
The Use of Categorical Pullbacks for Integrating Heterogeneous Systems

B.N.Rossiter, Computing Science, Newcastle University, Newcastle upon Tyne NE1 7RU,
UK.
B.N.Rossiter@newcastle.ac.uk
Michael Heather, University of Northumbria at Newcastle NE1 8ST, UK.

Introduction

Data warehousing attempts to integrate fully all the information in a business. Data mining
attempts to discover knowledge. These processes are particularly difficult when heterogeneous
systems are involved or where imperfect engineering standards have been applied in the
development of information systems. In this paper we examine the requirements for mining
data warehouses and develop a formalism for providing a solution that is both more general
and more powerful than existing methods.

In technical terms, the theoretical problems in mining data warehouses crystallize into an
emphasis on powerobjects, the need for novel connections and rules to be identified between
powerobjects, the ability to construct the universal relations both intra-schema (local universe)
and inter-schema (global universe), and a resolution of type/domain conflicts.

Requirements for Data Warehouses

At its face value an exact theory for mining data warehouses would expect to satisfy three
points:

• deep interrogation is needed to discover exact knowledge;

• discovery of some knowledge might not be the complete answer;

• development of automatic methods is needed for knowledge discovery.

However these need to hold at every level. There may be a number of relevant levels. The
question at any level is what are the conditions at another level. They may be quite different.
Consistent reliable knowledge discovery therefore needs not only to be systematic but also
universal.

In technical terms, the theoretical problems on mining data warehouses crystallize as follows:

• there is an emphasis on powerobjects rather than atomic objects with flexible searching

required on clusters and groups;

• novel connections and rules need to be identified between powerobjects regarded as

clusters or groups of data;

• universal relations needs to be constructed to make new connections intra-schema (local

universe) and inter-schema (global universe);

• type/domain resolution is necessary to recognize which attributes are joinable.

Levels and Universality

These requirements for mining data warehouses call for a universal method rather than
connections on a local basis. Relational models, perhaps using SQL, are based on set theory
which is satisfactory for specific connections between data but is inadequate for some of the
exploratory requirements above. Methods in object-oriented systems effectively provide
strongly-typed functions which lack the flexibility needed. Indeed both of the standards for
these two main techniques were thought to be unsuitable as the basis for federated databases
at a recent conference [Eaglestone & Masood 1997; Roantree & Murphy 1997]. The object-
based OQL lacks views in the relational sense and the relational SQL-3 has an ad hoc
approach to typing.

Set theory logic is adequate for database models but: is it adequate for database of databases
(universal) methods? Higher-order logic is needed which can naturally deal with openness in
distributed systems and this is found to be topos logic [McLarty 1995].

Any theory of data warehousing therefore needs a sophisticated multi-level capability because
of this further issue of universality. When operating only at a single level, distinctions
between local and global conditions seldom arise. A simple example is dealing with dates: if
they are all English documents a date like 2/5/97 raises no problems, but in an international
set of documents, the user cannot be certain whether it refers to the 2nd May or 5th February.
The convention used operates from a higher level. In the example of student grades an
automatic query engine would need to recognize whether grade A is better or worse than
grade B. The common way to compare grades would be by converting to numbers with a
mapping on to the reals or integers. The standard computer lexical convention would give the
wrong result.

The outcome for this contribution to the debate on theory for data mining is that set theoretic
methods are inadequate for reliability when there are potential problems of context involving
more than one level. We have already commented on the difficulty of extending the set
theoretic relational model with universal relations. This seems a general problem of making
set theoretic methods universal. We need to move into constructive mathematics which is
represented in the state of the art by category theory. Formal categories and objects, functors
and natural transformations handle levels and there are proofs to show that they take the form
of universal limits like pullbacks. Category theory has already been applied to object-
relational databases [Nelson & Rossiter 1996]. Here, the formalism is extended to cover
mining data warehouses. A brief review of category theory, including the construction of
pullback diagrams, is given in [Heather & Rossiter 1998].

Exact Data Mining

A pullback diagram can be applied to the universal problem of knowledge discovery. An
example of student grades can be given a general formulation by applying Figure 1 shown
below. The category names refer to C for the candidates, S for the subjects and G for the
grades.

 C

 f*(t) f

 C ΧG S G

 ∈f(t) t

 S

Figure 1: pullback of t along f.

The arrow f maps each candidate on to one or more grades. t gives the grades which were
obtained for a particular subject. This arrow performs the role of insertion of the category of
subjects into the category of grades. The pullback (limit) C ΧG S is all the candidates in the
subjects over grades. It is now easy to interpret the previous statement that f(C) corresponds to
t(S) where f(C) and t(S) are both objects of G. Subject grades correspond to candidate grades:
f(C) ~ t(S).

In general the arrow f*(t) is the functor formally representing the discovery of knowledge in an
operational sense. In this example f*(t) is a projection saying how a particular candidate has
fared. ∈f(t)gives how well particular subjects were attempted. Note the difference between
these two. The former is a functor providing exact information; the latter is a natural
transformation at the message (policy) level. The sense of the commuting diagram is also now
clear:

 f o f*(t) = t o ∈f(t)

For consistency in our deductions, the measures of how well a particular candidate has done
and how well a particular subject has been attempted are expressed over the same collections
of grades.

This example shows well the difference between the use of universal theory in constructive
mathematics and the axiomatic set theory style of SQL where a kind of brute-force has to be
applied to extract exact knowledge as a member of the powerset. The better scientific
approach is to conceptualize from the three-level standpoint of this example.

