
Prototyping a Categorical Database inP/FDMD. A. Nelson and B. N. RossiterDept. of Computing Science, University of Newcastle upon TyneNewcastle upon Tyne, NE1 7RU, UKe-mail: (d.a.nelson, b.n.rossiter)@newcastle.ac.ukAbstractThe relational data model uses set theory to provide a formal background,thus ensuring a rigorous mathematical data model with support for ma-nipulation. The newer generation database models are based on theobject{oriented programming paradigm, and so fall short of having aformal background, especially in some of the more complex data manip-ulation areas. We use category theory to provide a formalism for objectdatabases, known as the product model. This paper will describe ourformal model for the key aspects of object databases. In particular, wewill examine how this model deals with three of the most important prob-lems inherent in object databases, those of queries, closure and views. Aswell as this, we investigate the more common database concepts, such askeys, relationships, aggregation, etc. We will implement a prototype ofthis model using P/FDM, a semantic data model database system basedon the functional model of Shipman, with object{oriented extensions.1 IntroductionRelational data models are supported by a strong theoretical formalism basedon set theory, which ensures a rigorous mathematical data model as well assupport for manipulation, with both the relational algebra and calculus beingstrongly de�ned. Newer generation data models are based on object{orientedsystems, which so far are strongly lacking in any kind of formal de�nition,especially for data manipulation concerns.This paper is concerned with a formal model for object databases1. Cat-egory theory [3] is used to de�ne the product model, a formal notation forrepresenting features of an object based database. In particular, we will exam-ine how this model deals with three of the most important problems inherentin object databases, those of queries, closure and views, as well as how ourmodel deals with more common database concepts, such as keys, relationships,aggregation, etc.A prototype of this model is currently being produced, using P/FDM [10,12], a database system based on the functional data model database of Shipman[21], but which has incorporated some object{oriented extensions. We willdiscuss our reasons for using P/FDM, and show some of the problems thatoccur in developing a categorical database. Our implementation will look at1not necessarily object{oriented, but one which contains most of the concepts from theobject{oriented paradigm 1

both the standard abstractions of data models, and the more important detailsof object databases as mentioned above.The aims of our work on this theoretical database model are to demonstrate:� that category theory provides a feasible formalmodel for object{relationaldatabases;� that a practical categorical database can be implemented, and that it cansuitably model real world data storage problems;� that the implementation problems of closure, queries and views inherentin most of the current object{based databases can be resolved through acategorical formalism.The object{relational model (e.g. Postgres) [25, 26] is similar to our for-malism for object-databases, while our relationships are similar in functional-ity and appearance to those in the entity-relationship model [6]. We also useBoyce{Codd Normal Form (BCNF) [28] as a normalisation constraint whendetermining the keys in a particular database object, ensuring a high level ofconsistency in the database.One important question must be `why category theory?' Although any the-ory could be used for modelling object databases, the multi{level architectureof category theory, compared to the
atness of most other theories such as settheory, makes the model less complex when we need di�erent levels for schema,queries, etc. in the database. Category theory is also based on the arrow as itsprimitive concept, which gives natural modelling of dynamic as well as staticaspects, where the arrow can provide either a relationship between two prop-erties, or can act as a function mapping from one property to another. Aswell as this, the diagrammatical tools of category theory, i.e. diagram chasinggiving algebraic equations, and the consistency tests, are useful additions toany model of a database in achieving a database system with a high level ofconsistency and correctness.The categorical data modelling manifesto by Cadish and Diskin [4], sug-gests that category theory has an unexpectedly high relevance for semanticmodelling, database design and database theory. Their manifesto supports thereasons we have outlined for using category theory for formalising databases,in particular they believe that using the arrow for de�ning internal structureof objects, as we do, is just the speci�cation methodology the database areaneeds for universal models.1.1 Object Database AbstractionsBecause many of the current object{oriented databases are based heavily onC++ (or some other object{oriented programming language), they are usuallylittle more than just persistent object{stores. This means that views and clo-sure are di�cult to implement because they do not migrate easily into object{oriented programming languages, due to the fact that run{time schema changesare required, and new objects require creating on the
y.The matter of a query language is the most interesting prospect. Some ofthe newer object database systems are being released with languages based onSQL, and there is a new SQL3 standard [1] being written, which incorporates

features for handling complex objects. Many of the current systems usuallyprovide no more than facilities for querying through C++ methods though,i.e. the application developer must write most queries as C++ methods ratherthan using some complete query language.Our query language will be heavily in
uenced by Shipman's DAPLEX [21],while supporting the whole of the functionality of an SQL based query lan-guage. DAPLEX is a data de�nition and manipulation language based on thefunctional data model, with a query language based entirely on functions andfunction composition.1.2 Overview of PaperThe rest of this paper will outline the categorical concepts used for the productmodel, in particular highlighting how we aim to achieve queries, closure andviews. Then �nally, we will discuss our use of P/FDM for developing a pro-totype of the product model, highlighting the major implementation problemsthat we have encountered, and discussing other implementations of categoricaldata types that exist already.2 The Product ModelUsing standard textbook categorical constructions, we now construct the prod-uct data model to capture the semantics of object{relational databases. Theminimum objectives for our data model are:1. A clear separation between intension (class) and extension (object) struc-tures with a rigorous mapping de�ned between them.2. Object encapsulation.3. An orthogonal de�nition language for functions within a class to includeboth functional dependencies and methods, the naming and typing of allfunctions and attributes within each class.4. Constraints on class structures as represented by the concept of primaryand candidate keys, normal forms such as BCNF and functionality andmembership class in object (E{R) models.5. The standard information system abstractions formulated in the 1970s[24] and which are prime targets of current object{oriented databases[2] and object{relational systems [25, 26]. These abstractions includeinheritance (generalisation and specialisation); composition such as ag-gregation; classi�cation and association.6. Message passing facilities between methods located in any part of thesystem.7. A query language which can provide results with closure: the output froma query can be held in a class{object structure which ranks equally paripassu with other such structures already existing in the database.

