

Ali S. Elbekai
Dr. Nick Rossiter
School of Informatics
Northumbria University
Pandon Building, NE1 8ST
Newcastle upon Tyne
44 191 243 7613
ali.elbekai@unn.ac.uk
nick.rossiter@unn.ac.uk

Vassil T. Vassilev
Dept of Computing, Comm. Technology & Mathematics
London Metropolitan University
v.vassilev@londonmet.ac.uk

Virtual Exhibitions Framework: Utilisation of XML Data Processing for
Sharing Museum Content over the Web

Summary
In this paper we will describe a prototype implementation of a framework for
organising virtual exhibitions, which uses information provided by the
collaborating museums in the form of Web services. The museum content
published by the collaborating museums is organised in a homogeneous virtual
exhibition space by an exhibition curator and is accessible from a single point of
entry – the Virtual Exhibition site. The prototype assumes the content published
is an extract of CIDOC-compliant museum database, which allows easy
standardisation and further dissemination. The prototype system presented is
built entirely using public domain stack of technologies for processing XML data
in Java (J2SE, J2EE and additional XML and Web Services packages). It
functions as an entirely server-side Web application executed by a Tomcat
server connected to a backend database (one for each participating museum
plus one for the exhibition itself). Furthermore, the paper will describe one further
step in the direction of accomplishment of truly pan-European collaboration for
organisation of virtual exhibitions. Using a single XML schema for specification of
the common exhibition information and utilising contemporary information
technologies for processing XML data over the Web, the approach adopted
demonstrates how to add a new European dimension in the inter-museum
collaboration and to achieve wider access to the rich European cultural heritage.
The system will be demonstrated during the conference.

1 INTRODUCTION

 As the Web becomes increasingly the world’s official media, many museums,
achieves, libraries, and cultural heritage centres throughout the world invest in
documenting their collections and in publishing their material via the web, making

mailto:ali.elbekai@unn.ac.uk
mailto:nick.rossiter@unn.ac.uk

their information accessible on the Internet. Generally, museums use many
different styles in presenting their collections on their Web pages. In addition,
some museums provide sophisticated searching facilities so that the user can
retrieve information about required items by subject, date, and place. Others
classify their material into groups to satisfy the user’s requirement. It is fairly
certain that with such sophisticated new technologies, the need for standards to
manage the information that these collections contain becomes more and more
urgent. As a result, several projects have been conducted in the last few years in
order to develop a unified standard for organizing and managing data and
information in such institutions. In the same way, many museum organisations
are working together to develop standards and techniques and to make their
resources more widely and easily available. On this basis, (ICOM-CIDOC) and
CIDOC documentation standard working group (DSWG) have engaged in the
creation of a general data model for museums. CIDOC have particularly focused
on information interchange. As a result, this effort resulted in 1999 in the first
complete package of the “CIDOC Conceptual Reference Model” (CRM). Such an
achievement was a result of intensive hard word form many experts in the field of
IT and museum information many specialists contributed to this work, in order to
fully exploit the potential of the CRM as a means to enable information
interchange and integration in the museum community and beyond.
Later, the CIDOC group held meeting in London 1999, and they decided to
submit CRM proposal to ISO for standardization. Consequently, CIDOC has
been authorized to use the ISO facilities that resulted in the acceptance of
CIDOC CRM as well as a defined global standard under ISO reference (number
ISO/AWI21127) by ISO/TC46/SC4 [ICOM-CIDOC 1996-2003]. In other words,
CIDOC will make use of the services of ISO and collaborate with the respective
ISO committees to bring the CRM to a suitable final shape and to ensure the
widest global agreement on it in the whole international community interested in
this field. With regard to the CRM standard, the primary role of the CRM is to
serve as a basis for mediation of cultural heritage information and thereby
provide the semantic 'glue' needed to transform today’s disparate, localised
information sources into a coherent and valuable global resource [ICOM-CIDOC
1996-2003].
As mentioned before, such massive work has been developed and optimized by
CIDOC. The "CIDOC object-oriented Conceptual Reference Model" (CRM), was
developed by the ICOM/CIDOC Documentation Standards Group [ICOM-CIDOC
1996-2003, ICOM-CIDOC 2001, IGMOI 1995]. Since September 2000, the CRM
has being developed into an ISO standard in a joint effort of the CIDOC CRM
SIG and ISO/TC46/SC4 (ISO/AWI 21127). It represents an ‘ontology' for cultural
heritage information i.e. it describes in a formal language the explicit and implicit
concepts and relations relevant to the documentation of cultural heritage.
This paper describes one further step in the direction of the accomplishment of
truly pan-European collaboration for organisation of virtual exhibitions. Using a
single XML schema for specification of the common exhibition information and
utilising contemporary information technologies for processing XML data over the
Web, the approach adopted demonstrates how to add a new European
dimension to the inter-museum collaboration and to achieve wider access to the
rich European cultural heritage. Furthermore the paper describes a prototype

