CONDITIONS FOR INTEROPERABILITY

Nick Rossiter

School of Informatics, Northumbria University, NE1 85T, UK Email: nick.rossiter@unn.ac.uk

Key words:

Abstract:

Michael Heather
Northumbria University, NE1 85T, UK Email: m.heatherQunn.ac.uk

semantic interoperability, organisational interoperability, Godement calculus, commuting diagrams

Interoperability for information systems remains a challenge both at the semantic and organisa-
tional levels. The original three-level architecture for local databases needs to be replaced by a
categorical four-level one based on concepts, constructions, schema types and data together with
the mappings between them. Such an architecture provides natural closure as further levels are
superfluous even in a global environment. The architecture is traversed by means of the Godement
calculus: arrows may be composed at any level as well as across levles. The necessary and sufficient
conditions for interoperability are satisfied by composable (formal) diagrams both for intension
and extension in categories that are cartesian closed and locally cartesian closed. Methods like
partial categories and sketches in schema design can benefit from Freyd’s punctured diagrams to
identify precisely type-forcing natural transformations. Closure is better achieved in standard full
categories. Global interoperability of extension can be achieved through semantic annotation but

only if applied at run time.

1 Classical Data Structures

Classical information systems employ some
suitable model to mediate between data and
hardware. A database model is a representation
of policies in a structured form according to some
perceived view of reality.

In the ANSI/SPARC architecture (Tsichritzis
1978) a conceptual schema or model is defined as
a global logical definition of the data structure.
This schema relates to the internal (physical) de-
finition by a mapping from the logical level to
the physical level. The schema is protected from
changes at the physical level by adjusting this
mapping. Each user has a particular view (ex-
ternal schema) of the database which may be a
restricted view. The architecture including the
series of mappings shown in Figure 1 provides as-
pects such as security and logical data indepen-
dence.

The classical ANSI/SPARC architecture of
Figure 1 has the disadvantage that the levels are
not independent of each other. This may be

External schema F

1l

Conceptual schema C

il

Internal schema I

Figure 1: Classical ANSI/SPARC Architecture
for Databases

compared with the natural architecture of Fig-
ure 2 (Heather & Rossiter 2002). The four lev-
els (top-down) are categories for concepts (real-
world abstractions), constructs (facilities avail-
able for schema design), schema (definition of
data types available in system) and data (the
data itself). In ANSI/SPARC the types of the
three levels are similar to the external schema
but the internal schema is composed of subcat-

egories of the conceptual schema. The top level,
the external schema, is not a universal closure
of types but a local closure of the conceptual
schema. The four-level architecture in Figure 2
has orthogonal types with the relationships be-
tween the levels expressed as categorical adjunc-
tions as already applied to structures in GRID
data processing (Heather & Rossiter 2002). Cat-
egorical adjunctions relate one level to another.
The relationship between levels is measurable by
the unit of adjunction. For instance the adjunc-
tion Policy 4 MetaMeta indicates that the free
functor Policy is left adjoint to the underlying
functor MetaMeta. The unit of adjunction is
given by et Lepr — MetaMeta o Policy(cpt).

The ANSI/SPARC architecture was a useful
way of capturing abstractions of the relational
model in the 1970s and 1980s. It has proved less
suitable to facilitate the techniques needed today
such as interoperability where systems with dif-
ferent underlying models are required to work to-
gether. ANSI/SPARC can be viewed as pseudo-
natural. It was developed using mathematical
techniques and theories like sets. But there is a
gap between classical theory and real-world per-
formance and pragmatics. Triggers are an ex-
ample of an attempt to patch the weakness of
the system by providing some local strong an-
ticipation using Event-Conditions-Actions (ECA)
(Date & Darwen 2000).