8. A multilevel architecture like that in the ANSI/ SPARC standard [27]with de�nitions of views, global schemata and the internal structures andthe mapping between them.All arrow constructions that we employ, as regards composition and associ-ation, must conform to the four axioms of category theory [3].2.1 Classes2.1.1 Basic StructuresThe class construction is an essential starting point for representing the in-tension of a database. The collection of classes is represented by an e�ec-tive topos CLASS constructed by the Grothendieck method as the categoryG(CLS;METC) where METC : CLS �! CLASS is a functor embeddingeach class de�nition CLS in a metaobject CLASS.Each category CLS is a collection of arrows F given by the Hom{setHomCLS(v; v0) for all v; v0 2 V where V is the collection of objects in thecategory CLS given by objCLS. Individual arrows may be denoted by f .Arrows are typed as either actions (transformations) or dependencies byspecifying the category (i.e. some pool of values) from which the item is taken.The actions are typed by the category of methods M:m : 1M �!Mwhere m is a method arrow in our collection of methods M in the categoryCLS found in the universe of methodsM. The dependencies are typed by thecategory of dependencies D: d : 1D �! Dwhere d is a dependency arrow in our collection of dependencies D in thecategory CLS found in the universe of dependencies D.In general, typing is indicated by a collection of mappings fh : 1TYP �!Hg where H represents the name of either an arrow in F or an object in V ,h is an instance of H and TYP is the category upon which the type of H isbased.Each arrow has a domain and a codomain. Our domains and codomainsmaybe either elemental or composite. In the elemental case, the source or targetof the arrow is a single variable v, a member of the object V representingall the elementary variables for the class CLS. In the composite case, thesource or target of the arrow contains two or more variables x, a member ofthe powerobject of V (x 2 }V) for the class CLS.of the form ???with subobject classifierc and characteristic function $\chi: ???

In more detail, each arrow f in the category CLS has domain dom(f) andcodomain cod(f). The domain and codomain names are not necessarily dis-tinct. The union of all dom(f) and cod(f) in a class gives the collection of vari-ables in the class which was speci�ed earlier as objCLS or more convenientlyas the object V . In order to permit complex actions and dependencies, do-mains may be structured, that is contain more than one variable. For databaseapplications, codomains are normally considered to comprise a single variablealthough category theory itself need not be restricted to minimal covers [11]but can cope well with open covers [14]. Variables may be either persistentvariables given by the subobject A comprising the persistent components a ofthe class, or memory variables given by the subobject U comprising the tran-sient components u of the class. A and U are both subobjects of the objectV . Later, we describe the identi�cation of one or more domains as candidatekeys and the selection of one of these as the primary key.Functional dependencies involve only persistent variables as their domainsand codomains. Minimal covers are assumed: domains may be composite in-volving more than one persistent variable while codomains are restricted tobeing single persistent variables. Therefore for each functional dependency,d : x �! y, x 2 }A; y 2 A, that is, x is a member of the powerobject of A. Al-though y is a singleton variable, this does not mean that its structure is simple.y could represent structures such as multivalued sets, lists or arrays. We deducethe set of persistent variables E that participate in functional dependencies, asdomain or codomain, by the union of dom(d) and cod(d).Functional dependencies can be composed. Thus the composition of d1 :fag �! fbg and d2 : fbg �! fcg gives d2�d1 : fag �! fcg. Such compositionsare represented without di�culty in the partially{ordered structures that weintroduce later as a natural consequence of the transitivity rule (if fag � fbgand fbg � fcg, then fag � fcg). However, in some circumstances, partialcomposition occurs, giving rise to a collection of pseudotransitivity arrows [28]P = fpi : x �! yg (x 2 }A; y 2 A; 0 � i � r00). The set of variables E0 thatparticipate in pseudotransitivities is given by fdom(pi)S cod(pi) j 0 � i � r00g.For each arrow that is a method, mi : x �! y (0 � i � s), then x 2 }V; y 2V , that is the domain may be any object in the powerobject of the persistentand memory variables and the codomain is a singleton persistent or memoryvariable. If required, memory variables can be considered as derived [21] orvirtual variables which can be manipulated by database operations.2.2 NormalizationWe need to de�ne an identi�er to enable individual records to be picked outfrom a collection of records and we also need to determine whether our classstructures su�er from storage anomalies. In relational databases, the concept ofnormalization is used to provide such constraints within the context of a user{de�ned key often providing a degree of content addressability. Normalization isusually not an automatic task and its bene�ts as reagrds robustness in updateoperations are obatined at some cost in complexity. In object{based systems,the procedures are much simpler as the identi�er is assigned by the systembut there is no methodical attempt to avoid storage anomalies. We consider

the simple object{based system �rst, including the notation for an identi�er,followed by the more challenging relational concepts.In object{based systems, the key is a system{assigned object identi�er de-�ned as the identity functor on a category, for example, 1CLS : CLS �! CLS.No further checks need be made for dependencies. All our identi�ers are initialobjects in categories as there is an arrow from the identi�er to every otherobject in the category. Initial objects are normally denoted by 0 in categorytheory { hence we adopt K0 as the notation for the key. So above, 1CLS isthe same as K0.In a relational system, the key K0 is derived as shown below for each classcategory CLS [19] following a lattice approach [7] rather than an algorithmicone [28]. The lattice formalism lends itself more to a categorical approach withits emphasis on partial{order constructions. We employ the identi�ers anddependencies to test whether our class structures correspond to BCNF. Thisnormal form is adopted because it is more powerful than 3NF and can easilybe deduced from functional dependencies making it ideally suited to a latticeapproach.The procedure basically automates the production of normalized classes,taking as input the category CLS augmented with trivial dependency arrows,and producing as output collections of normalized classes NOR with identi�ersmeeting our rules. In more detail, we �rst generate two categories PRJ andPSU containing respectively trivial projection arrows and non{trivial pseu-dotransititivity arrows (dependencies inferred from the postulated functionaldependencies and their combinations [28]). In the third stage, these two newcategories are injected into CLS to give the equivalent of F � in standard rela-tional database theory.1. Generate the partial{order category PRJ with elements p; q 2 }A andprojected orderings (p�q � �l(p�q); p�q � �r(p�q)) as the arrows, thatis to take the projections by applying the free functor L : A �! PRJ.2. Generate the partial{order category PSU with elements p; q 2 E0 andarrows fpg that is to apply the free functor L00 : E0 �! PSU.3. Take PRJ and PSU. Inject them into CLS, that is add the arrows ofPRJ and PSU to those already in CLS.Now take the augmented preliminary formulation for each CLS. Considerthe adjointness: F a U : CLS$NORwhere F is a free functor taking CLS, which may be a preorder, to acollection of normalized categories NOR. F selects a collection NOR whichmeets the normalization rule of BCNF (or whatever level to which we areworking). U is the underlying functor which selects those collections of NORthat can be naturally joined together to return CLS, thus ensuring that NORis a lossless decomposition of CLS.F is left adjoint to U and U is right adjoint to F . By virtue of the adjointfunctor theorem [Freyd & Scedrov 1990], left adjoints preserve colimits andright adjoints preserve limits. We can therefore say, that if adjointness occurs