implementation of a framework for organising virtual exhibitions, which uses
information provided by the collaborating museums in the form of Web services.
The museum content published by the collaborating museums is organised into
a homogeneous virtual exhibition space by an exhibition curator and is
accessible from a single point of entry – the Virtual Exhibition site. The prototype
assumes the content published is an extract of CIDOC-compliant museum
database, which allows easy standardisation and further dissemination. The
prototype system presented is built entirely using a public domain stack of
technologies for processing XML data in Java (J2SE, J2EE) and additional XML
and Web Service packages.
The rest of the paper is structured as follows: Section 2 describes the object-
oriented conceptual reference model. This leads up to a description of a
prototype implementation of a framework for organising virtual exhibitions, which
uses information provided by the collaborating museums in the form of Web
services in section 3. Section 3.1 presents our use case diagram for the
proposed system. Section 3.2 presents the museum association diagram (class
diagram). Section 3.3 presents the packages of the system. Section 3.4 presents
the ER diagram for the system. Section 3.5 presents the component diagram for
the system. Section 3.6 introduces the deployment diagram for the proposed
system. Section 4 reviews the related work. Section 5 presents conclusion and
further of work.

2 OBJECT-ORIENTED CONCEPTUAL REFERENCE MODEL (OOCRM)

The object-oriented CIDOC Conceptual Reference Model (referred to as “CRM”)
is the result of work done by the CIDOC Documentation Standards Group, from
1994-2000, and the CIDOC CRM Special Interest Group from 2000-2002.
CIDOC came from an initiative to define the underlying semantics of database
schemata and document structures needed in museum documentation for the
support of good practice in conceptual modelling, data transformation, data
exchange, information integration and mediation of heterogeneous sources.
Basically, the scope of the CRM is the formal knowledge of museums, that is
information required solely for the administration and management of cultural
heritage institutions. That implies that any other information relating to museum
personnel, accounting and visitor statistics, is not largely covered by CRM scope.
Besides, CRM is specifically intended to cover contextual information: the
historical, geographical and theoretical background in which individual items are
placed and which gives them much of their significance and value. Besides, the
term cultural heritage collections is intended to cover all types of material
collected and displayed by museums and related institutions, as defined by
ICOM [CIDOC CRM 2004, Roberts D.A. 1990]. This includes collections, sites
and monuments relating to natural history, ethnography, archaeology, historic
monuments, as well as collections of fine and applied arts. The exchange of
relevant information with libraries and archives, and the harmonisation of the
CRM with their models, falls within the CRM's intended scope.

3 RELATED WORK

[Vassil Vassilev et al 99] present both a general description and a technical
specification of the information system for museum information processing.
[ICOM-CIDOC 1996-2003, CIDOC CRM 2004, CIDOC 1995a] that is being
developed into an ISO standard as a joint effort of the CIDOC CRM SIG and
ISO/TC46/SC4 (ISO/AWI 21127). CIDOC is the result of work done by the
CIDOC Documentation Standards Group, from 1994-2000, and the CIDOC CRM
Special Interest Group from 2000-2002, as the result of an initiative to define the
underlying semantics of database schemata and document structures needed in
museum documentation for the support of good practice in conceptual modelling,
data transformation, data exchange, information integration and mediation of
heterogeneous. [Vassil Vassilev et al 2000] worked on previous projects for
publishing museum content over the Web (in archaeology, in watermark images
and in industrial heritage). [Nicholas Crofts 2003] described a practical
application of the CIDOC CRM in integrating a large and diverse set of data
sources. These data sources, accumulated over a number of years, all contain
information relating to Geneva's architectural and cultural heritage.
As a result the previous works do not describe a framework for organising virtual
exhibitions over the Web. This paper describes one further step in the direction
of an accomplishment of truly pan-European collaboration for organisation of
virtual exhibitions. Using a single XML schema for specification of the common
exhibition information and utilising contemporary information technologies for
processing XML data over the Web, the approach adopted demonstrates how to
add a new European dimension in the inter-museum collaboration and to
achieve wider access to the rich European cultural heritage.