Concepts o
Policy 4 MetaMeta mission
b MetaMeta i Policy
Constructs
Org 4 Meta management
Meta
SYs Platform T l Org
Schema)
Instance 4 Classify enterprise
ClassifyT Llnstance
Data information
execution
application

Figure 2: Interpretation of Levels: natural

schema with strong anticipation

In Figure 2 the terms used have their nor-
mal meaning. Basically in the downward direc-
tion, a collection of data structuring concepts
(abstractions) are mapped through policies to a
collection of constructions (for example classes,
tables) which are in turn mapped through or-
ganisation to a collection of types (for exam-

ple, schema definitions) which are finally mapped
through instantiation to named data values. In
the opposite direction, the named data values
are mapped through classification to types, which
are in turn mapped through metadata to con-
structions which are finally mapped to concepts
through metameta data.

1.1 Natural Closure

CST SCH______ DAT
Ji
/
B v
CPT al
Pl
o’ I
CST/ SCH___ DAT’

Figure 3: Comparison of Mappings in two Sys-
tems

In category theory four levels are needed to
define an arrow as unique up to natural isomor-
phism. The four levels are: 1) object or identity
arrow (within a category), 2) category (compar-
ing objects), 3) functor (comparing categories)
and 4) natural transformation (comparing func-
tors). No more levels are required.

The relationships between one four-level archi-
tecture and another can be constructed as in Fig-
ure 3, the expanded view of Figure 2. Here for
simplicity the mappings are viewed in one direc-
tion only. Two systems are compared, one involv-
ing categories CPT, CST, SCH and DAT, the
other CPT, CST’, SCH’ and DAT’, represent-
ing concepts (CPT), constructs (CST), schema
(SCH) and data (DAT) from Figure 2. CPT is
the same in both systems as there is one universal
type for concepts. As usual the functors relate the
categories. We have now though added natural
transformations to relate the mapping between
one functor and another. It needs to be empha-
sised that none of these categories are discrete:
all have an internal arrow-based structure so the
natural transformations are non-trivial (Rossiter
2003). The functors need to be of the same vari-
ance for a meaningful natural transformation to
exist between them and this is the case for a, 3
and 7.

An arrow comparing natural transformations is
itself a natural transformation. Some categorists
use an older terminology with degrees of ‘cell’ and
describe the identity arrow as 0-cell, an arrow in
a category as 1-cell and an arrow between arrows

as a 2-cell (Kelly 1972). An arrow from one nat-
ural transformation to another gives a composi-
tion of the natural transformations, not a new
level (((Barr & Wells 1999), 1st ed., at p.85);
(Rossiter & Heather 2003)). This means that
four levels are needed to give the natural closure
(Heather & Rossiter 2002).

An alternative view to Figure 3, shown in Fig-
ure 4, is closer to the four levels inherent in cat-
egory theory. The fundamental levels are con-
sidered to be data values, named values, classi-
fied values and contrasted representation corre-
sponding in category theory to object, category,
functor and natural transformation respectively.
The natural transformations are now the duals of
those shown earlier in Figure 3 as indicated by
the op superscript. The earlier natural transfor-
mations were comparing the downward functorial
mapping (towards data) while the current ones
compare the upward mapping (away from data)
(Rossiter & Heather 2003).

alternative fun- | category four levels
damental levels | theory of Figure 2
levels
1. data values objects 1d gt
(identity
arrows)
2. named values | category DAT
3. classified val- | functor 1°P :
ues DAT —
SCH
4. contrasted | natural a®P o (3P
representation transfor-
mation

Figure 4: Alternative Interpretation of Levels in
the Architecture

It can be shown (Rossiter & Heather 2003) that
the addition of further levels is possible but noth-
ing is gained by it type-wise. Thus addition of
an extra level to the top of a four-level archi-
tecture simply results in the top level (compar-
ison of mapping from concepts to schema) being
a composition of three arrows rather than two.
Thus consider the addition of a new top level
PHI with the mappings F' : PHI — CPT,
G : CPT — PHI and o°” : F — F'
where a®?’ compares the mappings F and F’ in
two different approaches. The adjunction is now
IoOoPoF 4 GoAoMoC'. The level four of Figure
4 is now a®?”’ oa®P o 3°P and is still a natural trans-
formation through the rules of composition. The
practical consequence is that a fifth level is equiv-
alent to an alternative fourth level. The meta-
meta level gives ultimate closure of types.