K0
Kdom(d) limobj2������������� AAAAAAAAAAAAK�Figure 1: Commuting Diagram for Test for BCNFbetween CLS and NOR, then U preserves limits and gives us readily one ofour requirements: that any decomposition of CLS into NOR shall be losslesswith the ability to recover CLS by a join operation on the various NOR.F needs to do more. In our �rst series of operations, we produce an iden-ti�er for each normalized class. We next determine whether the class meetsour normalization rules through a commuting test. First, the identi�er K0 isdetermined:1. The limit of the objects of A in NOR (VA) is the primary key PK. Ifthere is more than one limit, the set of maximal lower bounds is the setof candidate keys CK.2. Each class NOR is in BCNF if each source of a functional dependencyarrow is PK or is a member of CK.3. The identi�er K0 is either PK or a user{selection from CK. When itis necessary to distinguish the keys for each class, consider Ki0 as theidenti�er for the ith class CLSi.4. Other persistent attributes may be labelledK1 : : :Kr where r = n�c withc as the number of attributes in the key. In the simplest situations, r = r0,where r0 is the cardinality of the set of dependencies D but in many casessuch as classes with no dependencies or with multiple candidate keys orwith classes that are not in BCNF, this will not be true.Then each NOR is tested for BCNF by performing the following test shownin the diagram 1. Every menber of a collection of NOR must commute ac-cording to the equation ??? for it to be a valid selection by the free functorG. K --------->dom(d)i /i /V V

PK u CKL F set-valuedA--> PRJ ------\ NOR ------------> SFD^ ^ \----- \ / /L' \ \ G \ /E--> DEP \ \ lim / in\ v det/L'' \ KEY vE'--> PSUOur �nal task is to transfer our results from PRJ into the class categoryCLS. This is necessary as, particularly if the key is composite, K0 is notguaranteed to be a variable in the class CLS. We apply an injective functorfrom a view of the poset PRJ into CLS. The category that we inject into C isthe exponential construction PRJK0 (the arrows of PRJ with K0 as source).CLS now includes the key K0 and the arrows from K0 to each of K1 : : :Kr .If therefore K0 was not already in PRJ, the injection increases the number ofpersistent variables n in CLS by one and the number of arrows k by r, that isn � n+ 1 and k � k + r.?? 3NF may be more fun - need to use adjointness to give free and under-lying ?? functors2.3 RelationshipsThe association abstraction between classes is represented in object models bynotation based on the Entity{Relationship [6] (E{R) approach. In categoricalterms, the E{R model is represented by pullbacks.Our pullback is on class identi�ers Ki0 as initial objects in categories repre-senting classes. To give an example, consider the pullback of K10 and K20 overO shown in Figure 2, where K10 and K20 are initial objects in the categories forthe entity{types supplier (CLS1) and parts (CLS2) respectively and O is arelationship orders between suppliers and parts.The collection of relationships in a database intension is represented by afamily of pullback categories (ASSi j 0 � i � p) where p is the number ofrelationships. We next include information to cover aspects such as function-ality and membership class. First let us consider the nature of each object andarrow in the category:� K10 is the identi�er for the supplier class CLS1.� K20 is the identi�er for the parts class CLS2.� O is the relationship orders representing all instances of this type of as-sociation between suppliers and parts. Instances for O are of the formf< k10; k20; o >j f(k10) = g(k20); k10 2 K10 ; k20 2 K20 ; o 2 }Og where o isinformation such as quantities and dates of orders and is an element inthe powerset of O (or is a subset of O representing that set of orders

K10 � OK20 K20 OK10�l�r fg������*HHHHHHjHHHHHHj������*Figure 2: Diagram of Pullback of K10 and K20 over Ofor a part from a particular supplier). O can be considered as a simplestructure including j properties for orders foi j 1 � i � jg.Alternatively, where there is considerable complexity in the structure andoperations of O, it would be desirable to create a category, say CLS3, tohandle as a class the internal complexity of the orders and to include inthe pullback structure the identi�er for this class K30 de�ned as pairs ofvalues < k10; k20 > as a surrogate for the orders category.� K10 � OK20 is the subproduct of K10 and K20 over O: it represents thesubset of the universal product K10 � K20 that actually occurs for therelationship O.By considering the nature of the arrows we can now provide more informa-tion concerning the relationship O:� The arrow f maps from identi�er K10 to the relationship O. It representsassociations between suppliers and orders.� The arrow g maps from identi�er K20 to the relationship O. It representsassociations between parts and orders.� When f(k10) = g(k20), we have an intersection between the two associa-tions, that is a supplier and a part both point at the same order: a set ofsuch orders is associated with a particular supplier{part pair.� The arrow �l is a projection of the subproduct K10 � OK20 over K10 rep-resenting all suppliers.{ If this projection arrow is onto (epimorphic or epic in categoricalterms) then every supplier appears at least once in the subproduct.Thus every supplier participates in the relationship and the mem-bership class of K10 is indicated as mandatory. If, however, �l is notepic, then not every supplier participates in the relationship and themembership class of K10 is indicated as optional.

{ If this projection arrow is one{to{one (monomorphic or monic incategorical terms) then each supplier appears just once in the sub-product. If, however, �l is not monic, then a supplier may participatemore than once in the relationship.{ If �l is both monic and epic, the projection is said to be isomorphicwith each supplier appearing once in the subproduct and K10 havingmandatory participation in the relationship.Analogous reasoning can be applied to the arrow �r.It should be emphasised that the handling of the entity{relationship mod-elling here is very much stronger than in conventional data processing wherethe functionality and membership classes are represented by labels. In the cat-egorical model, the functionality and membership class are achieved throughtyping of the arrows so that the constraints cannot be violated. Categoricalstructures are universal rather than conventional. There is an underlying func-tor from a categorical E{R model to a conventional one with structure lossthrough typing constraints being represented as labels.2.3.1 EnhancementsSo far we have considered binary relations (relationships between two entity{types) and have neglected n{ary and involuted relationships, multiple relation-ships between the same classes and the abstractions of inheritance and compo-sition. These are readily handled by standard categorical constructions. n{aryrelationships are represented by �nite products [18]. Involuted relationships arehandled directly: for example K10 � BK10 is the subproduct of K10 with itselfover the relationship with the object B. Multiple relationships between thesame classes are handled by a series of pullbacks over the same two initial ob-jects, for example K10 �BK20 and K10 �DK20 represent pullbacks of K10 and K20over B and D respectively. Inheritance and composition are described below.2.3.2 Pullback Identi�ersThe values for a subproduct in a pullback will always be unique so generallythis component of the diagram can be used as an identi�er. Therefore in Figure1 the identi�er is K10 � OK20 . Note that, as in the class diagram, the identi�eris the in�mum of the diagram.2.3.3 InheritanceInheritance in object{oriented terms is the assumption by classes of propertiesand methods de�ned in other classes. It is an intensional concept a�ecting themanner in which classes are created. In categorical terms, this is achieved bythe coproduct construction shown in Figure 3 which yields a disjoint union oftwo or more objects. Consider:� a category CLS3 (employers) with the set of arrows HomCLS3p; q be-tween objects p; q and set of domains and codomains objCLS3; and

