Handling Inconsistency with the Universal Reference
Model

B.N. Rossiter! M.A. Heather?

Abstract

The problems of inconsistent data in information systems are discussed. A
four-level architecture, based on the Information Resource Dictionary System
(IRDS), is introduced as a potential solution to such problems. A formalization
of the IRDS is performed with category theory by composing adjoint functors.
An example is given using various date systems to illustrate the need for four-level
addressing of data to overcome inconsistency problems.

Introduction

Inconsistency is not a global property. It arises from particularity where there is only
half the story. Real-world integral systems fully operate free from inconsistency for
natural processes remove or, like the laws of physics, forbid inconsistencies. Incon-
sistencies exist between parts of a system. The whole system has to be coherent. A
model is normally a partial view of such a system and it is the nature of the type of
uncertainties that arise in the modelling process that need to be understood by the
professional software engineer for the construction of modern information systems. In-
consistencies come about from implicit type changes, and anomalies when parts only
of a system are considered in isolation.

Software does not have the same natural self-organizing properties of hardware.
Development of information systems requires a full understanding of the universal un-
derlying concepts if information systems are to be constructed according to high pro-
fessional engineering standards. Inconsistencies can be understood from the viewpoint
of standards in the ISO universal reference model as implemented in the Information
Resource Dictionary System. Only recently has fully-formal abstract reasoning been
possible with the advent of category theory in mainstream mathematics to understand
the implementation of a model (from the real-world structure through the abstract
data-type to the data values on disk together with the access and query methods) as
a composition of functors. Universal representation of all information systems needs
only three levels of transformation across level-pairs with a fourth to give ultimate
absolute closure. Inconsistency is a failure in composition between the pairs which can
be corrected by an appropriate natural transformation interpreted as policy.

Example of Inconsistency

An example is considered in open systems, involving the problems caused by the in-
consistent treatment of times and dates. It is shown that in open systems the existence

of local standards may be controlled by defining an appropriate Policy mapping indi-
cating how the standard relates to some universal standard. The relationship between
one Policy mapping and another is captured by a natural transformation relating the
two Model mappings involved. Our work shows that it is essential to move to this
higher level to resolve inconsistencies. The suggestion is that universal representation
of all information systems needs only three levels of transformation across level-pairs
with a fourth, a natural transformation comparing the overall models, to give ultimate
absolute closure. Inconsistency is a failure in composition between the pairs which can
be corrected by an appropriate natural transformation interpreted as policy.

A simple example of a common occurrence of inconsistency can perhaps give more
insight into the salient points in preparation for the theory. There is a well-known
inconsistency in an international context of the way that dates are represented. The
string 2/3/98 would refer in England to the second day of March but in the United
States to the third of February. It is obvious that confusion arising from this example
could have various serious consequences in medicine, law, nuclear safety, stock control,
etc. The inconsistency itself arises from the type change between the two formats
latent in the different ordering of the numeric fields. The concept of date is as an
ordinal applied to the configuration of the solar system and in particular to the motion
of the earth around the sun and to its rotation on its axes, as viewed and interpreted
from a particular geographical location on earth.

Storing dates on a computer illustrates the classic components of any information
system. The calendar is a conceptualisation of solar observations which are converted
to some numeric format for storage in electronic form. In terms of the ANSI SPARC
Standard for Database Architecture, the solar system is the real world phenomenon
to be modelled in terms of abstract data types, the calendar is the conceptual schema
and the observational procedures provide the external schema. The storage definitions
for the fields of day, month and year form part of the internal schema to provide values
for disk access and query methods like comparing two dates.

From the perspective of the universal formalism of category theory, date is a cate-
gory (or type) consisting of objects. The current object-oriented paradigm has a less
developed understanding of objects as objects. The object-oriented term object usually
refers to a category in category theory which are categories in their own right, namely
the numeric data fields. The order in which the numeric fields occur and the interpre-
tation (convention or policy) determining which is the month and which is the day are
functors. The data (numbers) are in category theory objects. The implicit ordering of
the integers are ordinary categorial arrows.

Need for Multi-level Structures

We consider that a way to begin to cope with managing inconsistency is to first under-
stand inconsistency in its archetypal form. Here we use the IRDS standard as the basis
for relating heterogeneous systems across platforms, that is systems based on different
paradigms. By determining this mapping for all types of system, the problems arising
in re-engineering are avoided to some extent as all types of approach to information
systems can be run in an integrated fashion.