4 PROTOTYPE DEVELOPMENT OF THE SYSTEM
Basically, object orientation is an approach to developing software systems
based on data items and the attributes and operations that define them. The
concept of the object-oriented approach in system development has been
evolved by time during last decades [Britton Carol 2000]. At the beginning,
interest in the object oriented approach focused on programming language
issues; later this concept has grown to cover the whole of the system
development process, capturing initial system requirements right through to the
final software product. The advantages of an object-oriented approach include
many well accepted design goals of quality program development such as
modularity, modifiability and maintainability [ICOM-CIDOC 2001]. As a result, the
benefits to be gained in developing software systems with the object oriented
approach is undoubtable, especially with large, complex systems. Throughout
the analysis and design stages in this project, the Unified Modelling Language
(UML) will be used to presents the concepts and techniques necessary to
effectively use system requirements captured using use cases to drive the
development of a robust design model. The main aim from using UML [Bergner
Klaus et al 97] is to be able to produce detailed object models and designs from
system requirements and in addition to identify the system use cases and
expand them into full behavioural designs. Finally, we expand the analysis into a
design ready for implementation.

 4.1 Use case diagram
A use case is a sequence of actions that an actor performs within a system to
achieve a particular goal. Also the use cases describe the interaction diagrams
[Carlson David 2001]. These interactions represent the main events that occur in
the application domain. Later, during the design phase, these events are
translated into the messages that trigger operations. A use case documents the
interactions between the roles of the system users called actors and subsets of
system functionality. Analysis starts with the search for the actors (categories of
users) of this access museum system. An actor represents a generic role played
by someone or something interacting with the system. A use case diagram
captures a model of several use cases, which depend on one another and how
one or more actors interact with those use cases. Figure 1 shows a use case
diagram for the museum system and the diagram show the relationships
between the actors and the use cases. It is not always easy to determine the
boundaries of the system, but by definition, the actors are always outside it. The
actors are ‘recruited’ from the system’s users and the people responsible for its
configuration and maintenance. They are divided up into the following
categories: Web visitor, Curator and Staff.
Furthermore each use case, rendered as an oval in the diagram, accompanied
by structured document information such as a goal statement, priority,
assumptions and list of activities, describes how the actors fulfill the identified
goal. As shown in Figure 1, dependency between use cases may be labelled as
<<extend>> or <<include>> or <<generalization>>. Assemble exhibition includes
Authorization, which means that the first use case (referred to as the base use
case) depends on the results or outcome of the included use case. The use case
is extends Assemble exhibition in this model. The extensions specify behaviour
that is optional or exceptional in the description. This use case may be the
extension used by another use case.

 Figure 1: use case diagram for the museum system

Web Visitor

Curator

Search_Virtual_exhibition database

Exhibition Activities

setup_an_exhibition

Extending exhibition activities

 Museum Activities

objects_information

institutions_information

Assemble exhibition

staff

Browse virtual exhibition

collection_assembly

Display object/collection
information

Login

[Staff
login]

[Web visitor
login]

<<extend>>

<<include>>

Authorization

<<Generalization>>

Sign_In

 Registration

Display Virtual exhibition
information

Publishing museum objects

Enabling activities

Visitor Activities

Open exhibition

[Curator
login]

4.2 Object identification and class deriving

Basically, the first step in constructing a class diagram is to identify objects in the
problem domain. These may be physical objects, such as people or documents

