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ABSTRACT
Music is a testing challenge for formal information systems. To pro-
vide an insight into the processes involved, the intension/extension
relationship is explored over five levels from the Universe through
the discourse of music, scores and their variants to actual musical
performances. We apply the full power of category theory to the
challenge, involving the topos for data structuring and the monad
for process. The topos handles many aspects of the data for a per-
formance including the score and its variants as musical notation,
the orchestral players and the conductor. The monad as process
controls the adjointness between the functors representing articu-
lation and intonation, based on perceived activity in the brain in
professional musicians. We present a musical performance as a cat-
egorical composition over time signatures that proceed in succes-
sive adjoint steps with the monad looking back and its associated
comonad looking forward. The physical complexity of each musical
sound operates in its respective time-frame, represented by a limit,
as a colimit. The formalism can be implemented in a functional
programming language such as Haskell.

1 Introduction

Much work has been done on computer representations of music
at the physical level. Developments by Klumpenhouwer such as K-
nets [15] provide a way for representing transformations from one
pitch-class to another. A pitch class is all notes an octave apart,
for example all C available on a piano. In a classical system there
are 12 pitch classes, one for each note on the 12-note scale. K-nets
represented a fundamental change from a set-theoretical approach
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to music theory into a transformational one. Earlier the emphasis
had been on the pitch classes being treated as sets of elements,
each element being a note within the item. This enabled chords
and other combinations of notes to be modelled. The transfor-
mational approach extended this technique by adding a transition
from one pitch class to another to capture the dynamic possibilities
within a musical piece. Such a transition from, say, K1 to K2 was
tightly structured, with the target K2 being isographic to a source
K1. Isographism is similar to isomorphism but within a graphical
context. The cardinalities of the source and target nodes must be
the same. K-nets are therefore a very disciplined but restricted
way of moving from one pitch class to another: they can handle
the situation where the labelling of nodes is consistent from one
system to another and where the transformations are classical as,
for example, within the 48 preludes and fugues (Well-Tempered
Clavier) of JS Bach, handling all 24 keys.

A more general form of K-nets was defined by Lewin [19] in
an extension of Klumpenhouwer’s work, attempting to make the
graphs and their transformations more general. These have been
termed L-nets by O’Donnell [32]. L-nets extend a node from being
a static collection of pitch classes to a network of transpositions,
giving a transformational model, allowing numerous graphic possi-
bilities for representing a single pitch-class set.

2 Previous Attempts with Category
Theory

L-nets still have their origin in set-based graph theory. It was
not long before the potential was seen for a move to category the-
ory with the nodes in the graph becoming categories and the edges
becoming functors. Category theory should facilitate the develop-
ment of a logical approach to music, which can be mapped into one
of the physical approaches for implementation. Towards this aim
a massive tome The Topos of Music, 1335pp long, was produced
by Mazzola [23], bringing together many of the recent advances in
the theory of music. The title is, however, misleading with a for-
mal topos approach, based on the Cartesian closed category, not
attempted. In the preface (p.v) it is stated that the word topos is
used in the style of Aristotle’s or Kant’s topic. Chapter 19 Topoi
of Music gives an overview of the Grothendieck Topology but does
not relate the topology to music. In later sections the word topology
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is frequently used but is nowhere elevated formally to a topos. Sec-
tion XVI, containing Appendices C-I, deals with many categorial
concepts but not in a musical context. Because the book is disjoint
in its treatment of the topos and music, it has failed to achieve its
aim as highlighted in the title. The most relevant section for the
application of category theory to music is Chapter 6 Denotators, a
concept developed further in collaboration with Andreatta.

The subsequent paper by Mazzola and Andreatta [24] develops
the idea of a category of directed graphs with objects as notes or
chords and edges as musical operations such as transposition. The
formalism of K-nets in category theory as denotators is developed
in detail as a digraph, with vertices and arrows. In music the ver-
tices are pitch classes and the arrows are operations; between any
two vertices, there may be multiple arrows and an arrow may map
from a vertex to the same node, a loop. A path in a digraph is
a sequence p � a1, a2, . . . , ai where i is the number of arrows (a)
in the digraph. The operations are the elements of a group T ~I
(translation/inversion), that is a bijective mapping ensuring that
p is invertible. In category theory T ~I is a category with one ob-
ject Z12 (the 12-note scale) and automorphisms f � Z12 Ð� Z12.
The authors acknowledge that Z12 is far too restrictive from the
articulation viewpoint, replacing it by a four-dimensional real vec-
tor space R4, where the coordinates represent onset o, pitch p,
loudness l, and duration d, in a parameterization by real numbers.
Their use of the powerobject for collections of notes as a basic
type enables chords to be represented, the powerobject being any
combination of notes permitted from Z12~R4. The complex cat-
egorial formalism ultimately developed involves limits, co-limits,
presheaves, powerobjects and the Yoneda embedding. The refer-
ences to the categorial literature are very general but it appears
that their approach towards limit denotators owes much to the
uncited Eilenberg-Moore category: the pullback of the category of
presheaves on the Kleisli category along the Yoneda embedding.

More recent work by Popoff and his co-workers developed the
generalised Poly-K-net or PK-net [33]. PK-nets enable heteroge-
neous collections of musical objects to be naturally compared and
manipulated [34]. In particular the cardinalities of the source and
target nodes do not have to be the same and the labelling of the
nodes in two different approaches may be varied to suit the genre.
Five main categories are developed, one PKNR for the underlying
PK-net and four others as homographies of the PK-net. Four func-
tors are defined, relating the categories. Natural transformations
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are used to generalise isographies. Their work does not employ
explicitly Cartesian closure so does not appear to be from a topos
viewpoint. The dynamic aspects involve a combination of func-
tors and natural transformations, following a Godement calculus
approach.

Problems occurred with the sets representing the graphs, re-
sulting in their replacement by the category of relations REL [35].
This facilitates handling relationships but is inferior to the pull-
back, which can be locally Cartesian closed and hence adaptable
to a topos view. Another fundamental difficulty is that the reliance
on directed graphs means that the approach is Euclidean, with its
limited dimensions.

The main findings from the literature review are that the ap-
proaches do not provide a natural correspondence with music. In
particular the conversion of the K-nets and successors to categories,
functors and natural transformations is categorification at a low-
level of the set theoretic graphical structures, on a 1:1 basis. How-
ever the denotators approach [24] with the apparent use of the
Eilenberg-Moore category comes closest to our approach presented
here and the PK-nets or denotators are useful as a basic represen-
tation of the notation in the score.

In the remainder of this paper we provide an introduction to
natural category theory in Section 3, a description of the data
structure employed of a topos in Section 4, an assignment of musical
processes in the brain in Section 5, use of the monad and their
composition for processes operating within the topos in Sections 6,
7 and a discussion of the applicability of the approach and future
work in Section 8. A verbal presentation of a preliminary version
of this work was given at the 6th World Congress on Universal
Logic, held at the University of Vichy, France, in June 2018 [38].
A preliminary version of this paper was published in Sociology &
Anthropology [39]; in this version the topos has been extended
to handle in category theory the musical score. Another earlier
paper looked at the monad as an example of anticipation in musical
communication [40].