2 Natural Calculus

We therefore have three types of mapping to
consider: within a category (for instance from a
name to a value), from one category to another
(for instance the functor P’ from CPT to CST")
and from one functor to another (for instance the
natural transformation « from P to P’).

Following the constructive principles of cate-
gory theory, the composition of these arrows is
natural. This consequently gives rise to a natural
calculus first expounded by (Godement 1958) and
((Barr & Wells 1999), 1st ed., pp 94-97) in the
form of rules governing composition. The com-
position of functors and natural transformations
is associative so that for instance in Figure 3:

(I'0)a=TI'(0'a); ~(OP)=(yO)P

Natural transformations may be composed
with each other:

8= (70)o (I'B); Pa=(BP)o(0'a)

Godement’s five rules are given by ((Barr &
Wells 1999), 1st ed., p.96-97).

Consider as in Figure 5:
five categories A, B, C, D and E
the following eight functors:
E:A— :B7 F17F2,F3 :B — C, Gl,GQ,Gg :
C—D H:D—E
and the following four natural transformations:
a: Py — Fy, f:F — F3,v: G — Gy,
6 G2 — Gg,

P Gy
o l’y
A B ., B FQl c_ & ,D H
o e

Figure 5: Godement in (Barr & Wells 1999), 1st
ed., p.96

Then the following rules hold:

(007)(Boa)=(0B) o (yo)
(H o G1)a = H(G1av)
Y(FioE) = (vF1)E
G1(foa)E = (G18E) o (G1aE)
Yo = (vFz) 0 (Gra) = (Gaax) o (vF1) (5
Equation 5 is particularly interesting as it has
different members on each side of the equation,

permitting solutions via simultaneous equations.
The first four rules are concerned with inter-
change (commutativity), associativity and per-
mutation.

Simmons ((Simmons, 1989) section 3.8) also
deals with Godement’s rules. For a simplified
version of Figure 5, omitting categories A, E and
functors F, H, as shown in Figure 6, he derives
the commuting diagram of Figure 7 to represent
the composition of functors and natural transfor-
mations.

F Gy
o l’y

B 2 l , C G2 , D
|8 G)9

Figure 6: Godement in (Simmons, 1989) section
3.8

The commuting properties are shown in the di-
agram in Figure 7. A small change in Simmons’
notation has been made so that pairs beginning
with a natural transformation have the subse-
quent functor in subscript form to indicate that
the object of the natural transformation is the
functor ((Barr & Wells 1999), 1st ed., p.94-95).
Where the pairs begin with a functor the nota-
tion is unchanged as it appropriately indicates
the application of a functor to the output from
a natural transformation.

The composition, say A, of (0%7)o(Bx*«) follows
the path from G1Fy, — G1Fy, — G1F3 —
GoFy — GyFy; that, say p, of (50 8) + (v
a) follows the path from G1F;, — G1F» —
GoFy — GoF3 — (G3F3. Both routes start
and end with the same objects G1F; and G3F3
respectively. Hence they are equivalent and the
interchange law is demonstrated with A = p.

GFE_ G | gR G | aFR
mi ml ml

GoF, Gea Gup, G2B | G,Fy
5F1l 5F2l 5Fsl

G Fy e - ;EZ—G?)_B_, GsF3
Figure 7: Commuting Diagram in (Simmons,

1989) section 3.8

3 Application

The consequence of natural closure is that a
categorical approach ensures that the various ar-
rows of different types can be composed with
each other, irrespective of their level in the sys-
tem. Equations representing an equality of paths,
can be solved for unknown components that can
be determined from an evaluation of the known
properties. For instance in comparing methods
with the path IOP from CPT — CST —
SCH — DAT defining one approach, then the
path I'0O’« from CPT — CST' — SCH' —
DAT’ might define an alternative approach if P’
maps onto constructs in the category CST’.