of organizational entities. All the objects identified at this stage relate to the
problem domain. In the next paragraph all the nouns underlined are identified as
possible objects.
The proposed museum system aims to provide different kind of services to
different kinds of clients. These clients are different kinds of users; these users
are recognized as persons. In addition every user has limited access to the
system (rights). They are categorized as follows:
Internally, staffs are responsible for publishing the museum objects and
collections (set of museum objects), in addition to their main task in handling
different kinds of information, such as data related to objects, institutions and
staff. Next, there is the curator is the person who manages the exhibition. Then,
there is the collector the person who collects information related to museum
objects (collection information- CIDOC). The information related to museum
objects is classified into six categories: image information, documentation,
acquisition information, location information, reference information and collection
information. Externally, the proposed system has three different kinds of persons.
Firstly, the Visiting groups, those who visit the Public display (kind of exhibition).
Also, the public display can be visited by individuals (visitors). Secondly, the
External person (who is a member of the Board), this board belonging to an
institution; the institution could be public, international, private or state institution.
In addition, the museum archive will be considered as a type of exhibition in the
proposed system. Finally, the proposed system will be visited via the web by
different kinds of visitors (web visitors). These visitors will visit the virtual
exhibition, which is a kind of exhibition. In the proposed system, the address
might be needed for the institutions and persons. The purpose of identifying
objects in the problem domain is to derive useful classes. The object classes that
can be picked out from the museum system problem brief are shown below.
Table 1 gives a summary description of the nouns is identified objects in our
proposed system. More details about the class diagram are presented in Figure
2.

 Table 1: Object classes

 Person Collection Exhibition Institution

Staff objects virtual exhibition public

Curator object information public display state

Collector image information archive private

Web visitor acquisition information

international

Visitor location information Address

Visiting group reference information

External collection information

Board documentation

User

Rights

 Figure 2: Class Diagram

Object

Exhibition

Institution

Person

CollectorStaffCuratorVisitor

Collection
"set of objects"

Visiting_group

Public
Display

Virtual
Exhibition

Address

Public Private state

Image
information

Acquisition
information

Location
information

Collection
information

External

International

location

Works_in

Passed_by

member_of

member

represented _byVisit

Visited by

arrange

Published_by
hosted_by

1

0..*

1

1..*

0..*

0..*

0..*

1..*

1..*

0..*

1..*

1

1..*

1

1

1

1

0..*

1..*

1..*

0..*

Located_at

browsing

0..*

Web Visitor

Board

Reference
information

Object
information

 member of

0..*

0..*

1 1

describe

1..*

1

Located_by

1..*

controlled_by

 1

0..*

supervised_by
0..1

0..*

generated_by

0..*

1

Rights User

Expert

Archive

Documentation

Identitfied_as

1 1

authorization

1 1..*

1

0..1

Acquired_form

1..*
Owned_by

1

1..*
availabled_in

0..*

1

approved_by

1

0..*

registered_by

0..*

described_by

1

1..*

1

1

attended_by

Pictured_by

0..*

1
authored_by

1

1
1

4.3 Packages
Basically, a package is a grouping of pieces of a model. Functionally, the
packages are very useful in managing models. The packages we have identified
represent different views of the proposed system. These views are organized
and described in packages as follows: exhibition management, museum
management, web services generation and user management. For each
package in Figure 3 a subset of the classes that it contains is listed. The

dependency arrows in the diagram indicate that the Exhibition Management
subsystem depends on three packages such as the Museum Management, Web
Services Generation and User Management. The Museum Management
depends on the User Management package and also the Web Services
Generation subsystem depend on the Museum Management and User
Management subsystems.
Moreover, the System Package depends on the User Management subsystem.
However the User Management subsystem is specified independently of the
others. Furthermore as shown in the diagram each package contains interface to
user pages, control class and one or more entities.

 Figure 3: Packages Diagram

Interface

Object information User interface
Institution information User interface

Control

Museum Management Control

Entities

 Object information
Institution information

Museum Management
Interface

Browse Virtual exhibition User interface
Search Virtual exhibition User interface
Display exhibition information User interface

Control
Exhibition Management Control

Entities

Exhibition

Interface

Assemble exhibition User interface
Setup new exhibition User interface
Extending exhibition User interface
Opening exhibition User interface
Publishing museum object User interface
Publish W eb Service user interface

Control

Extend Exhibition Assembly control
Open Exhibition control
Publish control
Generate web server control

Entities

Web service registration
Collection
Curator

System Packages

Exhibition Managment

Web Services Generation

Database Maintenance
Web server Maintenance
Web services Maintenance

Interface

Registration Page
Log In Page
Logout
Enabling Page
Authorization Page

Control

Registration Control
Login validation control
Authorization control
Enabling control
Extracting user perm ission

Entities

Person
USE CASE authority

User Management

4.4 Design Database for the museum system

Basically, the Entity Relationship Diagrams (ERDs) [Chen P. P. 1976, Kossmann
F. et al 99] illustrate the logical structure of databases for our proposed system.
Figure 4 shows the cardinality constraints between the objects classes. As can
be seen from the diagram each Collection may have many Objects. Also the
Object may have much Information. Information has Location, Reference, Image,
Documentation, Acquisition, and Collection information. The Exhibition has many
Collections, and the Exhibition has kinds such as Archive, Display and Virtual
exhibition with one to many cardinality. An Institution has many Visitor groups,
Exhibition, Collection, Object, Information and one Address. Note that the Person
could be Staff, Expert, Curator, Web visitor, Visitor groups, Collector and
External this also one to many cardinality constraints. More details on the entity
relationship between the objects classes for our proposed system are shown in
Figure 4.