CLS3 +CLS4 CLS4CLS3 il irs�������� AAAAAAAK -Figure 3: Coproduct Cone for Objects CLS3 and CLS4� a category CLS4 (managers) with the set of arrows HomCLS4p; q andthe set of domains and codomains objCLS4 .The coproduct CLS3 + CLS4 is the disjoint union of the arrows(HomCLS3p; q+HomCLS4p; q) and the domains and codomains (objCLS3+objCLS4).In this example,CLS3 andCLS4 contain the speci�c properties and meth-ods for employers and managers respectively and CLS3 +CLS4 is the amal-gamation of these objects and arrows into a new category which is in e�ectthe specialisation of CLS3 over CLS4. The arrow s (meaning subclass) showsthe direction of the specialisation: s : CLS3 �! CLS4 (employee has sub-class manager). In general, the superclass category will be identi�ed by one ormore properties in the data and the subclass category (being a weak entity)by an identity functor to give an object identi�er. In more concrete terms, scan therefore be considered as the mapping between the key of the superclasscategory CLS3 and the identity functor 1CLS4 of the subclass category:s : K30 �! 1CLS4Since a coproduct can, in turn, be the base of another cone, it is a simplematter to construct inheritance hierarchies [15]. The ancestry of each classin the hierarchy is preserved in the construction of pushouts. Note thoughthat, with our scheme at present, multiple inheritance is not permitted as thedisjoint union would not include properties or arrows that appeared in bothcategories at the base of the cone, although we are currently investigating theuse of pushouts [3] for multiple inheritance. At present therefore, our modelprovides inheritance through the arrangement of categories in a partial orderrestricted to hierarchical constructions rather than the more general poset ofCardelli [5].For convenience, we consider the additional g class categories (CLSi : c +1 � i � c+g), such as CLS3+CLS4 above, created as coproducts to comprisethe family of categories UNI.Polymorphism at its simplest level is achieved by the coproduct construc-tion. Methods de�ned for CLS3 as arrows in the set (HomCLS3p; q) are alsoavailable automatically in the set (HomCLS3p; q +HomCLS4p; q).

2.3.4 CompositionComposition including aggregation is the creation of new classes from a col-lection of other classes. The method of composition is
exible varying fromstandard mathematical operations such as products or unions on classes [13]to quali�ed operations such as relational joins. The basic ways of representingthese compositions have already been introduced such as universal product,disjoint union, quali�ed product and amalgamated sum.2.4 TypingArrows and attributes are typed, as described earlier, by specifying the cate-gories from which their values will be drawn. These categories may be otherclasses, basic pools of values such as integer and string, or domains of arbitrarycomplexity such as complex objects, arrows, lists, graphs and sets.2.5 ObjectsObjects represent the extensional database holding values which must be con-sistent with the intension (the class structures).There is a mapping Vi from each class CLSi to the instances for eachobject{type OBJi which ensures that the constraints speci�ed in the intensionhold in the extension. The mapping is a functor as it is between categories.The functor Vi takes each arrow f in CLSi to a set of arrow instances Vi(f) inOBJi, each domain dom(f) inCLSi to a set of instances Vi(dom(f)) in OBJi,each codomain cod(f) in CLSi to a set of instances Vi(cod(f)) in OBJi, thekey K0 to a set of instances Vi(K0), each non{key attribute (Ki j 1 � i � r)to a set of instances Vi(Ki) and each functional dependence (di j 1 � i � r) toa set of arrow instances Vi(di). All assignments by the functor Vi are of valuesfor arrows, domains and codomains.For each class CLSi, the functor Vi should preserve limits with respect tothe functional dependencies, that is the diagram in Figure 4 should commutefor every cone where QA is the product of (Vi(K0) � Vi(K1) : : : � Vi(Kr)),(�j j 0 � j � r) is a projection coordinate from QA and fVi(di) : Vi(K0) �!Vi(Ki) j 1 � i � rg are the postulated functional dependencies. The commutingrequirement is for all Vi(Ki) where (1 � i � r) it is true that Vi(di) � �0 = �i.We are checking that the limit is preserved when real{world data is exam-ined: that is, all cones in our family of cones commute and therefore an in�mumcan be constructed for the family of cones, in this case QA.In object{oriented terms, objects contain values consistent with their classde�nitions (including typing) and perform operations according to the methodsde�ned in their classes. The classes are the intension, the objects the extension.This can be represented generically by the diagram in Figure 5 where CLSrepresents a family of class categories, OBJ a family of object categories andTYP a family of type categories.E;P and I are functors representing the mappings from object to class,from class to type and from object to type respectively. E (the dual of V) mapsextension to intension. I is an inclusion functor so thatOBJ is a subcategory ofTYP. P indicates the typing constraints applied to classes and is a collectionof arrows comprising:

QAVi(K1) Vi(K2) . . . Vi(Kr)Vi(K0)�0
�1 �2 �rVi(d1)Vi(d2) Vi(dr)?AAAAAAAAAAAAU@@@@@@@@@@@@R�����������������
�������������������*�����������������1Figure 4: Cone for extension QA in the Category OBJ� fvi : 1TYPi �! Vig, representing the constraint that each instance viof an object Vi(1 � i � q) is found in the category TYPi.� ffi : 1TYPi �! Fig, representing the constraint that each instance fiof an arrow Fi(1 � i � k) is found in the category TYPi.In relational database terminology, each category TYP is a domain andeach V is an attribute name. The database is consistent when the diagramcommutes, that is P � E = I, representing the situation that our objects inthe extension conform both to the class de�nition in the intension and to thetyping constraints.In a similar way, another functor R takes each pullback category ASS atthe intension level to its extension LNK. This functor also preserves limits sothat the constraints, such as for monic, epic and multiple relationships mustapply in every case to the arrows between the actual data values. Diagramchasing ensures that type declarations are obeyed. Note how the model is notsimply labelling constraints in the intension, it is enforcing them as limit orcommuting requirements in the actual data values held in the extension.2.6 EncapsulationThe mapping between intension and extension naturally provides an encapsu-lation of attributes and methods for a class. Operations are only permitted onthe extension if they are de�ned in the intension and are performed so as toenable the functor from intension to extension to preserve consistency.