The diagram in Figure 8 shows the applica-
tion of the Godement calculus to handle semantic
interoperability, defined as the interoperation of
one system with another at the level of meaning
of the data, that is at the metadata level.

O, I,

O/ la//
cer U | CSM, scu ' ' par
/ 1/
OOO lﬁ [OO l/@

Figure 8: Semantic Interoperability in terms of
Godement

The composition of the top line of functors
I,.00,.0P gives the mapping from concepts to data
for say a relational system r. The composition of
the middle line of functors I, o O,, o P gives the
mapping from concepts to data for say an object-
relational system or. The composition of the bot-
tom line of functors I,,00,,0P gives the mapping
from concepts to data for say an object-oriented
system oo. Comparing these compositions gives a
framework for interoperability. For instance the
natural transformation o’ compares how the map-
ping is performed from constructions to types in
a relational system r with that from construc-
tions to types in an object-relational system or.
The natural transformation 3" compares how the
mapping is performed from types to data in an
object-relational system or with that from types
to data in an object-oriented system oo. The ad-
vantage of the Godement approach is that arrows
of any type can be composed with each other so
that any route can be taken through the various
mappings. The diagram in Figure 7 shows that a
number of commuting equations can be derived,
enabling solution of equations for unknown val-
ues. For instance 3 o 3 compares the mapping

from constructions to data in an object-relational
system or with that in an object-oriented system
00.

To extend the categorical framework to handle
organisational interoperability, defined as the in-
teroperation of systems at the business process
level, we need to vary the functor P for each en-
vironment so that the metameta level is variable.
The required diagram is shown in Figure 9.

P. O, 1.

"
«

S PTG LY S Ly
[Y A T

Figure 9: Organisational Interoperability in
terms of Godement

The following canonical rules hold according to
the Godement calculus:

(8" 0a)(Boa)=(8'B)o(da) (6)
(Ipr 0 Op)a = I, (Or) (7)

OZI(OT] Por) = (O/O’I")POT (8)

Ir(ﬁ/ o O/)Por = (Irﬂ/Por) o (ITa/PO’I‘) (9)

oo = (a/IOor) ° (ITO/) _ (Iora/) o (O//Or) (10)

A number of general principles in composi-
tion are shown by the equations. Equation 6
indicates that of commutativity (the interchange
law); equations 7...8 indicate that of associativ-
ity; equation 9 indicates that of permutation of
paths. The last equation, 10, shows the produc-
tion of simultaneous equations representing dif-
ferent paths through the diagram. This is an im-
portant feature as it facilitates the solution for
an unknown mapping. For example, in equation
10 above, if the values o', o and I, are known,
then O, is the only unknown and a solution can
be found for it. That is if it is known how the
mapping from constructions to types and from
types to data varies between a relational system
r and an object-relational system or and what the
mapping is between types and data in an object
relational system or, then the mapping between
constructions and types in the relational system
r can be derived.

4 Semantic Interoperability

The foregoing indicates that semantic interop-
erability can be guaranteed therefore for a sys-
tem that implements in full formal form the four-
level categorical diagram and approach as just de-
scribed. In particular all compositions of arrows
(identity, function, functor, natural transforma-
tion) must be natural, that is all diagrams must
commute. Semantic interoperability depends on
the horizontal and vertical composition of both
syntactical and semantic diagrams as well as the
interaction (contravariant) between the syntacti-
cal and the semantic. The semantics involve in-
stantiation everywhere, that is local extension-
alities interconnected one with another through
global intensionality. We have not explicitly men-
tioned the usual point (because reality is equiva-
lent to naturality in category theory) that all the
categories already referred to in this paper are
cartesian closed. In formal terms of category the-
ory, this further condition for global connectivity
in interoperability means that the categories need
to also be locally cartesian closed. This property
connects and integrates in a coherent way slice
categories 1.