 Figure 4: Entity Relationship Diagrams (ERD)

VISGROUP

ARCHIVE

DISPLAY

VIRTUAL

WEBVISITOR CURATOR EXPERT STAFF COLLECTOR EXTERNAL

COLLECTIONIAR

LOCATION
REFERENCE

IMAGE

DOCUMENTATION

INFORMATIONOBJECTCOLLECTIONEXHIBITION

PERSON

ADDRESS

INSTITUTION

BOARD

USER RIGHTS

ACQUISITION

VISITOR

represented by
represents

attended by

visited by

visit

browsed by

browsing

member of

member

supervised by

location
supervise

hosted by

located at host

located at
location

Controlled by

Control

membermember of

works in

employpublish

published by

member

member of

described by

describe

located by

acquired from

acquire

authorized for

authorization
identity

Identified as

pass
passed by

available
 from

pictured by

authored by

authorize

generated by

generate
register

registered by

describe

described by
owned by

owned

4.5 Design XML schema specification
Basically, the XML schema [Galloway Trace et al 2001, W3C 2004, Holstege
Mary et al 2004] is used to specify the structure and constraints on the XML
documents. Moreover the XML schema language can be used to define,
describe and catalogue XML vocabularies for classes of XML documents. In our
proposed system we design XML Schema that defines the elements, attributes,
child elements, whether an element is empty or include text, data type for

elements and attributes and fixed values for elements and attributes in our
system. Figure 5 shows a fragment of our XML Schema. Our XMLSchema has
exactly one root element as <XMLSchema>. There are many <complexType>
elements in our schema, each of which defines an element type in the schema.
Any element that contain attributes or child elements is defined by using a
complexType. Furthermore the XML Schema specification makes a clear
distinction between definitions and element declarations. <element> is a
declaration of an element that may appear in a valid document instance, but it
does not define that element type. It declares that an element named “collection”
has type “collection” that is elsewhere defined in the schema as <element
name=”collection” type=”collection”>. In fact, it declares the root element for vaild
document instances. Each of the <complexType> definitions includes child
elements that define the content model and/or attributes for this element type.
Both the child element definitions and the attribute definitions specify the type of
their content. Each complexType must define the content model for its child
elements. The content model for collection, object, objectInformation, exhibition,
institution and person is a sequence which has identical properties to sequence
in an XMLSchema. The XMLSchema collection definitions may use element type
inheritance. As the documention definition is a subtype of objectInformation, and
is derived by extension. this is specified as follows:
<complexType name="documentation">
 <complexContent>
 <extension base="objectInformation">
 </extension>
 </complexContent>
 </complexType>

As shown in the above example, <documentation> extends the content model of
objectInformation by combining all element and attribute definitions.
Because both documention and its parent type objectInformation are defined with
a sequence content model, the new elements defined for documention will be
appended to the end of the sequence defined for objectInformation. This
capability of XML Schema enables schemas to be written in a much more object-
oriented style. In addition, each element maybe optional. This property is
implemented in XML by adding a minOccurs=”0” attribute to each element
declaration.

