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Introduction 
 
Data warehousing attempts to integrate fully all the information in a business. Data mining 
attempts to discover knowledge. These processes are particularly difficult when heterogeneous 
systems are involved or where imperfect engineering standards have been applied in the 
development of information systems. In this paper we examine the requirements for mining 
data warehouses and develop a formalism for providing a solution that is both more general 
and more powerful than existing methods. 
 
In technical terms, the theoretical problems in mining data warehouses crystallize into an 
emphasis on powerobjects, the need for novel connections and rules to be identified between 
powerobjects, the ability to construct the universal relations both intra-schema (local universe) 
and inter-schema (global universe), and a resolution of type/domain conflicts. 
 
Requirements for Data Warehouses 
 
At its face value an exact theory for mining data warehouses would expect to satisfy three 
points: 
 
• deep interrogation is needed to discover exact knowledge; 
 
• discovery of some knowledge might not be the complete answer; 
 
• development of automatic methods is needed for knowledge discovery. 
 
However these need to hold at every level. There may be a number of relevant levels. The 
question at any level is what are the conditions at another level. They may be quite different. 
Consistent reliable knowledge discovery therefore needs not only to be systematic but also 
universal. 
 
In technical terms, the theoretical problems on mining data warehouses crystallize as follows: 
 
• there is an emphasis on powerobjects rather than atomic objects with flexible searching 

required on clusters and groups; 
 
• novel connections and rules need to be identified between powerobjects regarded as 

clusters or groups of data; 
 
• universal relations needs to be constructed to make new connections intra-schema (local 

universe) and inter-schema (global universe); 



 
• type/domain resolution is necessary to recognize which attributes are joinable. 
 
 
Levels and Universality 
 
These requirements for mining data warehouses call for a universal method rather than 
connections on a local basis. Relational models, perhaps using SQL, are based on set theory 
which is satisfactory for specific connections between data but is inadequate for some of the 
exploratory requirements above. Methods in object-oriented systems effectively provide 
strongly-typed functions which lack the flexibility needed. Indeed both of the standards for 
these two main techniques were thought to be unsuitable as the basis for federated databases 
at a recent conference [Eaglestone & Masood 1997; Roantree & Murphy 1997]. The object-
based OQL lacks views in the relational sense and the relational SQL-3 has an ad hoc 
approach to typing. 
 
Set theory logic is adequate for database models but: is it adequate for database of databases 
(universal) methods? Higher-order logic is needed which can naturally deal with openness in 
distributed systems and this is found to be topos logic [McLarty 1995]. 
 
Any theory of data warehousing therefore needs a sophisticated multi-level capability because 
of this further issue of universality. When operating only at a single level, distinctions 
between local and global conditions seldom arise. A simple example is dealing with dates: if 
they are all English documents a date like 2/5/97 raises no problems, but in an international 
set of documents, the user cannot be certain whether it refers to the 2nd May or 5th February. 
The convention used operates from a higher level. In the example of student grades an 
automatic query engine would need to recognize whether grade A is better or worse than 
grade B. The common way to compare grades would be by converting to numbers with a 
mapping on to the reals or integers. The standard computer lexical convention would give the 
wrong result. 
 
The outcome for this contribution to the debate on theory for data mining is that set theoretic 
methods are inadequate for reliability when there are potential problems of context involving 
more than one level. We have already commented on the difficulty of extending the set 
theoretic relational model with universal relations. This seems a general problem of making 
set theoretic methods universal. We need to move into constructive mathematics which is 
represented in the state of the art by category theory. Formal categories and objects, functors 
and natural transformations handle levels and there are proofs to show that they take the form 
of universal limits like pullbacks. Category theory has already been applied to object-
relational databases [Nelson & Rossiter 1996]. Here, the formalism is extended to cover 
mining data warehouses. A brief review of category theory, including the construction of 
pullback diagrams,  is given in [Heather & Rossiter 1998]. 
 
Exact Data Mining 
 
A pullback diagram can be applied to the universal problem of knowledge discovery.  An 
example of student grades can be given a general formulation by applying Figure 1 shown 
below. The category names refer to C for the candidates, S for the subjects and G for the 
grades. 



     C 
 
   f*(t)    f 
 
 C ΧG S        G 
 
   ∈f(t)    t 
 
     S 
 
 

Figure 1: pullback of t along f. 
 
The arrow f maps each candidate on to one or more grades. t gives the grades which were 
obtained for a particular subject. This arrow performs the role of insertion of the category of 
subjects into the category of grades. The pullback (limit) C ΧG S is all the candidates in the 
subjects over grades. It is now easy to interpret the previous statement that f(C) corresponds to 
t(S) where f(C) and t(S) are both objects of G. Subject grades correspond to candidate grades: 
f(C) ~ t(S). 
 
In general the arrow f*(t) is the functor formally representing the discovery of knowledge in an 
operational sense. In this example f*(t) is a projection saying how a particular candidate has 
fared. ∈f(t)gives how well particular subjects were attempted. Note the difference between 
these two. The former is a functor providing exact information; the latter is a natural 
transformation at the message (policy) level. The sense of the commuting diagram is also now 
clear: 
 
 f o f*(t) = t o ∈f(t) 
 
For consistency in our deductions, the measures of how well a particular candidate has done 
and how well a particular subject has been attempted are expressed over the same collections 
of grades. 
 