3 Natural Category Theory

The alternative approach to categorification is to search for a
natural correspondence between music and category theory. Music
is a composition of sounds from point to point as a succession of
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transitions. Category theory also involves, as a central tenet, the
principle of composition, from the target object of one arrow to
the source object of another. In both music and category theory
the arrows have a direction from a starting point to a closing point,
though loops may exist. An isolated point in music is a sound with-
out context while an isolated object in category theory is simply a
set. It is the processes that map from object to object that provide
the naturality.

The practice by a performer of playing a score is the personal
communication, often highly intensive, of the piece to a listener.
When performing a player is at the same time both looking for-
ward to what is to be played next and looking back at what has
just been played. The process of music is indeed similar to that
for transactions in a database system, where monads have been
used to represent process [37]. There are however some significant
differences. Aestheticism is an important part of music, covering
aspects of articulation such as style and improvisation, subject to
the rules of intonation. So while in database systems it would be a
major deficiency if transactions were not always perfect to the let-
ter of the requirements, in music variation through expression is an
integral part of a performance, involving a departure from the score
in aspects such as phrasing, rubato and articulation. It is neces-
sary to move from the syntactic level of Shannon’s communication
theory to the semantic/aesthetic level.

The simplest starting point for a data structure suitable for
music is the pullback, representing a binary relationship as a limit
of a product. Such a structure can be enriched to a locally Carte-
sian closed category (LCCC), by incorporating connectivity (expo-
nentials), an internal logic (λ-calculus), identity (from the limit),
interchangeability of levels (objects can be categories, a category-
object), hyperdoctrine (adjointness between existential and univer-
sal quantifiers and the diagonal). Ideally the LCCC should be em-
bedded in a topos, the data structure of choice in applied category
theory, requiring the definition of relationships within a coproduct
(co-limits), an internal intuitionistic logic (Heyting), a subobject
classifier (query) and a reflective subtopos viewpoint (query clo-
sure). These structures will be illustrated in a musical context in
the next section.

The intension/extension relationship plays a central role in mu-
sic. The philosophical basis comes from Aristotle and Frege [10].
The intension is the type; the extension is the collection of instances
that satisfy the type. It is not as simple though as a hierarchy of
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Figure 1. The Intension/Extension Relationship from the Universe via vari-
ous UoD (Universe of Discourse) to Performances
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types. There remains a philosophical dimension to the design. The
Universe contains everything. The Universe of Discourse (UoD) is
that section of the Universe of interest to our application. By the
laws of physics we cannot isolate any part of the Universe but we
can identify a section for our work. In this case the intension is the
Universe and the extension, UoD, is the world of music. A musical
manuscript is extensional to the UoD of Music as one of the objects
in this universe.

The genre of the music has a bearing on the typing and hence on
the nature of the intension/extension relationship. Music is often
viewed as discrete, particularly when played on the piano, through
the 12 notes within an octave C, C#, D, D#, E, F, F#, G, G#,
A, A#, B. A piece of music may be written in a key, restricting
the notes that may be selected, for example the notes C, D, E, F,
G, A, B from the preceding sequence form the scale for the key C
major. Multiple notes may be struck at a particular instance, such
as chords, some of which are recognised for a particular key, such
as the C major chord C, E, G. Chords are consonant if they give a
pleasing effect to the human ear, dissonant otherwise. Tonal struc-
tures are those involving notes within a key. Employing foreign
notes outside the specified key is termed chromaticism, leading to
atonal structures. A piece of music may be written for multiple
instruments, each having their own role under the central control
of a conductor or maestro. Musical notation uses the preceding
constructs to develop a score, which as stated above is extensional
to the UoD of music. In turn the score has its own extension: the
variants to the score developed over time, either by the original
composer or by a subsequent musician.

There is one further level in the intension/extension structure
of the world of music. The score of a variant is extensional to the
underlying score and intensional to the physicality of the music,
that is the sounds that are intended to be produced. The physical
sounds are waves with amplitude and frequency, associated with a
pitch in Hz. Chords have complex physical properties (harmonics),
particularly when overtones are considered. The intended physical
sounds are intensional to the sounds delivered in an actual perfor-
mance, which forms the ultimate extension in our structure.

The complete intension/extension relationship across the levels
is shown in the diagram in Figure 1. Viewing each part of the inten-
sion/extension relationship as a category, we can map between the
levels with functors. Each intension/extension pair involves a free
functor F , from the intension to the extension and an underlying
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functor G from the extension to the intension. We have labelled the
functors F,F �, F ��, F ��� for the free functors and G,G�,G��,G��� for
the underlying functors to distinguish the mappings from one level
to another. There is adjointness between each intension/extension
pair, for example F Ú G, with the free functor F identifying that
part of the Universe relating to music and G the underlying func-
tor ensuring that the UoD of Music is indeed part of the Universe
as a whole. The intension/extension relationship is contravariant
[17, 37].

Looking at the various genre in more detail, popular music is the
simplest form with generally all notes within a particular key, a low
range of pitch, and no dissonance, Classical music is much more var-
ied than is generally appreciated, straying readily outside tonality
with chromaticism, use of the chromatic 12-note scale throughout
with only semitone intervals and much dissonance. There is also
plenty of individual experimentation: such as with Ligati where
every player has a different score and with Chopin and his rubato
and expressive tempo. Chanting is very precise in its timing, with
the singers paying deliberate attention to the beat. Jazz involves
improvisation, sometimes based on a written score but with much
freedom of expression. Music comes from diverse cultures but dis-
crete patterns may still be identifiable. In music with microtones,
intervals less than a semitone are played; the violin and other string
instruments have considerable freedom in the facilitating of such
notes. Film music is often dramatic as it links to the plot; with
darker subjects it can be austere or disturbing; as in more recent
classical music sound effects are very varied and can involve micro-
tones.

The work presented here is ideally suited to popular music,
classical music and chants, taking a simple discrete approach, in-
cluding both tonic and the 12-note scales, with a score that is a
full and clear description of what is to be played. Chants are an
example of a very precise performance, where for the free functor
F ���, the intention is that there will be very little freedom in the
unit of adjunction η. Where the intension of a piece of music, the
variant to a score, leaves much freedom or discretion to the per-
formers, the free functor F ��� from Variant to Performances will be
associated with significant freedom in the unit of adjunction η, as
in jazz. Our high-level approach therefore is suitable for any dis-
crete music, based on semitones, and can provide the flexibility to
handle scores where expressiveness is sought.

In the next three sections, we bring together these ideas in the



Physical Sounds as Colimits 9

formal definitions of the topos for a data structure and of the monad
as a process, operating inside the topos.