 Figure 5: Fragment of our XMLSchema for the proposed system

 <XMLSchema>
 <element name="Collection" type="Collection"/>
 <complexType name="Collection">
 <element name="id" type="String"/>
 <element name="num" type="Integer"/>
 <element name="name" type="String"/>
 <element name="title" type="String"/>
 <element name="publishing_Date" type="Date"/>
 <element name="remote" type="String"/>
 <element name="features" type="String"/>
 <element name="purpose" type="String"/>
 <element name="description" type="String"/>
 <element name="URL" type="String"/>
 <element name="exh_exh_id" type="Integer"/>
 <element name="inst_inst_id" type="Integer"/>
 <element name="staf_staf_id" type="String"/>
 <all>
 <element name="member_of" minOccurs="0">
 <complexType>
 <element ref="Object"/>
 </complexType>
 </element>
 <element name="represented_by" minOccurs="0">
 <complexType>
 <element ref="Exhibition"/>
 </complexType>
 </element>
 <element name="generated_by" minOccurs="0">
 <complexType>
 <element ref="Staff"/>
 </complexType>
 </element>
 </all>
 </complexType>
 <element name="Object" type="Object"/>
 <complexType name="Object">
 <element name="number" type="String"/>
 <element name="name" type="String"/>
 <element name="title" type="String"/>
 <element name="registration_Date" type="Date"/>
 <element name="description" type="String"/>
 <element name="staf_staf_id" type="Integer"/>
 <element name="cllctr_cllctr_id" type="Integer"/>
 <element name="inst_inst_id" type="Integer"/>
 </complexType>

 <all>
 <complexType>
 <choice minOccurs ="1" maxOccurs="unbounded">
 <element ref="objectInformation"/>
 </choice>
 </complexType>
 <element name="owned_by" minOccurs="1">
 <complexType>
 <element ref="Institution"/>
 </complexType>
 </element>
 </all>
 </complexType>
 <complexType name= "objectInformation">
 <element name="Info_id" type="integer"/>
 <element name="description_date" type="Date"/>
 <element name="description" type="String"/>
 <element name="obj_obj_id" type="integer"/>
 <element name="Inst_Inst_id" type="integer"/>
 <element name="cllctr_cllctr_id" type="integer"/>
 <element name="staf_staf_id" type="integer"/>
 <element name="ext_ext_id" type="integer"/>
 <element name="exp_exp_id" type="integer"/>
 <all>
 <complexType>
 <choice minOccurs ="1" maxOccurs="unbounded">
 <element ref="object"/>
 </choice>
 </complexType>
 <element name="owned_by" minOccurs="1">
 <complexType>
 <element ref="institution"/>
 </complexType>
 </element>
 <element name="approved_by" minOccurs="1">
 <complexType>
 <element ref="staff"/>
 </complexType>
 </element>
 </all>
 </complexType>
</XMLSchema>

4.6 Design the component diagram

There are four main packages in the component diagram such as exhibition
management, museum management, web services generation and user
management. First, there is the Exhibition Management package, which contains
packages like HTML pages for the interface, JSPs for processing the HTML
pages, exhibition control (Java class), XML schema, XSL stylesheet and
exhibition SQL tables [William W. Provost 2002]. Second, there is the Museum
Management package, which contains components like HTML pages, JSPs,
XMLSchema, Museum control (Java class, SQL tables) as sub packages. Third,
there is the Web Services Generation, which contains components like HTML
pages, JSPs, XMLSchema, user management control (Java classes, SQL

tables) as sub packages. Finally, there is the User Management package, which
contains components like HTML pages, JSPs, XMLSchema, web services
generation control (Java classes, SQL tables). Furthermore the diagram shown
in Figure 6 shows the usage dependencies as a relation between packages and
which package requires another. The dependency is shown as a dashed arrow
and the arrowhead points from the component to the one on which it is
dependent. Figure 6 shows the component diagram for our proposed work in
more details.

Figure 6: Component diagram

 Registration page
 Login page
 Enabling page

 HTML Pages

 WebServiceRegistration
 collection
 curator
 SQL tables

exhibition_control
Java class

browse virtual exhibition
search virtual exhibition
display exhibition info.

 HTML Pages

XML
Schema

Exhibition Management

Museum_control
Java class

XML
Schema

Museum Management

Museum_control
SQL tables

extend_exhibition
Java class

XML
Schema

Web Services Generation

open exhibition
Java class

publish_control
Java class

generate_web_control
Java class

Registration_control
Java class

XML
Schema

Use_case_authority
SQL tables

Enabling
Java class

Log_in_Page
Java class

Authorization
Java class

JDBC

XSL
exhibition
SQL tables

browseVirtualExhibition
searchVirtualExhibition
displayExhibitionInfo.