This example shows well the difference between the use of universal theory in constructive 
mathematics and the axiomatic set theory style of SQL where a kind of brute-force has to be 
applied to extract exact knowledge as a member of the powerset. The better scientific 
approach is to conceptualize from the three-level standpoint of this example. 
 
Application to Data Warehousing 
 
We can extend the power of our approach in a number of ways. Firstly, we can view the 
arrows f*(t) and ∈f(t) as projection arrows πl and πr respectively. Secondly, we can show the 
power of the arrow by representing features of a query language normally represented in 
calculus form such as the universal quantifier ∀. Thirdly, we can type the arrows more strictly 
if necessary so as to express more constraints in an application. For example they can be typed 
as monic (injective in set) meaning a 1:1 map, non-monic meaning a map that may not be 1:1, 
epimorphic (surjective in set) meaning all of the target is assigned, non-epic meaning that all 
the target may not be assigned, isomorphic (bijective in set) meaning the arrow is both monic 



and epimorphic, partial meaning the whole of the source may not be assigned or total 
meaning all of the source is assigned. The diagram incorporating these enhanced features is 
shown in Figure 2.  
 
 
     C 
  πl

*   
   πl    f 
     ∃G 
 C ΧG S   f*     G 
      
   πr  ∀G  t 
  πr

* 
     S 
 
 
Figure 2: Pullback of t along f showing fuller collection of arrows. 
 
As a starting point, the pullback diagram in Figure 2 gives semantics close to that of an object 
structural or entity-relationship model. For example the properties of π indicate the 
participation of C and S in the subproduct and hence in the relationship. For instance if πl is 
not epic, then every member of C need not participate in the product C ΧG S. However, the 
diagram is actually much richer than this also containing the duals to the projection arrows 
(πl

*, πr
*), universal and existential quantifiers (∀, ∃) and the pullback functor f*. The nature of 

these further arrows, together with those already introduced, is shown in the table in Figure 3. 
 
arrow   type   picks out   for   source   comment 
f  monic, partial   G   given   C  grades for a given 

candidate   
t  monic, partial   G   given   S  grades for a given 

subject 
πl total   C   given   C X S   candidates taking an 

exam paper 
πr total   S   given   C X S   subjects taken in exam 

papers 
f*  epic, partial   C X S   given   G  paper where a particular 

grade obtained 
πl

* epic, partial   C X S   given   C  papers taken by a 
candidate 

πr
* epic, partial   C X S   given   S  which candidates took 

each subject 
∃ total   G   some   C X S  the grade given to a 

particular paper 
∀ total   G   all   C X S  range of grades obtained 

on the papers 
 
Figure 3: Table showing purpose of each arrow in Full Pullback Figure 
 



The next task is to create a universal relation across a knowledge base. To achieve this we 
create a pullback for each relationship in the data warehouse and connect the pullbacks by a 
technique known as pasting. The resulting universal relation U is a collection of all the 
attributes, cardinality n, involved in a knowledge base. It is defined intensionally by: 
 
  U = A1 X A2 X, ..., X An  
 where Ai is an attribute (1<=  i <= n). 
 
A number of alternative decompositions can be made of U into various relational schemas R 
with instances I. These decompositions are projections from the whole product U onto 
collections of subproducts R so that the jth projection π(Rj) can be defined by the arrow: 
 
  π(Rj): U →R 
 
These decompositions should be lossless with respect to join dependencies, that is the 
decompositions can be joined (pasted) together to return U. However, in some knowledge 
bases, it may not be possible to construct U because design decisions have not produced a 
lossless decomposition. 
 
In a categorial model, the pullbacks are pasted together as shown in Figure 4 to achieve the 
universal relation U. The category T represents teachers. In the pasted diagram, further 
diagonal arrows can be added to the diagram which will be natural transformations Φ. 
Interrogating the knowledge base as a pullback can be performed either by following 
individual arrows or by composition of arrows within a pullback or across pasted pullbacks. 
For example, in Figure 4, the composition t o t’ o πr‘ returns grades obtained in an exam in 
subjects taught by a particular teacher. 
 
(C XG S) XS T        πl

’   C XG S     πl  C 
 
 
 
 
 πr

’     πr
     f 

 
 
 
 T  t’      S   t  G 
 
 

Figure 4:  Pasting of Pullbacks of t along f with t’ along πr 
 
An important requirement for mining data warehouses is to consider the powerobjects of data 
collections rather than just the individual objects. Powerobjects involve taking all possible 
combinations of the objects in a collection as needs to be done with the student grades to 
answer certain queries such as: who has passed all their exams? The diagram in Figure 2 can 
then be re-constructed as in Figure 5 with the nodes as powerobjects as in the logical data 
model [Kuper & Vardi 1993]. The arrows between the nodes now define rules between 
clusters of data instances and therefore represent knowledge discovery in a universal manner. 



 
 
 
     ℘C 
  πl

*   
   πl    f 
     ∃G 
 ℘C ΧG S   f*     ℘G 
      
   πr  ∀G  t 
  πr

* 
     ℘S 
 
 
Figure 5:  Pullback of t along f with nodes as powerobjects 
 
Finally the pullback diagram is generalized by replacing database classes by whole databases 
so that it represents the connection of one database to another over a third database. The 
arrows in these pullbacks are at the data warehousing level, in effect facilitating the pasting of 
one database to another. 
 
The work demonstrates the potential of category theory for formalising the connections 
between large-scale heterogeneous systems in a manner that facilitates knowledge discovery. 
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