4 The Topos as the Data Structure

4.1 Preliminary Pullback and Pushout
Construction

Figure 2. Pb1: Relationship of Score by Variant in Context of Timeline
as Pullback Score �Timeline Variant

The aim of this section is to give the principles of pullbacks and
pushouts, constructed in a musical context. The final constructions
for our application are made in Sections 4.2 and 4.3. We develop
the categorial data structures introduced in the last section. Figure
2 shows the pullback diagram for the relationship S �T V of Score
(S) by Variant (V) in the context of Timeline (T). The place-
ment of S and V is not arbitrary: S is the independent variable
and V the dependent variable. S �T V holds the intension and
extension for pairs of S and V participating in the relationship;
S, V and T hold the intension/extension for the Score, Variant
and Timeline respectively. The diagram illustrates a number of
features of category theory: the diagram commutes through dif-
ferent paths between objects yielding an equivalent result, that is
ιl X πl � ιr X πr; the restricted product S �T V is projected by π
into its component category-objects, to the left through πl as S
and to the right through πr as V; the category-objects S and V
are included by ι in the coproduct, written conventionally in short-
hand as T but in truth being the coproduct S �T �V; ιl is the left
inclusion and ιr is the right inclusion. The lower-bound, the limit,
ensures the diagram is natural (universal) with a unique morphism
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u from the limit to the restricted product S �T V, providing a fac-
torisation through the whole diagram. The objects in the diagram
are categories, with their own internal structure of arrows, termed
category-objects.

Figure 3. LCCC1: Locally Cartesian Closed Category for Relationship Pb1:
Score �Timeline Variant

The diagram in Figure 2 can be converted into the LCCC (Lo-
cally Cartesian Closed Category) of Figure 3 (labelled LCCC1) by
showing the functors between the restricted product S �T V and
the coproduct S �T �V; as a hyperdoctrine with adjointness be-
tween the functors: the existential quantifier § is left adjoint to
the diagonal ∆, which is right adjoint to the universal quantifier
¦. The quantifiers § and ¦ provide the search facilities of an in-
formation retrieval or database system. The diagonal functor ∆
identifies pairs in the relationship between S and V in the context
of T. The opposite arrows are shown with inverse projections as π�

and inverse inclusions as ι�1. Two properties, part of the adjoint-
ness, remain to be defined: η is the unit of adjunction measuring
freeness through πl in the diagram and ε is the counit of adjunc-
tion measuring co-freeness through π�r . The category-objects in
a LCCC are typically further LCCC so a category-object at the
top-level can be decomposed into further category-objects, each
representing more detail in the application. A locally Cartesian
closed category therefore provides a recursive feature.

An interesting question is when can the colimit, a pushout in
category theory, be constructed in a pullback diagram. The col-
imit represents the upper-bound, the defined sum of the included
categories in the context of the limit. The sum can only be de-
fined when some special conditions occur in the pullback diagram,
restricting its flexibility.

The first condition concerns the freedom of the mapping. The
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Figure 4. DoL1: The Intension/Extension Relationship in a detailed Dolittle
Diagram, as both a pullback and a pushout, for the Category-object S (Score)
in Figure 3. f0 relates intension S to extension S. The colimit is the pushout
S� and the limit the pullback SX

relationship between the independent and dependent variable in
its most general case is N:M (many to many), for example if the
independent variable was Orchestra and the dependent variable
was Player: each orchestra contains many players and each player
performs for many orchestras. In this case each projection arrow
is N:1 and each inclusion arrow is 1:N. A more restricted case is
1:N [2], such as for our running Score/Variant example, where each
score has many variants but each variant refers to only one score. In
this case the left projection arrow is N:1 and the left inclusion arrow
is 1:N; the right projection and right inclusion arrows are both 1:1.
The most restricted case is 1:1. Very few natural relations are
1:1 over any length of time. For example a Player may generally
be assigned to one instrument but flute players for instance often
play the piccolo as well. An Orchestra may have one Manager but
over time new managers will be appointed. Even more artificial
examples may not always be 1:1. For example Player to National
Insurance Number is not 1:1 if two players have the same name.
In such cases 1:1 can be enforced by names being required to be
unique for booking purposes. However, in spite of its scarcity in
nature, it is 1:1 that is required for the colimit to be constructed
in a pullback diagram. So we cannot simply construct a colimit for
Figure 3 as the relationship between Score and Variant is 1:N.

The second condition concerns the mapping onto the sum. It is
necessary for this sum to only include values for the independent
and dependent variables with no extraneous information. This is
enforced by both inclusion arrows being typed as epic (surjective)
so that all values in the sum are assigned, as in Pulation diagrams
[1]. Another issue with Figure 3 is that the diagram looks to be
entirely intensional with no provision for the extension. We find
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Figure 5. DoL2: The Dolittle Diagram of Figure 4 Dol1 for the Category-
object S (Score) repeated with the nodes labelled as S-type, S-value or a
combination of the two

that constructing a diagram with both pullbacks and pushouts fa-
cilitates the design of the intension/extension relationship.

Figure 6. Category-object S (Score) as node in Figure 3, expanded in outline
as the Dolittle Diagram in Figure 5

Figure 4 shows a diagram DoL1 for a pullback with a limit that
is also a pushout with a colimit when the arrow f0 from the inde-
pendent to the dependent variable is 1:1 and the arrows ιl and ιr are
epic (surjective) onto the defined sum. Such a diagram is termed
Dolittle, named after The Story of Doctor Dolittle by Hugh Loft-
ing (1920), involving the mythical Pushmi-pullyu creature. This
Dolittle diagram, holds the intension/extension relationship for the
category object S as follows. The arrow f0 is a set-valued functor
relating the independent variable, the higher object S, the type
for Score, to the dependent variable, the lower object S, the set of
values for Score. Since the mapping f0 is to the set as a whole,
f0 is 1:1 and the inclusion and projection arrows are also 1:1 with
the restricted product and defined sum expressed as sets. Both
the inclusion arrows are epic. The restricted product, the limit SX
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or S �S� S, is pairs of type and value in the context of the colimit
S�, that is S �SX

S. The relationship on the left-hand side is an
explicit product while that on the right-hand side is an implicit
coproduct.

The diagram is repeated as DoL2 in Figure 5 with the nodes
labelled as type, value or combination of the two; this gives a
more explicit view of the intension/extension relationship with
f0 � S-typeÐ� �S-value�.

Figure 7. Pb2: Relationship of Score by Composer in Context of Variant
as Pullback Score �Variant Composer

Figure 8. Pb3: by vertical substitution, Relationship of Pullback
Pb1 for Score by Composer in Context of Variant as Pullback
Pb1 �Variant Composer

Figure 6 shows in outline form how the category-object S within
the LCCC of Figure 3 is a Dolittle square. Every node in the dia-
gram of Figure 3 will be a similar internal pullback-pushout square,
with limits and colimits, relating the definition to the instances, as
described in detail by the authors elsewhere [37]. Dolittle dia-
grams appear to be equivalent to extensive categories, which have
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Figure 9. Pb3: by horizontal composition, Pasting of the pull-
back for the relationship Score �Timeline Variant (Pb1) with a pullback
with dependent variable Composer (Pb2) to give overall relationship
�Score �Timeline Variant� �Variant Composer. The pasting is factored
through ι�l � πr

coproducts that interact well with pullbacks, and adhesive cate-
gories, which have pullbacks and pushouts of monomorphisms as
1:1 mappings. This is important as such categories are readily em-
bedded into a topos [29, 31], yielding our objective of a topos as
the data structure.