TYP
OBJCLS IEP������������� AAAAAAAAAAAAK�Figure 5: Commuting Diagram for Consistency of Objectswith Classes and Types2.7 Physical Storage StructuresIn a similar way to the mapping between classes and objects, it is straight{forward to de�ne mappings as functors between categories for objects and cat-egories representing disk structures, say, hash tables or indexes. In earlier workRossiter and Heather [18] considered the various approaches to hashing in cat-egorical terms.2.8 Families of CategoriesShortly, we turn our attention to manipulation of our categories. For thispurpose, it is convenient to introduce the concept of families of categories2. Ine�ect, we make the following groups:� The category INT representing the intension as a family of c classesCLS, p association de�nitions ASS and g coproducts UNI representinginheritance.� The category EXT representing the extension as a family of c objectsOBJ and p association instances LNK.� The functor D mapping from category INT to category EXT. Thisfunctor is called D (for database) because this is e�ectively the purposeof a database management system.Between any two intension categories INTi and INTj (not necessarily dis-tinct), m message passing routes (see later) can be de�ned using arrows of theform � described earlier between the corresponding arrow categories INT!iand INT!j respectively.2In future work, we intend to employ the concept of the categorical topos to represent thefamilies described above

2.9 ManipulationA fundamental di�culty in current object{based systems is that of closure. Itis not easy to obtain an output from a database that can be held as objects withassociated class de�nitions such that the new structures rank equally pari passuwith those in the existing database. Another di�culty with some object systemsis that the output is a subset of variables in an object without any considerationof the arrows (functions) which are an equally important part of the data. Thislatter di�culty is readily handled in a formalmanner by subcategories [3] whichprovide a means of selecting some of the objects and arrows in a category andhence give in a natural manner the basis for a query mechanism. We remindourselves that category INTj is a subcategory of category INTi if:objINTj � objINTi^ HomINTj(p; q) � HomINTi(p; q) (8p; q 2 objINTj)Query operations can be de�ned at two levels: intra{object and inter{object. In categorical terms, in the general sense, there is no di�erence betweenthe two as both are handled by arrows. The query language that we have devel-oped is therefore based on arrows as in a functional data model database suchas DAPLEX [21], but our arrows are higher{order mappings from one categoryto another. Our arrows are in fact functors between the input structure and theoutput structure. The input for each operation is a category and the output isanother category or a subcategory.A functor arrow will return a category. It is therefore the norm that theoutput of a query on a category will be another category complete with ar-rows and objects which can be held in the database in the same way as othercategories. The output or target category could contain structured values notpresent in the source category and assigned by another functor. It is there-fore possible to create complex categories through manipulating values froma number of database categories. Alternatively, a forgetful functor applied toa category forgets some of the structure and this could be used, if the userdesires, to forget the arrows and return simple tables of values as is the normalpractice in network and some object{oriented databases.An example of a query is given in the next section.2.9.1 Query ExampleWe take the supplier{parts example given earlier, augmenting it with an inher-itance structure where electrical parts are a specialisation of parts in general.The following categories are de�ned:� INT1 for the class CLS1 for suppliers: identi�er K10arrows:f1 : K10 �! snamef2 : K10 �! saddressf3 : K10 �! no.sharesf4 : K10 �! share.pricef5 : (no.shares � share.price) �! capitalisation

where sname, saddress, no.shares, share.price 2 A; capitalisation 2 U ;f1; : : : ; f4 2 D; f5 2M . A;U; F;M are de�ned in section on Classes.More detailed typing is not shown here.� INT2 for the class CLS2 for parts: identi�er K20arrows:f6 : K20 �! pnamef7 : K20 �! sizef8 : K20 �! weightwhere pname, size, weight 2 A; f6; : : : ; f8 2 D.� INT3 for the pullback ASS1 of suppliers and parts over orders as inFigure 2: identi�er K10 � OK20arrows:�l : K10 � OK20 �! K10�r : K10 � OK20 �! K20f : K10 �! Og : K20 �! O{ K10 is the identi�er for the supplier class CLS1.{ K20 is the identi�er for the parts class CLS2.{ O is the powerset of orders.{ Instances for O are of the form f< k10; k20; o >j f(k10) = g(k20); k10 2K10 ; k20 2 K20 ; o 2 }Og.� INT4 for the class CLS3 for electrical parts { a specialisation of partswith object identi�er 1INT4 as the identity functor on INT4arrows:f9 : 1INT4 �! voltagef10 : 1INT4 �! capacitywhere voltage, capacity 2 A; f9; f10 2 D.� INT5 for the union (coproduct) UNI1 = INT2 + INT4: identi�er K20arrows:f6; : : : ; f8 from INT2f9; f10 from INT4s1 : K20 �! 1INT4The natural language query is `What are the names and identi�ers of suppli-ers with capitalisation greater than one million pounds who supply an electricalpart with voltage rating of 90 volts?'.The series of functorial operations is given below. As is usual in databasesystems, these operations are de�ned in intensional terms but later, in orderto introduce the closure concept, we look in more depth at what is actuallyinvolved in a query in terms of deriving an intension{extension mapping.