The method of semantic annotation as ad-
vanced at present appears to be a local method
carried out either manually or by some automated
agents. This will be very reductionist but may be
quite sufficient if carried out at run time.

Linked with the typing problems exhibited in
punctured diagrams, there is the whole question
of the capture of type information. Semantic in-
teroperability depends on as complete a picture
as possible being obtained of types in the differ-
ent systems. Semantic annotation is employed in
the semantic web (Hendler, Berners-Lee & Miller
2002) and in other techniques such as metadata
creation (Soo et al 2003) where agents are used to
explore the data structures for type information.

For semantic annotation we are investigating
the use of natural database techniques (Rossiter
& Heather 2004) to see how much of such in-
formation can be collected automatically through
analysis of the data in a categorical framework.
Collection of metameta data is essentially an
open architecture task and we intend to employ
the categorial topos and its internal intuitionistic
logic i.e. Heyting (Mac Lane & Moerdijk 1991;
Johnstone 2002) for this purpose.

!Barr & Wells provide a comprehensive definition
of locally cartesian closed categories ((Barr & Wells
1999), 3rd ed.) and the significance of slice cate-
gories in computer science is extensively dealt with
by (Goguen & Burstall 1984).

5 Composition Failure

Composition is only certain for categories with
arrows as properly defined (Simmons, 1989). Fig-
ure 1 is not a formal diagram and the arrows in
that figure for the classical ANSI/SPARC archi-
tecture often do not satisfy such requirements.
Implementations of database schemas typically
make use of partial functions in a reductionist
view of real-world naturality. For instance the
relational data model of Codd has had to be com-
promised for the various SQL standards (Date &
Darwen 2000). Partial functions are in such com-
mon use in mathematical modelling that various
attempts have been made to carry them over into
the use of category theory. Peter Freyd, an early
categorist pioneer, has proposed that composition
failure be acknowledged in formal diagrams by a
puncture mark.

5.1 Punctured Diagrams

Y

C 13 D

Figure 10: Punctured Commuting Diagram

A commuting diagram is itself a proof of some
naturality. A weaker version of the commuting
diagram may be represented by the punctured di-
agram promoted by ((Freyd 1990) section 1.251)
as in Figure 10 where the puncture mark € re-
moves the commutation of the right-hand triangle
although it retains the commutation of the left-
hand triangle and the commutation of the rec-
tangle as a whole. That is the puncture sign €@
removes the equivalent of one equation. A weak-
ness of punctured diagrams is that which diagram
is punctured is not always explicitly shown. What
about the outer square in Figure 107 Does it need
a separate puncture mark? In databases there are
examples where the puncture might be used, for
instance, with the problem of representing partial
functions. If in Figure 11, STK is a library stock,
155 is the category of books issued on loan at the
current time, C AT is the catalogue, ACC' is the

accession numbers, then ¢ is a total function from
CAT to ACC, u is a total function from STK
to CAT, x is a total function from I.5S to ACC
and z is a total function from STK to ACC. y is,
however, a partial function from STK to ISS as
not all books will be out on loan at any one time.
If all the functions were total, then z = tu = zy
so we have three commuting equations: z = tu,
z = zy and tu = zy. With the partial function y,
then we lose the commuting equation z = xy but
retain z = tu. The outer diagram will still com-
mute if ACC is derived independently of I.S\S so
we have lost one commuting equation, hence the
one puncture mark.

1SS

ACC

Figure 11: Punctured Commuting Diagram for
Library Example
ACC = accessions, STK = stock, 1SS = issues,
CAT = catalogue

Punctured diagrams represent a type failure in
a category: the type of an input is unexpected
and an appropriate output cannot be generated.
One of the causes shown here of partial functions
could be avoided by making all functions total as
is usual in category theory. Source objects that
are unassigned by the function in its normal op-
eration may then be assigned to the initial object
(L) so that a complete assignment is made of ob-
jects in the source category. In categorical terms,
type forcing is necessary to avoid punctured dia-
grams and maintain interoperability.