We can construct further pullbacks. One obvious data structure
is the relationship between score variants and composers, shown in
Figure 7, as the pullback of the category-object Score over the
category-object Composer, in the context of the category-object
Variant. Score is the independent variable and Composer the
dependent variable. We label the pullback shown in Figure 7 as
Pb2.

We can make the full data structure more complete by substi-
tuting one or more nodes of any pullback by further pullback struc-
tures, over any number of levels. The resulting structure remains
an LCCC as we are expanding the definition of a node using an-
other LCCC-type structure, the pullback. To link Pb1 and Pb2,
we substitute in Figure 7 for Pb2 the common category Score
with the pullback category Pb1 from Figure 2. This gives as Pb3
the relationship between Pb1 and Composer in the context of
Variant as shown in Figure 8.

This substitution provides a vertical data structuring with ex-
pansion of an entity into its more detailed components. The ver-
tical structures can also be represented in equivalent horizontal
terms through the technique of pasting, which is described in many
category theory texts, for example ([20] pp.68-72). In type the-
ory, which is the more relevant for data structuring, the vertical
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expansion through substitution is preferred [6, 4]. The (horizon-
tal) pasting of Pb2 onto Pb1 to give Pb3 is shown in Figure
9; the two pullbacks are factored through the category Variant
as also shown in the vertical decomposition in Figure 8 where
Variant is the context. In arrow terms the pasting condition is
that Pb2.ι�l � Pb1.πr. The pasted pullback actually contains three
pullbacks Pb1, Pb2 and Pb2 �Variant Pb1 with the last named
factored through Variant. All of these three diagrams have to be
valid pullbacks in their own right for the relationships to hold. The
attachment of the composer to the variant gives flexibility for the
variant to be made by the original composer of the score or an-
other musician altogether. The horizontal representation is more
suited to implementation while the vertical form is more expressive
in data typing terms.

4.2 Representation of Score in Musical Notation

The type of the data values needs further elaboration. While
Figure 5 shows the type for the Score is S-type, this is rather ab-
stract. Looking at the work of Mazzola and Andreatta [24] dis-
cussed earlier, they suggest the use of denotators for articulation
purposes with a musical object being expressed as the powerobject
of Z12~R4, where Z12 is the 12-note scale and R4 holds the param-
eters onset o, pitch p, loudness l, and duration d, as real numbers.
Z12 could be expanded to Z53 (53 Equal Temperament) to sat-
isfy some musicologists [16], who find such a structure appealing
for music from the east and for prefect thirds and fifths. We would
not include the transitions as digraphs on the structural side: these
are processes within the music (and the topos), for which we use
monads as discussed later. So we expand the category Variant
of score in Pb3 (Figure 8) into categories that are recognisable as
musical notation, such as pitch, chord, duration, loudness, accent
and instrument. Here we start at the bottom with the most primi-
tive notation, a note, and build it up into more complex categories
representing the full notation for a score.

A note is therefore defined in Figure 10 as a pullback of Note
over Octave in the context of Pitch. An example of Figure 10 can
be given for middle C. With Note = C and Octave = 4, then Pitch =
261.626 Hz. An instance of the relationship Note �Pitch Octave is
@ C,4,261.626 A. We use typing to restrict the values; for example
Note is a member of �C,D,E,F,G,A,B� for the C major scale
and Octave is an integer in the range 0-7 for the piano.
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Figure 10. Pb4: Permissible Notes: Relationship as Pullback for Note over
Octave in context of Pitch:

Figure 11. Pb5: Permissible Chords: Relationship as Pullback for Chord
over Type in context of Harmonics:
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We define permissible chords in Figure 11 as the pullback Pb5
of Chord over Type in the context of Harmonics. Chord is
typed as a powerobject of Pb4, that is ´Pb4, representing all
possible combinations of Note as typed in that pullback, with re-
spect to Octave and Pitch. A chord may hold 1, 2, 3, or more
notes in our representation. In this example @ C,E,G A is a mem-
ber of the ´Pb4. An example of Figure 11 is then Chord =
@ C,E,G A of Type C major with Harmonics = @root, ma-
jor third, perfect fifthA. A nested instance of the relationship
Chord �Harmonics Type is

@@ C,E,G A,C major,@ root, major third, perfect fifth AA

Figure 12. Pb6: Permissible Chords with Duration: Relationship as Pullback
for the Pb5 Chord over Duration in context of Length

We apply Duration to the chord definition in Pb5 (Figure 11)
to give Figure 12 as a pullback of the Pb5 chord over Duration
in the context of Length. An example of Figure 12 is the C major
chord with the duration of a quaver, in the context of the physical
length. An instance of the relationship Pb5 �Length Duration is
@ Pb5�,quaver, 0.125 A where a quaver is 1/8 of a whole note, a
semibreve, and Pb5� is a subcategory of Pb5 satisfying the restric-
tion. Note that ´Pb4 holds the internal structure of a chord as
defined in Figure 11 so we are building a nested relationship

@@@ C,E,G A,C major,@ root, major third, perfect fifth AA,
quaver,0.125 A

We apply Loudness to the extended chord definition in Pb6
(Figure 12) to give Figure 13 as a pullback of the Pb6 chord over
Loudness in the context of Decibels. An example of Figure 13
is the Pb6 chord with the loudness of ff (fortissimo) in the con-
text of the decibels measurement. An instance of the relationship
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Figure 13. Pb7: Permissible Chords with Duration and Loudness: Relation-
ship as Pullback for the Pb6 Chord over Loudness in context of Decibels

Pb6 �Decibels Duration is @ Pb6�,ff,93 A where 93 decibels is the
mid-range of values of 84-103 quoted in [9] for piano fortissimo
compared to 60-70 decibels for normal piano practice and Pb6� is
a subcategory of Pb6 satisfying the restriction. The full nested
relationship is

@@@@ C,E,G A,C major,@ root, major third, perfect fifth AA,
quaver,0.125 A,ff,93 A

Figure 14. Pb8: Permissible Chords with Duration, Loudness and Accent:
Relationship as Pullback for the Pb7 Chord over Accent in context of Effect

We apply Accent to the extended chord definition in Pb7 (Fig-
ure 13) to give Figure 14 as a pullback of the Pb7 chord over Ac-
cent in the context of Effect. An example of Figure 14 is the
Pb7 chord with the staccato accent in the context of the physical
effect, perhaps a shortening by a half of the length from quaver to
semi-quaver. An instance of the relationship Pb7 �Effect Accent
is @ Pb7�, staccato,0.5 A where Pb7� is a subcategory of Pb7 sat-
isfying the restriction. The full nested relationship is
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@@@@@ C,E,G A,C major,@ root, major third, perfect fifth AA,
quaver,0.125 A,ff,93 A, staccato,0.5 A

At this stage we have defined an entry in the variant of the score as a
chord together with its harmonics, duration, loudness and accent.
We need to assign the chord to an instrument in the intension
and to a player in the extension. This is achieved in the next
section where we define the topos for a variant of a score, with two
alternative constructions: first as fresh intensional and extensional
pullbacks, second as a type substitution of the Pb8 chord in the
earlier abstract definition of a variant of a score in Pb3 (Figure 8).