1. X1 : INT6 �! INT5(Hom-set in INT6 = f9; s1; subobjects in INT6 = (K20 ;1INT4 ;voltage j voltage = 90));2. X2 : INT7 �! INT3(Hom-set in INT7 = �l; subobjects in INT7 = (K10 � OK20 ;K10 j K20 2INT6));3. X3 : INT8 �! INT7(Hom-set in INT8 = fg; subobject in INT8 = K10);4. X4 : INT9 �! INT1(Hom-set in INT9 = f1; f3; f4; f5; subobjects in INT9 =(K10 ; sname, no.shares,share.price,capitalisation j capitalisation >1000000));5. X5 : INT10 �! INT9(Hom-set in INT10 = f1; subobjects in INT10 = (K10 ; sname j K10 2objINT8));The �rst functor X1 derives the subcategory INT6 from INT5 by takingthe composition of the arrows s1 : K20 �! 1INT4 and f9 : 1INT4 �! voltageto determine which part identi�ers K20 are associated with a voltage of 90.The second functor X2 derives the subcategory INT7 from INT3 by re-strictions on INT3 to the arrow �l and on the source of �l to cases where thepart is in the subobject K20 derived by X1.The third functor X3 takes the output INT7 from X2 and restricts itfurther to produce the subcategory INT8 with no arrows and subobject K10 .This subobject represents suppliers who supply parts rated at 90 volts.The fourth functor X4 produces subcategory INT9 from INT1 with thearrows f1; f3; f4; f5 and subobjects, including (K10 ; sname), for which the appli-cation of f3; f4; f5 to K10 gives a capitalisation of more than a million pounds.The �nal functor X5 produces the answer in a new subcategory INT10which is a subcategory of INT9 with arrow f1 and subobjects (K10 ; sname)such that the values for K10 are found in the category INT8, e�ectively givingan intersection between INT8 and INT9 over K10 .Note that the strategy involves a selection of both arrows and objects ratherthan just objects as in the relational approach. The selection of arrows isachieved through de�ning hom{sets and the selection of objects through de�n-ing subobjects. Further, subobject speci�cations can involve predicates of arbi-trary complexity to facilitate sophisticated searching techniques. All operationsproduce new subcategories. Results can also be injected into other categoriesso that new categories of arbitrary complexity can be constructed through freefunctors.2.9.2 Closure in QueriesSo far we have seen how intensional subcategories can be de�ned as results forsearches. But can we store the results obtained in our example queries back

INT1 EXT1INT9 EXT9D1D9�4 --?Figure 6: The Query �4 as a Natural Transformationwith source D1 and target D9in the database in their current form to be used in exactly the same way asexisting classes?The answer is that we have de�ned a series of subcategoriesINT6 : : :INT10 in intensional terms but have omitted to de�ne the corre-sponding extensional subcategories. The relationship between each intensionINTi and extension EXTi is given by the mapping Di : INTi �! EXTi.Therefore for a query earlier, say no.4, we can write in more detail:D1 : INT1 �! EXT1D9 : INT9 �! EXT9D1 and D9 are functors representing intension to extension mapping forthe source and target respectively of the query. Each query therefore involvesa mapping between an intension{extension pair as source and an intension{extension pair as target. We can represent this structure as shown in Figure 6with the query now represented by the natural transformation �4.To be a natural transformation, the square in Figure 6 for our current query�4 should commute for every arrow fj : dom(fj) �! cod(fj) in the sourcecategory INTi (1 � j � k; 1 � i � (c + p+ g)).This means that for all fj in INTi then �4b � D1(fj) = D9(fj) � �4a ,that is our two paths from the values for domains of arrows in the sourcecategory D1(dom(fj)) to the values for the codomains of arrows in the targetcategory D9(cod(fj)) should be equal. One path A involving �4a navigatesfrom domain values in the source category via domain values in the targetcategory to codomain values in the target category; the other B involving �4bhas the same starting and �nishing points but navigates via codomain valuesin the source category.In path A, the arrow �4a creates a subobject of the domains for arrows fjin EXT1 to be assigned to the extension category EXT9. In path B, thearrow �4b creates a subobject of the codomains for arrows fj in EXT1 to beassigned to the extension category EXT9. Referring back to the syntax usedin our query examples, the hom{set of the target category is de�ned as the set

D1(dom(fj)) D9(dom(fj))
D9(cod(fj))D1(cod(fj))

�4a
�4b D9(fj)D1(fj) --? ?Figure 7: The query �4 as a Commuting Target Square withCovariant Natural Transformation �4 from functor D1to functor D9of fj assigned by D9 and the subobjects in the target category are de�ned asthe union of dom(fj) and cod(fj) for arrows fj assigned by D9.The output from �4 is clearly a structure which can be held in our database,ranking equally with other classes and objects in the system. Typing con-straints will continue to be enforced in the output structure. So the typing forobjects and arrows in INT9 will be based on that in INT1 with the addi-tional constraint that capitalisations must be greater than one million pounds.In computing terms, we are expressing the constraint that no object can existin our database which is not fully described by a class de�nition.In categorical terms, we are expressing a query as a natural transformation.Each functor can be considered as a continuous function (in�mum preserving)between two posets with limits: each structure Di : INTi �! EXTi is thenviewed as a closed cartesian category where Di is a continuous function pre-serving the in�mum (as key) within the poset INTi in EXTi. Closed cartesiancategories have been used in other areas of computing science, in formalismssuch as Scott domains, as they are equivalent in theoretical power to the typedlambda calculus [3].2.9.3 Views on ClassesThe mechanism required for views is similar to that for queries. In fact asnapshot view will be identical to a query. However, there are two other aspectsof views that need further consideration:� The need to retain the de�nition within the database and produce viewsof the current data on demand by the user.

� The problems of updating the database by users who have limited viewsof the data structures.The �rst involves creating a mapping in intensional terms only as we didwith the queries which were originally de�ned as X1 : : :X5. Thus the functorsin the family X de�ned earlier can all be construed as de�ned views. Whena view is realised, the corresponding natural transformation is activated todeduce the extension.The second involves the de�nition of another functor, say � , to relate theresult from the query back to the main database values. Thus if we de�ne aview as shown in Figure 8, we can achieve updatable views on a class.A well{known special case of a view is that taken of the complete database.In this case for every Di : INTi �! EXTi in the database, the application of�i returns an identical Di : INTi �! EXTi in the view. The application of�i to each Di : INTi �! EXTi in the view should then faithfully return ourinitial database. If this is so, there is a natural isomorphism between � and �and our database is consistent.2.9.4 Message PassingWe consider message passing to be a function from one arrow to another arrow,where the arrows may be within the same category (intra{class) or in di�erentcategories (inter{class). This function is best viewed in category theory as amorphism in the arrow category [3] which is written C! to view the arrows ofC as objects in C!. For example, suppose the arrow �j takes a value from anarrow for the method mk in the class CLSi to an arrow for the method mnin the class CLSj where CLSi and CLSj are not necessarily distinct. Thisis viewed in the arrow category as a morphism between objects in CLS!i andCLS!j as shown below:�j : mk �! mn (mk 2 CLS!i ;mn 2 CLS!j)We can show that message passing is performed in a consistent manner ifthe diagram in Figure 9 commutes, that is mn � �ja = �jb �mk.Figure 9 is the natural transformation target square and shows that themessage passing function is a natural transformation between objects in thecategory of arrows [23]. A simple way to realise that inter{arrow morphismsare natural transformations is to consider that the mapping between CLS andCLS! is a functor; hence a mapping between CLS { CLS! pairs is a naturaltransformation.The constructions above provide a sound framework for investigating as-pects of message passing such as control of types of initiators/ receivers and aformal basis for re
ective systems. We also note that updates can be simplyperformed as a result of a particular message.3 Prototyping the ModelTo implement any system based on category theory requires �nding a suit-able language for handling categorical data types, and handling multi{level