Information Resource Dictionary System

The IRDS [3, 4] is constructed on four levels. Each level taken with its adjacent level
acts as a level pair so that there are three level pairs across the four levels. This means
that each point at each level is directly related to a point at the other level in the
level pair. The top level is the Information Resource Dictionary Definition Schema
(IRDDS) in which concepts relating to policy and philosophy are defined. In principle,
only one instance of an IRDDS need be defined for a problem area. In a coherent system
there can be only one collection of such concepts. The second level is the Information
Resource Dictionary Definition (IRDD) in which schema construction facilities are
defined. The third level is the Information Resource Dictionary (IRD) which defines
the intension for an application, giving names and constraints. The fourth level is the
Information Resource Data (APP) which gives the extension, the data values.

There are mappings in each direction between the levels, termed level-pairs. We
interpret these mappings in the top-down direction as follows. There is a composite
mapping Model broken down into constituent functors Policy, Organize and Data repre-
senting respectively 1) the policy by which abstractions are represented as constructions
in a model, 2) the organization of these constructions as schematic objects and 3) the
population of the schema by data values. Each of these functors is termed a level-pair,
relating one level in the standard to another. More details on our interpretation of the
standard can be found in [2].

Formalizing the IRDS

MetaMeta
IRDDS IRDD
Policy
Syste Organize
M odel Meta
Data
APP IRD
Name

Figure 1: IRDS Levels in Functorial Terms

The next task is to formalize the ideas advanced for the IRDS so that a sound
scientific basis can be developed for the approach. This is first done at a general level
as in Figure 1. The data functor (level pair) Policy maps target objects and arrows in
the category IRDDS to image objects in the category IRDD for each type of system.
This mapping provides at the MetaMeta level the data for each kind of system, that
is to say how each abstraction is to be represented. We also label the functor pair
Organize relating for each system the constructions in IRDD with the names in a
particular application in IRD. Combining these new constructions with the product
ones above gives the direct and universal representation of IRDS shown in Figure 1.

The remaining functors MetaMeta, Meta and Name are the duals of Policy,
Organize and Data respectively. MetaMeta for a given IRDD relates the data mod-
elling facilities provided by a system to the universal collection of abstractions defined
in IRDDS. Meta for a given IRD relates the schema definition (intension) to the
constructs available in the system defined in IRDD. Meta therefore relates a name
in the intension to a modelling concept in IRDD such as a class name to the class
construction. Name for a given APP relates a data value to its property name as
defined in the intension IRD.

It will be noted that in Figure 1 all the mappings are two-way and that two com-
positions emerge. In category theory, Figure 1 is a composition of functors with M odel
as the overall functor from IRDDS — APP, such that for each type of information
system the following compositions hold:

Model = Data o Organize o Policy
System = MetaMeta o Meta o Name

An obvious benefit is that we can relate concepts across models by comparing the
functors Model : IRDDS — APP for each of our types of system. However, for a
full consistency we should consider the two-way mappings and ensure that composition
holds in both directions. Such consistency is achieved in category theory by adjunc-
tions. The topic of adjunctions and their composition is therefore now discussed.

Adjoints

Adjointness is a development in category theory for expressing the relationship between
two categories as a two-way mapping. Adjointness is often expressed in terms of a free
functor (F') in one direction (from left to right, from source category A to target B)
and an underlying functor (G) in the other (target to source, right to left). If certain
conditions hold, F is said to be left-adjoint to G and G right-adjoint to F'.

The critical comparison is between object a in category A and the result of Go F'(a),
usually written simply as GFla, as assigned to category A. In effect an object in A is
compared with the result obtained by applying F' and G to it in turn. This comparison
is a natural transformation as it involves a type change: from A — Fa — GFa. It
is usually written 7, and called the unit of adjunction.

a ne GFa FGh €p b
f Gy rf g
Gb Fa

Figure 2: Adjointness — unit and counit perspectives

The comparison is made in the context of a third object G (b), usually written simply
as Gb, so that the left-hand diagram in Figure 2 commutes if adjointness exists, that
is if Gg on, = f. The relationship between categories A and B is not asymmetric as
suggested by the left-hand diagram of Figure 2. The perspective can be adjusted to
that of the mapping from ¢ as in the right-hand diagram of Figure 2. This diagram

commutes if €, o F'f = ¢g. The arrow ¢, is known as the counit of adjunction and
is a natural transformation comparing F(G(b)) to b. Examples of left adjoints are
enrichments such as taking a graph to a category, a set to a group, a set to a preorder
and a collection of record keys to hashed addresses. The corresponding right adjoints
qualitatively identify the enrichment, ensuring that a number of type restrictions are
satisfied.