Application to Data Warehousing

We can extend the power of our approach in a number of ways. Firstly, we can view the
arrows f*(t) and ∈f(t) as projection arrows πl and πr respectively. Secondly, we can show the
power of the arrow by representing features of a query language normally represented in
calculus form such as the universal quantifier ∀. Thirdly, we can type the arrows more strictly
if necessary so as to express more constraints in an application. For example they can be typed
as monic (injective in set) meaning a 1:1 map, non-monic meaning a map that may not be 1:1,
epimorphic (surjective in set) meaning all of the target is assigned, non-epic meaning that all
the target may not be assigned, isomorphic (bijective in set) meaning the arrow is both monic

and epimorphic, partial meaning the whole of the source may not be assigned or total
meaning all of the source is assigned. The diagram incorporating these enhanced features is
shown in Figure 2.

 C
 πl

*
 πl f
 ∃G
 C ΧG S f* G

 πr ∀G t
 πr

*
 S

Figure 2: Pullback of t along f showing fuller collection of arrows.

As a starting point, the pullback diagram in Figure 2 gives semantics close to that of an object
structural or entity-relationship model. For example the properties of π indicate the
participation of C and S in the subproduct and hence in the relationship. For instance if πl is
not epic, then every member of C need not participate in the product C ΧG S. However, the
diagram is actually much richer than this also containing the duals to the projection arrows
(πl

*, πr
), universal and existential quantifiers (∀, ∃) and the pullback functor f. The nature of

these further arrows, together with those already introduced, is shown in the table in Figure 3.

arrow type picks out for source comment
f monic, partial G given C grades for a given

candidate
t monic, partial G given S grades for a given

subject
πl total C given C X S candidates taking an

exam paper
πr total S given C X S subjects taken in exam

papers
f* epic, partial C X S given G paper where a particular

grade obtained
πl

* epic, partial C X S given C papers taken by a
candidate

πr
* epic, partial C X S given S which candidates took

each subject
∃ total G some C X S the grade given to a

particular paper
∀ total G all C X S range of grades obtained

on the papers

Figure 3: Table showing purpose of each arrow in Full Pullback Figure

The next task is to create a universal relation across a knowledge base. To achieve this we
create a pullback for each relationship in the data warehouse and connect the pullbacks by a
technique known as pasting. The resulting universal relation U is a collection of all the
attributes, cardinality n, involved in a knowledge base. It is defined intensionally by:

 U = A1 X A2 X, ..., X An
 where Ai is an attribute (1<= i <= n).

A number of alternative decompositions can be made of U into various relational schemas R
with instances I. These decompositions are projections from the whole product U onto
collections of subproducts R so that the jth projection π(Rj) can be defined by the arrow:

 π(Rj): U →R

These decompositions should be lossless with respect to join dependencies, that is the
decompositions can be joined (pasted) together to return U. However, in some knowledge
bases, it may not be possible to construct U because design decisions have not produced a
lossless decomposition.

In a categorial model, the pullbacks are pasted together as shown in Figure 4 to achieve the
universal relation U. The category T represents teachers. In the pasted diagram, further
diagonal arrows can be added to the diagram which will be natural transformations Φ.
Interrogating the knowledge base as a pullback can be performed either by following
individual arrows or by composition of arrows within a pullback or across pasted pullbacks.
For example, in Figure 4, the composition t o t’ o πr‘ returns grades obtained in an exam in
subjects taught by a particular teacher.

(C XG S) XS T πl

’ C XG S πl C

 πr

’ πr
 f

 T t’ S t G

Figure 4: Pasting of Pullbacks of t along f with t’ along πr

An important requirement for mining data warehouses is to consider the powerobjects of data
collections rather than just the individual objects. Powerobjects involve taking all possible
combinations of the objects in a collection as needs to be done with the student grades to
answer certain queries such as: who has passed all their exams? The diagram in Figure 2 can
then be re-constructed as in Figure 5 with the nodes as powerobjects as in the logical data
model [Kuper & Vardi 1993]. The arrows between the nodes now define rules between
clusters of data instances and therefore represent knowledge discovery in a universal manner.

 ℘C
 πl

*
 πl f
 ∃G
 ℘C ΧG S f* ℘G

 πr ∀G t
 πr

*
 ℘S

Figure 5: Pullback of t along f with nodes as powerobjects

Finally the pullback diagram is generalized by replacing database classes by whole databases
so that it represents the connection of one database to another over a third database. The
arrows in these pullbacks are at the data warehousing level, in effect facilitating the pasting of
one database to another.

The work demonstrates the potential of category theory for formalising the connections
between large-scale heterogeneous systems in a manner that facilitates knowledge discovery.

References:

B.Eaglestone & N.Masood, Schema Interpretation, an Aid to the Schema Analysis in
Federated Databases, Int. CAISE’97 Workshop Engineering Federated Database Systems
(EFDBS’97) 23-32 (1997).

K.M.Kuper & M.Y.Vardi, The Logical Data Model, ACM TODS 18 (3) 379-413 (1993).

Colin McLarty, Elementary Categories, Elementary Toposes, Oxford Logic Guides 21,
Gabbay, D, Macintyre, A, Scott, D, (edd.), Clarendon, Oxford (1995). 265pp. ISBN: 0 19
851473 5.

D.A.Nelson & B.N.Rossiter, Prototyping a Categorical Database in P/FDM, Proceedings of
the Second International Workshop on Advances in Databases and Information Systems
(ADBIS’95), Moscow, Springer-Verlag Workshops in Computing, edd. J.Eder and
L.A.Kalinichenko, 432-456 (1996).

M.Roantree & J.Murphy, Using Federated Databases Metadata in the LIOM Project, Int.
CAISE’97 Workshop Engineering Federated Database Systems (EFDBS’97) 23-32 (1997).