INT1 EXT1INT9 EXT9D1D9�4 �4 --? 6Figure 8: The View �4 as a Natural Transformationwith Updates through �4mappings between complex structures. The criteria we have for evaluatinglanguages to determine the most suitable are [16]:� an ability to handle functions as �rst class objects;� a loosely typed language to reduce the di�culty in handling categoricaldata types;� the concept of persistency for complex structures, such as categories;� facilities for a high productivity rate.Finding a language which best �ts these criteria should enable the quickdevelopment of the prototype categorical database system. Obviously, if the�rst three criteria are attainable, then the productivity rate should be quitehigh, a major advantage in developing a prototype.An obvious choice was to use a functional language such as ML or Haskell.Previous research by Rydeheard [20, 8] developed a set of categorical data typesin the functional languageML, and Duponcheel [9] developed a set of categoricaldata types in Gofer, a version of Haskell which permits class constructors.The problem with both systems, though, was that functional languages aretoo strongly typed, and so they do not permit a heterogeneous collection ofarrows to be stored easily within a category. Both of their systems reallyhandle only particular types of cartesian closed categories (a category witha continuous function), which is �ne for most areas of computing, but fallsdown when the requirement of a category is to store database properties andfunctional dependencies, etc.Another possibility was C++, or some other object{oriented language suchas Ei�el or Smalltalk, which may be suitable as they are based on objects,and so should give a natural structure for representing categories. The mainproblem with object{oriented languages is again in their strong typing, wherepolymorphism is still too strict to handle the complexity of categorical map-pings, and higher order functions would break encapsulation in object{orientedlanguages. Also, although an object structure can be visualised as being quite

dom(mk) dom(mn)
cod(mn)cod(mk)

�ja
�jb mnmk --? ?Figure 9: Commuting Square for Message �j between mkand mn in Arrow Categories CLS!i and CLS!jrespectivelysimilar to categories, extensibility would be limited in that it would be di�cultto add structure to an object once it had been de�ned.This led to the P/FDM functional database system, developed by the ObjectDatabase group at the University of Aberdeen. P/FDM is a semantic datamodel database system, with object{oriented extensions. It is based on thefunctional data model, speci�cally that of the DAPLEX language, having botha DAPLEX query interface and a query language in SICStus Prolog [22].The DAPLEX interface is based on the concepts of entities and functionswhich map entities to other entities, where the functions are either direct (per-sistent) relations or derived methods. Queries are based on function compo-sition. The use of entities and functions matches quite closely the conceptsrequired for producing a categorical system, and the query language is ideal forhandling these categorical structures. Queries and methods in P/FDM can bede�ned in either DAPLEX or in Prolog, so the system can be enhanced withProlog extensions when DAPLEX alone is unsuitable. As well as this, P/FDMcontains an integral metadata level and support for constraints, which shouldallow us to perform the necessary consistency checks and type handling that acategorical database would need.Other advantages of P/FDM are that queries can be closed, which gives usa simple mechanism of storing results from our queries back into the database.It also supports automatic de�nition of inverses, which gives us a solution forderiving categorical concepts such as duals, adjoints, etc., and we can de�nesubclasses, i.e. (Student is a subclass of Person). Subclasses may be over-lapping (i.e. Student is a Person and Student is a Sta�, for the case wherea student is also employed by the university), but we do not have multipleinheritance, which is not a problem because our categorical system does notcurrently support multiple inheritance either.

Although it would appear to be advantageous to de�ne arrows in categorytheory as functions in P/FDM, they are after all similar, there are drawbacksin handling arrows as functions in the model. It is restrictive when storingthese arrows within categories, because their source and target entities varyfor each arrow and so can not simply be stored in a P/FDM set structure,where P/FDM functions are classi�ed by the type of their source entity (orentities). This implies that it is simpler to store arrows as entities, with twomain functions in each one, for referencing the source and target. These arrowscan then be stored in a heterogeneous list for a category, where the source andtarget entities have di�erent types for each member of the set of arrows.Another concern is that P/FDM is statically typed. For any subclasseswhich rede�ne a function from the parent, we must speci�cally instruct aP/FDM query to use the new function, otherwise the parent function is calledinstead. This is a problem because we need a form of dynamic binding, sinceattributes in the database are subclasses of some common attribute superclass,so that arrows only need to know about the common superclass. So it is di�-cult for us to view the value of an attribute, because we do not know directlythe type of the subclass. To get round this, a Prolog method has been de�nedwhich �rst �nds out the type of the subclass, and then correctly calls the valuemethod for the subclass, giving us a form of dynamic binding.3.1 Implementing Partially Ordered SetsOur method for storing categories as partially ordered sets requires storageof the powerset of attributes, along with the majority of projection arrows(which are trivial functional dependencies) and then adding the extra non{trivial functional dependencies. This is very ine�cient in storage terms. So inthe implementation, we only store the set of attributes, the non{trivial func-tional dependencies and the key, and we alter the poset method for determiningthe key.The Prolog method recursively subtracts permutations of the non{trivialfunctional dependencies from the maximal element in the poset (e.g. fa, b, c,dg when attributes are fag, fbg, fcg and fdg), which gives us a list of powersetmembers which can be the key, and then by examining the minimality of theseelements, we can determine which is the primary key, or which are the candi-date keys, if we have a choice. For example, if the attributes are as above, andthe functional dependencies are fa, bg ! fcg and fb, cg ! fdg (note, this is apseudotransitivity because we can infer that fa, bg ! fdg) then the sequenceof subtractions is:fa, b, c, dg { (fa, bg! fcg) = fa, b, dg (we remove the target)fa, b, dg { (fb, cg ! fdg) = fa, b, dg (we can not complete this subtrac-tion, as c is not in the key)So, from this permutation, fa, b, dg is the key.For the second permutation we have:fa, b, c, dg { (fb, cg ! fdg) = fa, b, cgfa, b, cg { (fa, bg ! fcg) = fa, bg