The notation we use for an adjunction is as follows. Consider object a in category
A and object b in category B and mappings:
F:A—B, G:B— A

Then if there is an adjunction between F' and G (F - G), we write the 4-tuple:
< F,G,n,, €, > A — B to indicate the free functor, underlying functor, unit of
adjunction and counit of adjunction respectively. From an application viewpoint, a
useful view of an adjunction is that of insertion in a constrained environment. The
unit 7 can be thought of as creativity, the counit € as a quality validation. There is then
a relationship between the left and right adjoints such that n represents quantitative
identification and e qualitative identification.

Composition of Adjoints

The IRDS application shown in Figure 1 involves the composition of adjoints, that is
an expression is derived in which two or more adjoints are adjacent to each other. It is
part of the power of category theory that adjoints can be composed in the same way
as other arrows. For example consider the adjoints shown in Figure 3.

Rl

F F
A B C D

G G

Figure 3: Composition of Adjoints

Then we may have six adjoints (if the conditions are satisfied):

FAG FAGFAG FFAGG FFAGG,FFF GGG

With hom sets these adjunctions give the following isomorphisms:
D(FFFa,d) 2 C(FFa,Gd) 2 B(Fa,GGd) = A(a, GGGd)
where a is an object in A and d an object in D. Each hom set represents the collection
of arrows from the first object to the second so D(FF Fa,d) represents the collection
of arrows from FFFa to d in category D.

We can define these in more detail with their units and counits of adjunction:

1. <F,G,n,6,>: A— B

7, is the unit of adjunction 1, — GFa and ¢, is the counit of adjunction
FGb — 1,

2. < F.G,y,é.>: B — C

7y is the unit of adjunction 1, — GFb and €, is the counit of adjunction F'Gc —
L

3. < F,G, i, é>C—D

N _is the unit of adjunction 1. — GFec and &, is the counit of adjunction
FGd — 1,4

4. < FF,GG,Gn,F en,,é. 0 Fe,G >: A — C

The symbol e indicates vertical composition, rather than the normal horizontal
composition indicated by o. Vertical composition is of arrows while horizontal
composition is of objects. The two types of composition are equivalent but verti-
cal composition is more in the spirit of category theory, being arrow-based, and
is used extensively in structures in categories, particularly 2-Categories, by Mac
Lane [5] at p.40-44, 272-275.

G F" @ 1, is the unit of adjunction 1, — GGFFa and €, ® Fe.GG is the counit
of adjunction FFGGe — 1.

The unit of adjunction is a composition of:
Ne : 1l¢ — GFa with G, F : GFa — GGFFa

The counit of adjunction is a composition of:
FeG: FFGGe — FGe with €, : FGe — 1,

5. < ﬁp,@é,éﬁbﬁoﬁb,aoﬁgé > B —D
C_?ﬁbF’ ® 1) is th:e _ugii of adjunction 1, — GGFFB and €1 ® FEdC:? is the counit
of adjunction FFGGd — 14

The unit of adjunction is a composition of:
M : 1y — GFb with Gn,F' : GFb — GGFFb
The counit of adjunction is a composition of:
Fe,G : FFGGd — FGd with €5 : FGd — 14.
6. <]?FF,GGé,GﬁaFFoGﬁaFona,?doﬁQéoﬁFedG'é >A—D
The unit of adjunction is a composition of: - o
Mo : 1¢ — GFa with G, F : GFa — GGFFa with GG, F'F : GGFFa —
GGGFFFa
The counit of adjunction is a composition of: L
FFe,GG : FFFGGGd — FFGGd with F&G : FFGGd — FGd with € :
FGd — 1,4

The advantage in deriving these compositions is that we have the ability to repre-
sent the mappings in either abstract or detailed form. The overall composition gives
a simple representation for conceptual purposes; the individual mappings enable the
transformations to be followed in detail at each stage and provide a route for imple-
mentation.