4.3 Construction of the Overall Topos

The topos is based on the idea of Aristotle for tackling a le-
gal argument with the premises held within its structure and the
logic returning true or false as the outcome. In category theory
the classical topos as defined by Grothendiek and others is closed
at both ends and the truth object or subobject classifier may be
more complex than a simple Boolean, for instance based on the
natural numbers. At the lower end there exist products of objects,
connected by times X, and a limit. At the upper end there exist
coproducts of objects, connected by sum +, and a colimit. If both
limits and colimits do not exist, then the category is not a clas-
sical topos. We develop our closed categories from the preceding
sections into a topos.

Figure 15 shows a pullback of the Pb8 chord (Figure 14) over
Instrument in the context of the Timeline. An example of
Figure 15 is the Pb8 chord with an instrument, say the piano,
in the context of a timeline, that is a particular position in the
score, bar+offset, together with the time signature, for example
bar 117, offset 2, in say 4/4 time. An instance of the relationship
Pb8 �Timeline Instrument is @ Pb8�,piano,117,2,4~4 A where
Pb8� is a subcategory of Pb8 satisfying the restriction. The full
nested relationship is:

@@@@@@ C,E,G A,C major,@ root, major third, perfect fifth AA,
quaver,0.125 A,ff,93 A, staccato,0.5 A,piano,@ 117,2,4~4 AA

Figure 15 is the intension for a performance, specifying the score
as the composer has indicated it should be played. The approach
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Figure 15. Pb9i: Permissible Chords with Duration, Loudness, Accent and
Instrument: Intensional Relationship as Pullback of the Pb8 Chord over In-
strument in the context of Timeline

adopted here specifies both the logical component of a composition
using typical musical terminology, such as quaver, ff, C major, and
the physical implications of the score in terms of pitch, harmonics,
length, decibel, time signature and bar number. The logical aspects
are in a relationship in the context of the physical specification.

An extension for the score represents a performance of the score,
with Pb8 representing the notation in the score, the Player being
the artist selected to play the Instrument and Occasion being
the sound made at the actual timing of the striking of the note. A
canonical instance of the extension Pb9e, Pb8 �Occasion Player,
is shown in Figure 16 as a pullback of the Pb8 chord over Instru-
ment in the context of Timeline. The Player will vary from one
performance to another; the Occasion will vary from one perfor-
mance to another. It is worth emphasising that the term Occasion
has been selected with some care. The term has a philosophical
basis from Whitehead’s work on Process & Reality [43] where it is
a temporal actual entity. Among the four types defined, the last
‘occasions of experience of the fourth grade’ is the most relevant for
music, involving experience in the mode of presentational immedi-
acy, which is taken to mean the qualia of subjective experience.

Figure 17 combines the intension, Figure 15, and the extension,
Figure 16, into a single Dolittle diagram DoL3, a concept discussed
earlier with Figures 4, .5. This is a pullback of the intension over
the extension in the context of typed instances. With the Dolittle
construction, the extension is now set-valued representing a collec-
tion of players so we have moved beyond the canonical case. The
intension is the pullback Pb9i called P-type, the extension the
pullback Pb9e called {P-value} and the typed instance a sum
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Figure 16. Pb9e: Permissible Chords with Duration, Loudness, Accent and
Instrument :Extensional Relationship as Pullback of the Pb8 Chord over a
Player in the context of Occasion

Figure 17. DoL3:The Dolittle Diagram of the Intension, Figure 15, over the
Extension, Figure 16, in the context of Typed Instances P-type + {P-value}



22 Rossiter and Heather

P-type + {P-value}. The sum is the colimit or initial object of
the diagram in the context of the limit PX; the product P-type
� {P-value} is the limit or terminal object of the diagram in the
context of the colimit P�. The diagram is closed at both ends
with the limit specifying the logical connection as a product and
the colimit the physical relationship as a coproduct, delivering the
actual sound. A very significant arrow is f0, the set-valued func-
tor taking the intension to a set of instances, representing all the
players at that point in the score. f0 is the Conductor, the person
co-ordinating the individual players to give an overall sound. The
category in Figure 17, with its internal Dolittle structure, is an
adhesive category readily embeddable into a topos, which acts as
a placeholder.

Figure 18. Pb10: Relationship as Pullback of Score over Composer in the
context of DoL3: Score �DoL3 Composer

The final stage is the creation of the data structure is the sub-
stitution of Variant in Pb3 in Figure 8 by DoL3 in Figure 17
to give Pb10 as in Figure 18. We rename Pb10 as topos PERF
for the remainder of the paper to maintain consistency with earlier
publications. The topos provides the mapping from the musical
structure at one point in the score to the collective physical sound
made by the players under a conductor.

5 Process in the Brain

We look at processes in the brain as an informal way to intro-
duce the categorial concepts that underpin process. The concepts
required are a data structure, the topos as already introduced, the
processes which underpin the musical performance and a control
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mechanism for the processes.

The example chosen, to give a preliminary view of the pro-
cesses involved in the mind, is a performance on the violin. The
left hand of the player performs pitch control through intonation
and the right hand performs articulation through bowing. From
studies of brain activity in psychology the hemisphere of the brain
that controls a particular function is opposite to that performing
the function. So the intonation on the violin is handled by the
right-hand side of the brain and the articulation is handled by the
left-hand side of the brain. Dehaene et al [7] support this pic-
ture by showing that linear reasoning functions of language such
as grammar and word production, corresponding to articulation,
are often lateralized to the left hemisphere of the brain and holistic
reasoning functions of language such as intonation and emphasis
are often lateralized to the right hemisphere of the brain.

Dehaene et al also found that many higher-level activities are
done through co-ordination of both sides of the brain, an impor-
tant finding for the development of our argument that the two
hemispheres of the brain must be co-ordinated for a musical per-
formance to be made. Keeping rhythm is an example of an activity
requiring the coordination of both hands in playing any instru-
ment and the violin is no exception. Indeed we would suggest that
rhythm should be considered as part of the process of delivery or
performance, which is higher-order involving both intonation and
articulation in the context of a time series.

The front portion of the human corpus callosum, a nerve tract
in the centre of the brain, has been reported by David Levitin ([18]
p.226) and Greg Miller [25] to be significantly larger in musicians
than in non-musicians. Musical training has been shown by Steele
et al [42] to increase plasticity of the corpus callosum during a
sensitive period of time in development. The implications are an
increased bimanual coordination, differences in brain structure, and
amplification of plasticity in motor and auditory faculties which
would serve to aid in future musical training. The study of Steele
found children who had begun musical training before the age of six
(minimum 15 months of training) had an increased volume of their
corpus callosum and adults who had begun musical training before
the age of 11 also had increased bimanual coordination. A similar
result was found by Hyde et al [14] who collected detailed magnetic
resonance images of the children’s brains at age 6 and again at 9.
Of the original group, six children faithfully practiced at least 2.5
hours a week in the time between the scans. In these promising
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musicians, a region of the corpus callosum that connects movement-
planning regions on the two sides of the brain grew about 25%
relative to the overall size of the brain. Children who averaged only
an hour or two of weekly practice and those who dropped their
instruments entirely showed no such growth. All of the children
practiced instruments, such as a piano or a violin, that required
two hands.