From this second permutation, fa, bg is the key, and it is the in�mum (asfa, bg is minimal compared to fa, b, dg), so the primary key is fa, bg as wewould expect.In this algorithm, we have a straightforward test to determine whether theobject conforms to BCNF. The simple test is that the sources of the non{trivial functional dependencies (i.e. fa, bg and fb, cg) are candidate keys. Inour example, this is not true, as fb, cg is not a candidate key (fa, bg is the onlykey, and is therefore the primary key). Our algorithm does not pretend to behighly e�cient compared to previous algorithms [17] (where Osborn's algorithmis based on determining the set F+ [28] of all functional dependencies to checkwhether a relation is in BCNF) for testing whether a relation is in BCNF, butour algorithm also determines the key whereas previous work does not usuallygive the key.3.2 ManipulationTo complement the categorical data types, we need to add some form of ma-nipulation, i.e. queries, closure, views and message passing, as well as somesystem for actually setting up a database. The intention is that the interfaceto the user will consist of a collection of pre{written Prolog methods for creat-ing objects, etc. and that the eventual query language should look no di�erentto DAPLEX syntax, so that the user just needs to learn DAPLEX queries, withthe required categorical extension.There may be a di�culty in implementing natural transformations, whichwill be needed for most of the database manipulation parts. This is becausethe mapping is between functors and across multiple levels, i.e. the mappingsare at the object, arrow and functor level, which may be di�cult to representin a DAPLEX schema, or in many other currently available languages [16].4 ConclusionsWe consider that our work is a positive contribution towards solving the threemain problems in object{oriented databases simply by using subcategories andnatural transformations in category theory, and that our use of P/FDM pro-vides the necessary functionality for actually implementing this categoricalmodel. The implementation is a non{trivial problem because category the-ory constructs do not map in a direct manner onto the constructions of currentprogramming languages, but the combination of DAPLEX and Prolog appearspromising.5 AcknowledgementsFinally, we must thank Professor Peter Gray and his associates at AberdeenUniversity for making the P/FDM system available for our use. In particular,Doctor Suzanne Embury for the many hours spent �xing any problems thathave occurred so far. We would also like to thank Doctor Michael Heather at

the University of Northumbria for the valuable discussions relating to categorytheory.References[1] ISO{ANSI SQL 3 Working Draft. Digital Equipment Corporation, Mas-sachusetts, March 1994.[2] M. Atkinson, et. al. The Object{Oriented Database System Manifesto. InF. Bancilhon, et. al. The Story of O2: Implementing an Object{OrientedDatabase System, Morgan Kaufmann, 1992.[3] M. Barr, C. Wells. Category Theory for Computing Science. Prentice{HallInternational Series in Computer Science, 1990.[4] B. Cadish, Z. Diskin. Algebraic Graph{Oriented = Category The-ory Based: Categorical Data Modelling Manifesto. Frame Inform Sys-tems, Database Design Laboratory, Latvija, DBDL Research ReportFIS/DBDL{94{02, July 1994.[5] L. Cardelli. A Semantics of Multiple Inheritance. LNCS, 173:51{67, 1984.[6] P. P. Chen. The Entity{Relationship Model : Toward a Uni�ed View ofData. ACM TODS, 1(1):9{36, March 1976.[7] J. Demetrovics, L. Libkin, and I. B. Muchnik. Functional Dependencies inRelational Databases: A Lattice Point of View. Discrete Applied Mathe-matics, 40(2):155{185, 1992.[8] E. Dennis{Jones, D. E. Rydeheard. Categorical ML { Category{TheoreticModular Programming. Formal Aspects of Computing , 5(4):337{366,1993.[9] L. Duponcheel. Gofer Experimental Prelude. Alcatel, Belgium, 1994.[10] S. M. Embury, et. al. User Manual for P/FDM Version 9.0. University ofAberdeen, Technical Report AUCS/TR9501, January 1995.[11] P. J. Freyd, A. Scedrov. Categories, Allegories. North{Holland Mathemat-ical Library 39, 1990.[12] P. M. D. Gray, K. G. Kulkarni, and N. W. Paton. Object{OrientedDatabases: A Semantic Data Model Approach. Prentice{Hall InternationalSeries in Computer Science, 1992.[13] K. M. Kuper, M. Y. Vardi. The Logical Data Model. ACM TODS,18(3):379{413, 1993.[14] S. Mac Lane, I. Moerdijk. Sheaves in Geometry and Logic, A First Intro-duction to Topos Theory. Springer{Verlag 1991.[15] D. A. Nelson, B. N. Rossiter, and M. A. Heather. The Functorial DataModel { An Extension to Functional Databases. University of Newcastleupon Tyne, Technical Report Series, No. 488, 1994.

[16] D. A. Nelson, B. N. Rossiter. Suitability of Programming Languages forCategorical Databases. University of Newcastle upon Tyne, Technical Re-port Series, No. 511, March 1995.[17] S. L. Osborn. Testing for Existence of a Covering Boyce Codd NormalForm. Information Processing Letters, 8(1):11{14, January 1979.[18] B. N. Rossiter, M. A. Heather. Applying Category Theory to Databases.Presented to 8th British Colloquium for Theoretical Computing Sciencein March 1992, published as Technical Report No. 407, University of New-castle upon Tyne.[19] B. N. Rossiter, M. A. Heather. Database Architecture and Functional De-pendencies Expressed with Formal Categories and Functors. University ofNewcastle upon Tyne, Technical Report Series, No. 432, 1993.Categorical[20] D. E. Rydeheard, R. M. Burstall. Computational Category Theory.Prentice{Hall International Series in Computer Science, 1988.[21] D. W. Shipman. The Functional Data Model and the Data LanguageDAPLEX. ACM TODS, 6(1):140{173, March 1981.[22] SICStus Prolog User's Manual, Edition 2.1, Patch #7. Swedish Instituteof Computer Science, January 1993.[23] H. Simmonds. Lecture Notes for SERC School on Logic for InformationTechnology. University of Leeds, 1990.[24] J. Smith, D. Smith. Data Abstraction, Aggregation and Generalization.ACM TODS, 2(2):105{133, 1977.[25] M. Stonebraker, L. A. Rowe. The Design of Postgres. In Proceedings ACMSIGMOD Conference, pages 340{355, 1986.[26] M. Stonebraker. Object{Relational Database Systems. Montage SoftwareInc., 1994.[27] D. Tsichritzis. ANSI/X3/SPARC DBMS Framework, Report of theStudy Group on Data Base Management Systems. Information Systems,3(3):173{192, 1978.[28] J. D. Ullman. Principles of Database and Knowledge{Base Systems 1.Computer Science Press, 1988.