5.2 Lifted Categories and Sketches

There are alternative approaches to composition
failure in category theory. Two of these have been
the focus of database workers.

(Lellahi & Spyratos 1990), in the FIDE project,
attempted to adapt category theory to partial
functions by creating a new categorical type of
lifted (or partial) functions. This technique has
not been further developed, perhaps because of its

inherent complexity and its conflict with much of
the established theory of categories.

Sketches have had more advocates. The reduc-
tionism of set theoretic methods to represent real-
world activities means that corresponding cate-
gories may not commute because of the depar-
ture from naturality. The purpose of sketches
was to identify, as in punctured diagrams, the
departures from naturality in the internal com-
ponents of a diagram like the cones and cocones.
For instance (Johnson, Rosebrugh, & Wood 2002)
applied sketches to entity-relationship and rela-
tional modelling and (Diskin & Cadish 1995) to
object databases.

Sketches are strictly outside category theory as
they permit diagrams that do not commute but
they may be mapped onto categories by a model
functor. Many types of sketches have been devel-
oped in the theory itself. For instance (Johnstone
2002) defines eight at D2.1.3 2 p.863-864. They
separate out four components of a diagram in or-
der to flag the parts for which composition fails.
These four components may be defined as a 4-
tuple < E,L,R,S > where F is a finite graph
for the data structure, L is a set of diagrams in
FE giving the constraints as commuting diagrams,
R is a finite set of discrete cones in E giving the
relationships and S' a finite set of discrete cocones
in E specifying the attributes. For example the
omission of a diagram from L means that it is
not required to commute, so this diagram is ef-
fectively punctured.

Sketches lack flexibility as all structures and
constraints have to be pre-specified. In difficult
areas such as interoperability, sketches are inade-
quate as they do not offer natural closure. (John-
son & Rosebrugh 2000) attempt to adapt their
sketches to achieve interoperability but the aim
is to achieve only logical independence, as in the
three-level architecture of Figure 1, not seman-
tic interoperability, as in the four-level architec-
ture of Figure 2. The difference between a nat-
ural structure and a sketch is like that between
typing and labelling. A graph is richer than an
entity-relationship model as its arrows are typed
with identity functors. Labelling in the entity-
relationship model is an informal typing whereas
the identity arrow is a formal typing.

6 Natural Composition

Some problems with partial functions can be
avoided by altering the data design so that the
partial functions only operate in the assignment
to the end of the chain (the terminal object). For

instance an alternative design can be considered
for Figure 11. Here the natural order would be
to consider first accessions, which are then put
into the stack and can be issued later. For this
schema the composition diagram would be as in
Figure 12. These are full categories without com-
position failure and the puncture sign can be re-
moved. There are no punctured diagrams if .55
is the codomain of each of z’,t' and z’. This is
because these are all partial functions, mapping
onto a category which is last in the sequence, the
terminal object. There is a type change but it
occurs just once, in the final step. It is when par-
tial functions map onto intermediate categories in
a chain that typing problems are likely to occur,
because of the fluctuations of the types.

STK

Y

CAT t'

Y

» 1SS

Figure 12: Non-punctured Commuting Diagram
for Library Example

ACC = accessions, STK = stock, [55 = issues,
CAT = catalogue

7 Conclusions

The use of a formal four-level architecture,
based on category theory, provides an encour-
aging framework for tackling both semantic and
organisational interoperability. The use of the
Godement calculus, in particular, enables many
different paths at a number of level to be com-
pared and analysed. A number of problems re-
main. Failure of composition, particularly due
to the existence of partial functions, needs to be
identified. Punctured categorical diagrams are
used for this purpose in preference to lifted cate-
gories or sketches. Semantic annotation remains
a challenging area where the open Heyting logic
may be of assistance.