Categorial concepts apparently matching the brain processes
are a category for holding the information (the topos PERF de-
veloped earlier in Section 4.3), functors for each main process acting
on the topos (articulation, intonation), adjointness between these
functors and a monad controlling the adjunction. The functors in
more detail are A for articulation and I for intonation. A is the
free functor, the creative step operating on one instance PERF in
the left-hand hemisphere of the brain. I is the underlying functor,
enforcing the rules, operating on the same instance PERF in the
right-hand hemisphere of the brain. If the two functors are adjoint
then there is a natural relationship A Ú I, defined by the 4-tuple
@ A, I, η, ε A where η is the unit of adjunction and ε is the counit
of adjunction. The unit measures the creativity in one cycle of the
free and underlying functors, starting with the free functor. The
counit measures the adherence to quality in one cycle of the free
and underlying functors, starting with the underlying functor. The
adjointness therefore gives a measure of the creativity and quality
of the performance. The monad is a process, controlling the com-
position of the adjoint functors IA across the two hemispheres of
the brain and therefore acting as the corpus callosum. Also co-
ordinating activity in the corpus callosum is the comonad, dual to
the monad, which controls the composition AI. The monad and
comonad represent the intense mental effort required in coordinat-
ing the left and right hands of the player. In the next section we
look at the category theory in more detail. A schematic diagram
of the processes involved in shown in Figure 19.

6 The Monad operating within the
Topos

To achieve a musical performance we need to define an activity
on the topos to realise the sound. This requires a process, as indi-
cated by Heraclitus (all is flux) and discussed at length by White-
head in Process & Reality [43]. In information systems process
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Figure 19. The Processes in the Brain of Articulation A and Intonation I as
Categorial Concepts. A is left adjoint to I and I right adjoint to A, written
A Ú I, all under the supervision of the monad T
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corresponds to transaction, representing activity on the contents
of a database system [36]. A transaction requires three cycles: the
first makes the change, the second checks the change against the
rules, the third rolls back the change if the rules are broken or
records the change if it is acceptable. A transaction can be very
complex but the whole is viewed as an atomic action with a binary
outcome: success or failure. The before and after states must be
consistent in terms of rules; intermediate results are not revealed
to others and the results persist after a successful outcome.

In a musical performance matters are not so binary as in the
world of databases. In the first cycle of adjointness, a performer
will apply articulation and intonation to the time bar; in the sec-
ond cycle the performer will apply the rules and may, for instance,
make minor adjustments on the violin to the left-hand finger po-
sitions (intonation); in the third cycle the performer reviews the
whole sound effect; only in extreme circumstances would the per-
former rollback, by reverting to the previous timeline; for the unit
of adjunction, the change represents creativity by the performer in
articulation with no change indicating a lack of expression; for the
counit of adjunction, no change represents strict adherence to the
score by the performer in intonation with change indicating depar-
ture from the score. Clearly there is a balance between articulation
and intonation with a lifeless, over-strict performance resulting in
no change to the unit and counit of adjunction and an expressive
performance, deviating from the strict score, being measured by the
unit of adjunction for creativity and by the counit of adjunction
for the extent of the deviation.

The monad is the preferred way of representing process in cat-
egory theory and functional languages. The term originates from
Leibniz for an elementary ‘substance’ whose interior cannot be ex-
amined. In the object-oriented programming paradigm, Leibniz’s
ideas correspond to encapsulation, used to define a process with
a clearly-defined interface to hidden internal workings. A monad
is based on an endofunctor, a functor with the same source and
target category. Such an endofunctor may be written F � XÐ�X
where X is a category. An endofunctor can also be a pair of adjoint
functors: IA where A � PERF Ð� PERF, I � PERF Ð� PERF,
as the source and target category is the same, PERF. It is this
application of an endofunctor that we adopt in this paper. The
diagram in Figure 20 shows the adjointness A Ú I with its unit
η �� 1P Ð� IA�P � and counit ε � AI�P �� Ð� 1�P of adjunction,
where P and P � are objects in PERF.
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Figure 20. The pair of Adjoint Functors A Ú I as an endofunctor with source
and target category PERF. A is left adjoint to I and I right adjoint to A. I
intonation, A articulation

As in the world of transactions, in category theory a monad can
be viewed as involving three cycles: IAIAIA of the free functor A
and the underlying functor I defined above, where A Ú I, that is A
is left adjoint to I and I is right adjoint to A. The monad therefore
involves three cycles of the diagram in Figure 10. It should be
noted that while the term cycle is appropriate from the practical
point of view it is slightly misleading: the monad is actually a snap
rather than three cycles in turn, corresponding to the prehension
(or grasping) of Whitehead [43]. Writing IA as T , the monad is
shown in Figure 21(a). There is a dual comonad shown in Figure
21 (b) where S � AI, S3 is AIAIAI. The monad @ T, η, µ A

operates within the topos PERF as T � PERF Ð� PERF, and
the comonad @ S, ε, δ A as S � PERF Ð� PERF, where η and ε
are the unit and counit of adjunction respectively and µ and δ are
multiplication and comultiplication respectively.

Figure 21. (a) The monad construction T 3
Ð� T 2

Ð� T where T � IA,
µ � T 2

Ð� T is multiplication; (b) the comonad construction S Ð� S2
Ð� S3

where S � AI, δ � S Ð� S2 is comultiplication. I intonation, A articulation

In keeping with its economical notation, a monad is commonly
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identified in category theory by its endofunctor rather than by an
additional symbol. So the monad construction @ PERF, T, η, µ A

is referenced as the monad T . Similarly the comonad construction
@ PERF, S, ε, δ A is referenced as the comonad S. Some sources use
bold font for monad names indicating that the monad is a category
[21]. While a monad does satisfy the properties of a category, we
prefer to treat it as a functor, as done by Sankar [41], to indicate
its active role. We add to the definition the category upon which
the monad is based, here PERF, after Mac Lane [20].

7 Composition of Monads

One monad operation or instance T relates articulation and in-
tonation in a single time-frame. We now need to compose monad
instances across all the time-frames in a musical work. Compo-
sitionality is a cornerstone of category theory and at the applied
level is straight-forward with, say, . . . , X T �� X T � X T representing
the composition of the three monads: T �� with T � and T , as the
progression from a time-slice T to T � to T ��, . . . . This naturality
or abstraction at the applied level is maintained in the functional
programming language Haskell [11], named after Haskell B Curry,
who developed the transformation of functions through currying in
the λ�calculus. In Haskell the monad is an increasingly popular
construction as an abstract data class with the composition from
monad to monad being natural as above. A motivation for Haskell
in employing the monad construction was to assist in composition-
ality of functional programs. Indeed Haskell provides a practical
testbed for the categorial concepts developed in this paper.