JSPs

Assemble exhibition
setup new exhibition
extending exhibition
opening exhibition
publishing museum object
publish web service
 HTML Pages

assembleExhibition
setup newExhibition
extendingExhibition
openingExhibition
publishingMuseumObject
publishWebService
 JSPs

Object information
institution information

 HTML Pages

objectInformation
institutionInformation

 JSPs

Extracting_permission
Java class

 registrationPage
 loginPage
 enablingPage

 JSPs

User management

4.7 Design the deployment diagram

The deployment diagram is used to show the configuration of run-time
processing elements and the software components and processes that are
located in them. Figure 6 shows the deployment diagram for our proposed
system. The deployment diagram shows the three nodes such as PC (Exhibition
Curator, Exhibition Visitor), Museum Server and DBMS Server that represent the
nodes for the client, application server and database server respectively.
Furthermore the Museum Server (Application server) represents the node that
will process user requests from the Web server and send application responses
back to the Web server. The application server node will host the different kinds
of the system components such as Servlet container (tomcat), SOAP container,

XSL stylesheets, Java Lib and Web Server. The Web Server node will receive
the user requests and send responses from the application to the Client over
HTTP protocol. Each of these components deploys some task, for example, the
XSL stylesheet is used to translate from the XQuery as a user request to an SQL
string, from SQL to XML and from XML into an HTML document that can be read
by the web browser. The museum server was implemented using the Tomcat
Java application server [Jakarta Project]. Tomcat is the reference implementation
for the Java servlet technology [Sun Microsystems]. Moreover, the Database
Server node that will host the database server is used by the components in the
application server node to store and retrieve the data used by the System. To be
more specific the deployment diagram for the museum system shown in Figure 6
is composed of three-tiers:

 Web browser (Client) that can connect to the museum server, i.e., to
access the Java servlets. The client can use PCs to run a simple web
browser. The client communication protocol XML uses HTTP.

 Museum server, a set of servers and internal network connecting them.
This provides a web server capable of accessing data from DBMS and
making it available to the client. Technology choices for the middle-tier
include a Web server, Web sever with servlets (Tomcat), SOAP container
(AXIS), a Virtual exhibition servlet, Java Server Pages, HTML Pages and
XSL stylesheets [W3C XSL 99]. The communication protocol between the
database and the middle tier could be JDBC.

 DBMS server with SQL Tables provides database storage [Bourret 2004].

 Figure 7: Deployment diagram

<<HTTP>>

Client
application

Proxy
library

Client
 Browser

Exhibition Curator

<<HTTP>>

PC

Client
 Browser

PC

SQL
Tables

DBMS Server

JDBC

Exhibition Visitor

SOAP
Provider

Museum Site-1

SOAP
Container

(AXIS)

Servlet
container
 (Tomcat)Virtual

exhibition
Servlet

Museum Server

HTTP

SOAP
WEB

Server
(Apache)

HTML Pages

XML Schema

XSL stylesheet

Servlets/JSPs

Java Lib

Museum Site-2Museum Server

JDBC

HTML Pages

XML Schema

XSL stylesheet

Servlets/JSPs

Java Lib

HTTP/SOAP

SQL
Tables

DBMS Server

SOAP
Provider

SOAP
Container

(AXIS)

Servlet
container
 (Tomcat)

Virtual
exhibition

Servlet

HTTP

SOAP

WEB
Server

(Apache)

5 CONCLUSION

We have presented a prototype of a framework for organising virtual exhibitions,
which uses information provided by the collaborating museums in the form of
Web services. The museum content published by the collaborating museums is
organised in a homogeneous virtual exhibition space by an exhibition curator and
is accessible from a single point of entry - the Virtual Exhibition site. The
prototype assumes the content published is an extract of a CIDOC-compliant
museum database, which allows easy standardisation and further dissemination.
The prototype system presented is built entirely using public domain stack of
technologies for processing XML data in Java (J2SE, J2EE and additional XML
and Web Services packages). It functions as an entirely server-side Web
application executed by Tomcat server connected to a backend database (one
for each participating museum plus one for the exhibition itself). Furthermore, this
paper describes one further step in the direction of accomplishment of truly pan-
European collaboration for organisation of virtual exhibitions using a single XML
Schema for specification of the common exhibition information and utilising
contemporary information technologies for processing XML data over the Web.
The approach adopted demonstrates how to add a new European dimension to

the inter-museum collaboration and to achieve wider access to the rich European
cultural heritage.