REFERENCES

Barr, M, & Wells, C, Category Theory for Computing
Science, Prentice-Hall (1990, 1995), Les Publi-
cations Centre de Recherches Mathématiques,
Montréal (1999).

Date, C J, & Darwen, Hugh, Foundation for Future
Database Systems: The Third Manifesto 2nd Ed,
Addison Wesley (2000).

Diskin, Z, & Cadish, B, Algebraic Graph-Based Ap-
proach to Management of Multidatabase Sys-
tems, NGITS’95 69-79 (1995).

Freyd, P, & Scedrov, A, Categories, Allegories,
North-Holland (1990).

Godement, R, Théorie des faisceauxr, Hermann, Ap-
pendix I (1958).

Goguen, Joseph A, & Burstall, Rod M, Some Fun-
damental Algebraic Tools for the Semantics of
Computation. Part 1: Comma Categories, Col-
imits, Signatures and Theories, Theor Comp Sci
31 175-209 (1984)

Heather, M A, & Rossiter, B N, The Anticipatory
and Systemic Adjointness of E-Science Compu-
tation on the Grid, Computing Anticipatory Sys-
tems, Proceedings CASYS‘01 Liege, Dubois, D
M, (ed.), AIP Conference Proceedings 627 565-
574 (2002).

Hendler, J, Berners-Lee, T, & Miller, E, Integrat-
ing Applications on the Semantic Web J Insti-
tute Electrical Engineers Japan 122(10) 676-680,
(2002).

Johnson, M, & Rosebrugh, R, Database Interoper-
ability Through State Based Logical Data In-
dependence, Proc 4th CSCWZ2000 IEEE Hong
Kong 161-166 (2000).

Johnson, M, Rosebrugh, R, & Wood, R J, Entity-
Relationship-Attribute Designs and Sketches,
TAC 10 94-111 (2002).

Johnstone, P T, Sketches of an Elephant, A Topos
Theory Compendium, Ozford Logic Guides 43,
Clarendon (2002).

Kelly, G M, & Street, R, Review on the Elements of
2-categories, Proceedings Sydney Category The-
ory Seminar 1972-73, ed. G M Kelly, Lecture
Notes in Mathematics, Springer-Verlag 420 75-
103 (1974).

Lellahi, S Kazem, & Spyratos, Nicolas, Towards a
Categorial Data Model Supporting Structured
Objects and Inheritance, Fast/West Database
Workshop 86-105 (1990).

Mac Lane, S, & Moerdijk, I, Sheaves in Geometry and
Logic, Springer-Verlag (1991).

Rossiter, N, From Classical to Quantum Databases
with Applied Pullbacks, 78th Meeting Peri-
patetic Seminar on Sheaves and Logic Institut de
Recherche Mathématique Avancée, Strasbourg
University 15-16 February (2003).

Rossiter, N, & Heather, M, Four-level Architecture
for Closure in Interoperability, FFIS2003, Fifth
International Workshop on Engineering Feder-
ated Information Systems, Coventry, UK, 17-18
July 83-88 (2003).

Rossiter, B Nick, & Heather, M A, Data Structures
in Natural Computing: Databases as Weak or
Strong Anticipatory Systems, CASYS’03, Sixth
International Conference on Computing Antici-
patory Systems Liege, Belgium, ATP Conference
Proceedings 718 392-405 (2004).

Simmons, H, Lecture Notes on Category Theory,
Logic in IT Initiative, SERC (1989).

Von-Wun Soo, Chen-Yu Lee, Chung-Cheng Li, Shu
Lei Chen, Ching-chih Chen, Automated seman-
tic annotation and retrieval based on sharable
ontology and case-based learning techniques Int
Conf Digital Libraries Archive, 61-72 (2003).

Tsichritzis, D, ANSI/X3/SPARC DBMS Framework
1978, Report of the Study Group on Database
Management Systems, Information Systems 3
(1978).