In pure category theory the composition of monads has gener-
ated much theoretical discussion. The monad in Haskell is formally
classified as an extension of the monad developed by Eilenberg-
Moore, involving the notion of a strong monad [21, 22, 27] after
work by Kleisli. In more concrete terms a strong monad is defined
as a (categorial) monad with strengthening with respect to prod-
ucts and idempotency. The strengthening with products leads to
the concept of a Cartesian monad where, if the underlying cate-
gories are pullbacks, the monad T preserves pullbacks and µ and
η are Cartesian, then the monad is Cartesian. This strengthening
of the monad results in composition of monads in Haskell being
natural for all monads, including Cartesian ones. Our monads are
Cartesian as PERF is Cartesian, involving products as pullbacks.
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More technical detail on the Kleisli monad can be found in earlier
work by the authors [37], showing how the Kleisli lift is applied
to a monad to improve its behaviour with respect to the laws of
distributivity in comparisons and composition [22]. Such laws en-
sure that an operation applied to each of the parts of an expression
gives the same result when applied to the whole e.g. 2(a+b) = 2a
+2b. A distributive operation provides reproducible results.

To explore the detail for the music application, we need to de-
fine the three monads T,T �, T �� and their respective dual comonads
S,S�, S��:

T �@ PERF, T, η, µ A

T �
�@ PERF, T �, η�, µ� A

T ��
�@ PERF, T ��, η��, µ�� A

S �@ PERF, S, ε, δ A

S�
�@ PERF, S�, ε�, δ� A

S��
�@ PERF, S��, ε��, δ�� A

The underlying topos category remains unchanged as PERF
but the adjunction is different, reflecting the different time bar and
how it is performed with unique unit and counit of adjunction. So
a player can be expressive or slightly off-pitch in one part of the
score and not in another, as reflected in an actual performance.

For the subtleties in a performance of a musical composition we
need to examine the potential connections between successive mon-
ads and comonads. There are at least three facilities available in
category theory, involving 1) a composition of the functorial com-
ponents of two monads; 2) a distributive law governing the com-
position of functorial parts of two monads; 3) adjointness between
the functorial parts of a monad and a comonad. The functorial
parts of monads, rather than the monads themselves, are always
considered in composition as they are actions while the monads are
classes. We now consider these facilities in more detail:

1. We can compose the functorial components of monads if a
number of housekeeping rules are satisfied as defined by Barr
& Wells ([3] p.259) with the expression: T � X T a compos-
ite of monads with functors T � and T respectively. Such
a composition of monads T0 �@ PERF, T � X T ;η0, µ0 A is
compatible with monads T �@ PERF, T, η, µ A and T �

�@

PERF, T �, η�, µ� A.
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2. We have a distributive law [5] with a natural transformation
defined as λ � T �XT Ð� T XT � comparing any two endofunctors
on the category PERF. The distributive law enables Carte-
sian monads to be composed naturally, as discussed above for
the Kleisli lift.

3. There is an adjunction, between the functor component of a
monad and the functor component of a successor comonad.
The free functor in such an adjointness is the functor in the
comonad and the underlying functor is the functor in the
monad [3, 5]. So from the above definitions we can write the
following possible adjunctions for the monad/comonad struc-
tures: S�

Ú T and S��
Ú T �. These adjunctions hold if appro-

priate units and counits can be defined. They then provide
a chain through the performance from one timebar to an-
other with the following complete definitions respectively as
examples: @ S�, T, ηS� , εT A and @ S��, T �, ηS�� , εT � A. Note that
at this level it is the comonad with its apparently forward-
looking action that is driving the creativity with the monad,
looking backwards, enforcing the rules.

From the musical perspective the composition of the functorial
components of monads drives the performance forward from one
bar to another, with the distributive law ensuring that the com-
position is natural. Such a composition would be ’wooden’ in the
sense that the relationship between successive bars is fixed through
the timeline. The adjunction adds scope for expression between one
bar and another with the unit of adjunction measuring expressive-
ness, such as variation in timing between one bar and another,
and the counit of adjunction measuring quality in adherence to the
score in moving from one bar to another, such as in phrasing. Ear-
lier work by the authors [12] on handling time jitter in category
theory is relevant for handling subtle differences in phrasing.

8 Discussion

The net-based approaches discussed earlier in Section 2 pro-
vide a graphical approach for capturing musical performance. In
the early stages the approaches were clearly set-based but later
attempts moved to category theory. Unfortunately these later at-
tempts do not represent a major advance as they are mainly cate-
gorification of the earlier set-based approaches, that is a conversion
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of set structures to categories on a 1:1 basis. Such techniques do not
make use of the natural applicability of category theory to music
as described in Section 3.

In our work we regard, as a significant development, the use
of the topos with intension/extension relationships as Dolittle di-
agrams in the nodes of the data structure. To provide an insight
into the structures involved, the intension/extension relationship is
mapped over five levels of structure (four levels of functors) from
the Universe through the Universe of Discourse (UoD) of music,
the UoD of scores and the UoD of the variants of scores to the
UoD of actual musical performances. The closest approach to our
work in structural terms is that on the denotators by Mazzola and
Andreatta [24], who use, it appears, the Eilenberg-Moore category,
a lower level approach but with significant handling of musical no-
tation. Denotators provide a detailed description of the score in
category theory terms, in a similar way to our topos construction,
based on pullbacks and pushouts. The limit of the topos provides
an index within the score to the bar being played; the colimit rep-
resents the physical sound generated at that particular index value.
A set-valued functor in the Dolittle Diagram from the intension of
the score to the extension of the performance is the role of the con-
ductor, who integrates the overall performance from that of each
individual player.

We would regard the monad as another significant breakthrough
in representing musical performance, handling process, the dy-
namic aspects of the performance. The monad and its dual the
comonad enable the performance of a musical piece to not only be
monitored in simple terms as composition from one timeline to an-
other but also in terms of adjointness between the intonation and
articulation in the performance as it progresses. Such adjointness
gives a measure of accuracy and expressiveness. The processes in-
volved are linked to those in the brain in Section 5 for a violin with
intonation as a process I played by the left hand and articulation
A played by the right hand.

The aesthetic aspects of music, such as anticipation, can also
be realised in our approach. There are two distinct viewpoints
of anticipation in music: the performer’s and the listener’s. The
player anticipates the sequence of notes to come by extrapolating
intuitively from preceding notes while at the same time physically
keeping an eye on the subsequent score and the listener builds up a
mental image of the music as it evolves. Tension builds for listeners
as their anticipation of the performance is realised or denied. Such



32 Rossiter and Heather

experience is captured naturally by the monad/comonad structure
with its forward/backward nature and inherent adjointness. A spe-
cific case of this is discussed in Section 7 where adjointness occurs
between the active part of the monad in one timeline and the active
part of the comonad in the following timeline. Overall the monad
looks backwards �T 3

Ð� T 2
Ð� T,T � IA� and its comonad for-

wards �S Ð� S2
Ð� S3, S � AI� in their three cycles. However, the

situation is more subtle than this: in each cycle the monad looks
forwards (functor A for articulation) and then backwards (functor
I for intonation) and its comonad looks backwards (I) and then
forwards (A). The duality of the monad/comonad represents com-
munication in an orderly manner within initially defined colimits
and adjointness. Values for η (unit of adjunction) and ε (counit)
represent rhetoric and dialectic respectively for the performance,
giving a measure of expressiveness and accuracy. These units are
strongly influenced by the conductor, augmenting his/her role in
integrating the individual performances towards an overall sound
by the orchestra. It is possible that there is a faltering in the com-
munication, resulting in a roll-back with revised adjointness.