Composed Adjunctions in IRDS

The ability to compose adjoints naturally means that we can combine well together
such diverse features as policy, organization and data in a single arrow. Returning to
the IRDS representation, we can see the following compositions need to be investigated

in more detail:
Data o Organize o Policy (model perspective)
MetaMeta o Meta o Name (system perspective)

We can construct the 4-tuple to represent the composed adjunctions defined in
Figure 1:
< DOP, AMN, AM1);,.44,0 P ® Aljirads P ® irads,
€Eapp ® DEgppy N ® DO¢gpy MN >
where P is the functor Policy, O Organize, D Data, A MetaMeta, M Meta and N
Name.

If the conditions of this adjunction are met, we can represent the composed adjunc-
tion:

Model 4 System

by the 4-tuple: < Model, System, Niyqds, €app >: IRDDS — APP

where Model = DOP, System = AMN, 0);yqqs is the unit of adjunction and e, is the
counit of adjunction.

This adjunction can be evaluated for each application giving a collection of 4-tuples.
Comparison of these 4-tuples then gives the mechanism for interoperability between
applications both heterogeneous and homogeneous.

A simple example is shown in Figure 4 of the composed adjoints found when a
comparison is made of the mapping from the top level IRDDS to data APP for
relational and object systems holding similar data definitions for students. The exam-
ple shows the categories involved IRDDS, IRDD,IRD, APP, the mappings between
these categories as the functors Policy, Organize, Data, the composition of these func-
tors Model, the natural transformation comparing the composed functor Model for
two different systems and the composed adjunction Model 4 System.

There is one top-level IRDDS as there is one collection of universal abstractions;
many functors Policy each one taking the abstractions to a collection of constructs
available in a particular approach; many functors Organize each one taking the con-
structs available to the data definitions (schema) in a particular database and many
Data each one taking the schema to the data values in a particular database. Organize
provides data dictionary facilities and Data database facilities.

The adjoint given by the 4-tuple < Model, System, Niyqas, €qpp > defines the two-way
mapping between Model and System at an abstract level. The detailed form, given
as a composition of the three functors involved in each direction, provides a basis for
machine representation. Implementing these adjunctions will give a rigorous method
for relating heterogeneous systems.

Example of Dates Revisited

Figure 4 shows a four-level representation of dates. The mapping Policy takes
the concept of date into a number of constructions available such as giga years, days,
months and years of variable baselines. Organize takes the constructs into a number
of formats, with the US mapping having a different target to the European. Data
takes the format to the associated values. Many relationships can be derived from the
diagram including that of American and European dates by 7gmyan:

Loncepis LviJ1Jo datlc

Policy | TMetaMeta
Constructs IRDD giga years days,months; days,months,

years(AD) years(BC)
Organize] Universe US Euro Early TMeta
Format IRD g.f x 10° mm/dd/" dd/mm/ 'dd/mm/

yyyy yyyy yyyy
Data | TName
Values APP 4.2 05/19/ ' 19/05/ '19/03/127

2000 2000

Figure 4: Consistent Handling of Dates in Four-level Architecture

Namyap : US — Euro
where dmyAD is the object in IRDD for days. months and years (AD). More generally
any date values datel and date2 compared by the natural transformation €gp,:
Eapp © System(datel) — System(date2)

can be related in a consistent manner through the composed adjunctions evaluated
earlier and applied to the four-level architecture of Figure 4.

References

[1] Barr, M, & Wells, C, Category Theory for Computing Science, Prentice-Hall, 2nd
ed. (1995).

[2] Heather, M A, & Rossiter, B N, Constructing Standards for Cross-Platform Op-
eration, Software Quality Journal, 7(2) 10pp (1998).

[3] Information technology - Information Resource Dictionary System (IRDS) frame-
work, Standard ISO/IEC 10027 (1990); 10728 (1993).

[4] Information technology - Reference Model of Data Management, Standard
ISO/IEC 10032 (1993).

[5] Mac Lane, S, Categories for the Working Mathematician, 2nd ed, Springer-Verlag,
New York (1998).

1 Computing Science, Newcastle University NE1 7TRU, UK;
email: B.N.Rossiter@newcastle.ac.uk; Tele: ++44 191 222 7946.
2 Sutherland Building, University of Northumbria at Newcastle NE1 8ST.