6 REFERENCES

Bergner Klaus, Andreas Rausch, Marc Sihling. Using UML for Modelling a Distributed Java
 Application, Institute for Informatics. (http://www4.informatik.tu-muenchende). July 1997.
Bourret Ronald. XML and Database. Published online at URL
 http://www.rpbourret.com/xml/XMLAndDatabases.htm, last updated July 2004.
Britton Carol. Object-Oriented Systems Development: a gentle introduction. University of
 Hertfordshire and Jill Doake Anglia polytechnic University. 2000.
Carlson David. Modelling XML Applications With UML Practical e-Business Applications.
 Foreword by Jeffrey Hammond, Rational. Software Corporation. 2001.
Chen P. P. The entity-relationship model: Toward a unified view of data. ACM Transactions on
 Database Systems. 1(1):9-39. 1976.
CIDOC CRM. Mappings to the CIDOC CRM can be accessed from a list of Technical Papers on the
 CIDOC CRM SIG Web site, at http://cidoc.ics.forth.gr/technical_papers.html, accessed April 2004.
Crofts, Nicholas, Combining data sources – prototype applications developed for Geneva's department
 of historical sites and monuments based on the CIDOC CRM. 2003.
 Galloway Trace, Altova, Inc. Principles of XML Schema Design. USA, May 2001. Inc Beverly, XML
 conference & Exposition, December 8-13, 2002. Baltimore convention centre. Baltimore, MD.
 USA. World Wird Web Consortium. “XMLSchema”. At http://www.w3.org/xml/schema, as
 accessed 24 June 2004.
Holstege Mary and Asir. Vedamuthu. XMLSchema: Component Designators. World Wide Web
 Consortium, Working Draft WD-xmlschema-ref-20040716, July 2004.
ICOM-CIDOC. Introduction to the International Committee for Documentation of the International
 Council of Museums (ICOM-CIDOC). 1996-2003.
 http://www.willpowerinfo.myby.co.uk/cidoc/cidoc0.htm#English
ICOM-CIDOC. CRM Special Interest Group, Working Group of CIDOC, 2001.
 http://cidoc.ics.forth.gr/who_we_are.html.
IGMOI: International Guidelines for Museum Object Information: The CIDOC Information Categories,
 produced by the (CIDOC) of the (ICOM). Oct 1995.
 http://www.cidoc.icom.org/guide/guide.html.
Jakarta Project. Tomcat version 5.5. Reference Implementation for the Java servlet 2.2 and Java
 Server Pages 1.1. http://jakarta.apache.org/tomcat/.
Kossmann F. and D. Kossmann. A Performance Evaluation of Alternative Mapping Schemes for
 Storing XML Data in a Relational Database. In Rapport de Recherché No. 3684, INRIA,
 Rocquencourt, France, March 1999.
Provost W., An XML Validation Architecture Using XML Schema, XPath, and XSLT.
 February 2002.
Roberts D.A.. Terminology for museums. Proceedings of an International Conference, held in
 Cambridge, England, 1988 (1990). Edited by D.A. Roberts. Cambridge: Museum Documentation
 Association.
Sun Microsystems. The Java Servlet specification. Documentation. 2004.
 http://java.sun.com/products/servlet
Vassilev V., B. Gaydarska. Reducing the complexity of CIDOC object-oriented model implementation
 through ontological minimisation. CAA2000, University of Durham, UK (2000).
Vassilev V., I. Rangelova, G. Simeonova et al. Drill-down Navigation inside Archaeological Museum
 Database. Dynamic Classification and Controlled Terminology Implementation. Proc. EAA2000,
 Portugal Institute of Archaeology, Lisboa, Portugal (2000).
Vassilev V., I. Stoev, I. Rangelova et al. Museum Information Systems: CIDOC data model
 implementation in the ArchTerra project. Bol. CILEA No. 69 (1999).
W3C. Extensible Markup Language (XML), at http://www.w3c.org/XML/, accessed 13 April 2004.
W3C XSL Working Group, W3C Recommendation on XSL Transformations (XSLT) version 1.0
 (http://www.w3.org/TR/xslt). November 16, 1999.

http://www4.informatik.tu-muenchen/
http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://www.imls.gov/scripts/exitmsg.cgi?url=http://cidoc.ics.forth.gr/technical_papers.html
http://www.idealliance.org/papers/xml02/dx_xml02/index/organisation/37cb7a1be296bbc035b4f554bd.html
http://www.w3.org/xml/schema
http://icom.museum/
http://www.cidoc.icom.org/guide/guide.html
http://jakarta.apache.org/tomcat/
http://java.sun.com/products/servlet
http://www.imls.gov/scripts/exitmsg.cgi?url=http://www.w3c.org/XML/