Category theory is no longer solely a theoretical exercise. As
discussed earlier in Section 7, implementations are available in the
functional programming language Haskell [11]. Indeed the imple-
mentation fed back into the theory with the need for the Kleisli
lift clearly established in monad composition. Besides the use of
an implementation in Haskell of the category theory for the more
abstract levels in the music, there are routes in Haskell through to
the music itself as signals via Paul Hudak’s work on the Haskell
School of Music [13].

There are a number of areas where further work is desirable.
The violin is a special case of a musical instrument with a clear
delineation between the roles of the hands in generating the mu-
sic. A number of other string instruments are similar, such as the
viola, cello, double bass and lute but the pedal harp involves ad-
ditional foot control. Woodwind and brass instruments are more
complicated with the mouth and both hands involved and the pi-
ano, while notionally having the melody played by the right hand
and the harmony by the left hand, is much more complicated in ad-
vanced composition. An attempt to produce a more general match
between the brain and the instrument is desirable. The notion
of anticipation, as key to any communication process, could also
be developed further from a more detailed examination of the in-
terplay between the monad and its associated dual, the comonad.
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An attempt to link the structures developed in this work with the
Haskell School of Music of Hudak would provide a very interesting
demonstrator project.

Our current approach is restricted to discrete scores, based on
the 12-note scale. Handling microtones [16] is more difficult as this
requires the representation of notes on the scores as real numbers,
hence a move from discrete to continuous mathematics. Another
influence on music in terms of category theory is reputed to be
the constructions of the composer Stockhausen, though nothing
explicitly justifying this hypothesis has yet been found; however,
it appears that the categorical construction, the Ring, may corre-
spond philosophically to Stockhausen’s approach. An outline of a
future approach is that Cartesian spaces as pullbacks will be con-
structed for real numbers through smooth manifolds expressed as
differential forms, using vector spaces with tensor products. The
Ring category, based on the Abelian category, the dual of a Dolit-
tle diagram with coequalizer followed by equalizer, will provide the
driving logic. Freyd has claimed that his work is equivalent to the
discrete topos approach but with a different initial object [30].

9 Conclusions

Our approach naturally handles both the static and dynamic
aspects of a musical performance in a general and flexible manner
within the coherent theoretical framework of category theory and
the philosophical context of the intension/extension relationship.
The static data structuring involves the topos, based on the locally
Cartesian closed category (LCCC), providing connectivity, and re-
lationships through limits, indexing the position in the score, and
colimits, representing the physical sound delivered. The dynamic
process involves the monad, controlling the adjointness between ar-
ticulation and intonation, mirroring the activity in the brain. The
formalism produced can be implemented in a functional program-
ming language such as Haskell.

Glossary

Adjoint: a natural relationship between a functor and its dual.
Arrow: a mapping or morphism from one object to another.
Cartesian: a product space.
Categorification: conversion of concepts to categories by rote.
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Category: a collection of arrows, that are connected to each other.
Closed: a category with limit, colimit and λ-calculus logic.
Colimit: the upper boundary of a category.
Composition: an action taking the output from one task as the
input to another.
Dolittle: a diagram that is both a pullback and a pushout.
Dual: an arrow in the opposite direction.
Endofunctor: a functor with source and target the same.
Extension: the values for a category according to some intension.
Functor: a mapping from one category to another.
Identity: a mapping from an object onto itself.
Intension: the definition of a category.
Isomorphism: indistinguishable mappings.
Limit: the lower boundary of a category.
Monad: an operation on an adjoint.
Natural: unique up to some isomorphism.
Natural transformation: a mapping from one functor to an-
other.
Object: the source and target of arrows.
Pasting: the amalgamation of one pullback with another.
Pullback: a product expressed as a relationship over some ob-
jects.
Pushout: a coproduct expressed as a sum over some objects.
Source: the domain of an arrow.
Subobject classifier: an object which returns a logical value,
such as true or false.
Target: the codomain of an arrow.
Topos: a closed category with intuitionistic logic and a subobject
classifier.
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[33] Alexandre Popoff, Moreno Andreatta & Andrée Ehresmann, A Cat-
egorical Generalization of Klumpenhouwer Networks, 5th Int Conf
MCM 303-314, 2015.

[34] Alexandre Popoff, Carlos Agon, Moreno Andreatta & Andrée
Ehresmann, From K-Nets to PK-Nets: A Categorical Approach,
Perspectives New Music, 54(2) 5-63, 2016.

[35] Alexandre Popoff, Moreno Andreatta & Andrée Ehresmann,
Relational PK-Nets for Transformational Music Analysis,
arXiv:1611.02249, 19pp, 2016.

[36] B N Rossiter, M A Heather & D Sisiaridis, Process as a World
Transaction, Proceedings ANPA 27 Conceptions, 122-157, 2006.
http://nickrossiter.org.uk/process/anpa064.pdf

[37] Nick Rossiter, Michael Heather & Michael Brockway, Monadic
Design for Universal Systems, ANPA 37-38, Anton L Vrba
(ed.), 369-399, 2018. http://nickrossiter.org.uk/process/

Rossiter-ANPA-PROC-37-38-2final.pdf

[38] Nick Rossiter & Michael Heather, Musical Performance: a Compo-
sition of Monads, UNILOG’2018, 6th World Congress on Universal
Logic, University of Vichy, France, 21-26 June 2018, in: Hand-
book of the 6th World Congress and School on Universal Logic,
Jean-Yves Beziau, Arthur Buchsbaum & Christophe Rey, with the
assistance of Alvaro Altair & Yanis Ayari (edd) https://www.uni-
log.org/vichy2018 Workshop: Logic and Music, pp.212-213, 2018.



38 Rossiter and Heather

[39] Nick Rossiter & Michael Heather, Musical Performance: a Com-
position of Monads, Sociology and Anthropology 7(4), 178-
188, 2019.http://www.hrpub.org/journals/article_info.php?
aid=8028.

[40] Nick Rossiter & Michael Heather, Anticipation in Communication:
The Example of the Cartesian Monad in Music, 30th International
Conference on Systems Research, Informatics and Cybernetics,
Symposium: Anticipative Models in Physics, Relativistic Quan-
tum Mechanics, Biology and Informatics, Baden-Baden 30 July-
3 August, 6pp (2018). http://nickrossiter.org.uk/process/

badenbaden18%202.pdf.

[41] Anirudh Sankar, Monads and Algebraic Structures, University of
Chicago REU, 2012. http://math.uchicago.edu/~may/REU2012/

REUPapers/Sankar.pdf.

[42] CJ Steele, JA Bailey, RJ Zatorre & V Penhune, Early musical train-
ing and white-matter plasticity in the corpus callosum: evidence for
a sensitive period, J Neurosci 33(3), 1282-1290, 2013.

[43] Alfred North Whitehead, Process and Reality: An Essay in
Cosmology, Macmillan, New York (1929); corr.ed., eds. David
Ray Griffin and Donald W. Sherburne, New York: Free
Press, 1978. https://monoskop.org/images/4/40/Whitehead_

Alfred_North_Process_and_Reality_corr_ed_1978.pdf.


