematics as a workspace for relating different constructions

Choice: category theory

• Requirements:

- mappings within levels and across levels
 - arrows: function, functor, natural transformation
- bidirectional mappings
 - adjunctions
- closure at top level
 - four levels of arrow, closed by natural transformation
- open-ended logic
 - Heyting intuitionism
- relationships (product and coproduct)
 - Cartesian-closed categories (like 2NF): pullback and pushout

Work with Databases and Categories

- Michael Johnson, Robert Rosebrugh and RJ Wood, Entity-Relationship-Attribute Designs and Sketches, TAC 10(3) 94-111.
 - sketches for design (class structure)
 - models for states (objects) where model is used in categorical sense
 - lextensive category (finite limits, stable disjoint finite sums) for query language

• Developed also in databases by:

- Zinovy Diskin, Boris Cadish: Algebraic Graph-Based Approach to Management of Multidatabase Systems, NGITS'95 69-79 (1995).
- Sketch originally from Charles Ehresmann.
 - Finite Discrete (FD) sketch D = (E, L, R, S)
 - finite graph E (data structure)
 - set of diagrams L in E (constraints)
 - Finite set R of discrete cones in D (relationships)
 - Finite set S of discrete cocones in D (attributes)
- Model (M) graph homomorphism
 - maps any E to category V where V is a database state
 - L → commutative diagrams, R → limit cones, S → colimit cocones
 - preserve products
- In FP sketches in Johnson et al:
 - finite sums satisfy the lextensive axiom
 - sums are well-behaved

Pullbacks are used extensively for database relationships

Figure 2: Pullback showing fuller collection of arrows

S = source, M = medium, IMG = image, W = world

Categories

- Each level is represented by a category:
 - Named data values by **DATA** (**DT**)
 - value name
 - Schema types by SCHEMA (SM)
 - Constructions by **CONSTRUCTS** (**CS**)
 - Concepts by **CONCEPTS** (CC)

Red font -- categories

Functors

- Relationships between categories at adjacent levels are given by a functor
 - For example:
 - Meta: SCHEMA ----- CONSTRUCTS
 - Meta is a functor

Blue font -- functors

Levels in Functorial Terms

Green font - composed functors: System = MetaMeta o Meta o Classify

Composition of Adjoint Functors

- Classify -- C Meta -- M
- MetaMeta -- A
- Policy -- P Organise -- O
- Instantiate -- I

•
$$CC \xrightarrow{P} CS \xrightarrow{O} M$$
 $SM \xrightarrow{I} DT$

Composed adjunction

Adjunctions

- The adjointness between two functors is given by a 4-tuple e.g. for
- CC $\frac{P}{\overline{A}}$ CS
- <P, A, η , \in >
 - ← η unit of adjunction measures change from initial cc to cc obtained by following P and A (1_{cc} → AP(cc))
 - $\in \text{counit of adjunction measures PA(cs)} \longrightarrow 1_{cs}$
 - Unit and counit give measure of creativity of arrows and preservation of style in mapping by functors.
 - If complete preservation of style ($\in =1$) and no creativity ($\eta=0$) -- isomorphism.

Composed Adjunction for Four Levels

Represents complex mappings across the levels of the system

 $< IOP, AMC, AM\overline{\eta_{cc}}OP \bullet A\overline{\eta_{cc}}P \bullet \eta,$ $\overline{\varepsilon_{dt}} \bullet I \overline{\varepsilon_{dt}} C \bullet IO \varepsilon_{dt} MC >$ Unit of adjunction is a composition of : $\eta_{cc}: 1_{cc} \to AP(cc) \text{ with } A\eta_{cc}P: AP(cc) \to AMOP(cc)$ with $AM\eta_{cc}OP: AMOP(cc) \rightarrow AMCIOP(cc)$ Counit of adjunction is a composition of : $IO\varepsilon_{dt}MC: IOPAMC(dt) \rightarrow IOMC(dt)$ with $I\overline{\varepsilon_{dt}}C: IOMC(dt) \to IC(dt) \text{ with } \overline{\varepsilon_{dt}}: IC(dt) \to 1_{dt}$

Benefits of Approach

- Can represent relationships between levels, either:
 - abstractly with one relationship from top to bottom levels
 - in much more detail with all combinations of adjoints expressed.

Comparing one System with Another

 α,β,γ are natural transformations (comparing functors)

Godement Calculus

- Rules showing:
 - composition of functors and natural transformations is associative
 - natural transformations can be composed with each other
- For example:
- $(I'O') \alpha = I'(O' \alpha);$

 $\forall \gamma \beta = (\gamma O) o (I' \beta);$

 $\gamma(OP) = (\gamma O)P$ $\beta \alpha = \beta P o (O' \alpha)$

Four Levels are Sufficient

- In category theory:
 - objects are identity arrows
 - categories are arrows from object to object
 - functors are arrows from category to category
 - natural transformations are arrows from functor to functor
- An arrow between natural transformations is a composition of natural transformations, not a new level

Analogous Levels for Interoperability

Level	Category	Architecture
1. data values	Objects (identity arrows)	id _{dt}
2. named	Category	DT
values		
3. classified	Functor	C: DT →
values		SM
4. contrasted	Natural	$\alpha^* \circ \beta^*$ (α^* is
representation	transformation	dual of α)

Discussion

- Category theory shows that:
 - four levels are ideal for interoperability
 - more than four yields no benefits
 - less than four gives only local interoperability
- Categorical approach provides:
 - an architecture for universal interoperability
 - a calculus (Godement) for composing mappings at any level
 - adjunctions for evaluating two-way mappings

Quantum Databases

- Recent area of interest
- Following Grover's work on searching algorithms
- Following initial work by Peter Sellinger, we are developing database query language for the quantum area
- Based on category theory (entanglements as limits, superpositioning as colimts)

References 1

- Our work (available from NR's home page)
 - Heather, M A, & Rossiter, B N, The Anticipatory and Systemic Adjointness of E-Science Computation on the Grid, Computing Anticipatory Systems, Proceedings CASYS'01, Liège, Dubois, D M, (ed.), AIP Conference Proceedings 627 565-574 (2002).
 - Rossiter, B N, Heather, M A, & Nelson, D A, A Universal Technique for Relating Heterogeneous Data Models, 3rd International Conference on Enterprise Information Systems (ICEIS), Setúbal, I 96-103 (2001).
 - Heather, M A, & Rossiter, B N, Constructing Standards for Cross-Platform Operation, Software Quality Journal, 7(2) 131-140 (1998).

References 2

- Category Theory and Computing Science:
 - Barr, M, & Wells, C, Category Theory for Computing Science, Prentice-Hall (1990).
 - Mac Lane, S, Categories for the Working Mathematician, Springer, 2nd ed (1998).
- Category Theory and Information Systems: some other workers
 - Zinovy Diskin (USA, formerly Latvia)
 - Boris Cadish (Latvia)
 - Robert Rosebrugh (Canada)
 - Michael Johnson (Australia)
 - Christopher Dampney (Australia)
 - Michael Heather (Northumbria)
 - David Nelson (Sunderland)
 - Arthur ter Hofstede (Australia, formerly Holland)
- Many other workers on category theory and program semantics