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Abstract

The relational data model uses set theory to provide a formal background,
thus ensuring a rigorous mathematical data model with support for ma-
nipulation. The newer generation database models are based on the
object—oriented programming paradigm, and so fall short of having a
formal background, especially in some of the more complex data manip-
ulation areas. We use category theory to provide a formalism for object
databases, known as the product model. This paper will describe our
formal model for the key aspects of object databases. In particular, we
will examine how this model deals with three of the most important prob-
lems inherent in object databases, those of queries, closure and views. As
well as this, we investigate the more common database concepts, such as
keys, relationships, aggregation, etc. We will implement a prototype of
this model using P/FDM, a semantic data model database system based
on the functional model of Shipman, with object—oriented extensions.

1 Introduction

Relational data models are supported by a strong theoretical formalism based
on set theory, which ensures a rigorous mathematical data model as well as
support for manipulation, with both the relational algebra and calculus being
strongly defined. Newer generation data models are based on object—oriented
systems, which so far are strongly lacking in any kind of formal definition,
especially for data manipulation concerns.

This paper is concerned with a formal model for object databases'. Cat-
egory theory [3] is used to define the product model, a formal notation for
representing features of an object based database. In particular, we will exam-
ine how this model deals with three of the most important problems inherent
in object databases, those of queries, closure and views, as well as how our
model deals with more common database concepts, such as keys, relationships,
aggregation, etc.

A prototype of this model is currently being produced, using P/FDM [10,
12], a database system based on the functional data model database of Shipman
[21], but which has incorporated some object—oriented extensions. We will
discuss our reasons for using P/FDM, and show some of the problems that
occur in developing a categorical database. Our implementation will look at

Inot necessarily object—oriented, but one which contains most of the concepts from the
object—oriented paradigm



both the standard abstractions of data models, and the more important details
of object databases as mentioned above.
The aims of our work on this theoretical database model are to demonstrate:

e that category theory provides a feasible formal model for object-relational
databases;

e that a practical categorical database can be implemented, and that it can
suitably model real world data storage problems;

e that the implementation problems of closure, queries and views inherent
in most of the current object—based databases can be resolved through a
categorical formalism.

The object-relational model (e.g. Postgres) [25, 26] is similar to our for-
malism for object-databases, while our relationships are similar in functional-
ity and appearance to those in the entity-relationship model [6]. We also use
Boyce-Codd Normal Form (BCNF) [28] as a normalisation constraint when
determining the keys in a particular database object, ensuring a high level of
consistency in the database.

One important question must be ‘why category theory?’ Although any the-
ory could be used for modelling object databases, the multi-level architecture
of category theory, compared to the flatness of most other theories such as set
theory, makes the model less complex when we need different levels for schema,
queries, etc. in the database. Category theory is also based on the arrow as its
primitive concept, which gives natural modelling of dynamic as well as static
aspects, where the arrow can provide either a relationship between two prop-
erties, or can act as a function mapping from one property to another. As
well as this, the diagrammatical tools of category theory, i.e. diagram chasing
giving algebraic equations, and the consistency tests, are useful additions to
any model of a database in achieving a database system with a high level of
consistency and correctness.

The categorical data modelling manifesto by Cadish and Diskin [4], sug-
gests that category theory has an unexpectedly high relevance for semantic
modelling, database design and database theory. Their manifesto supports the
reasons we have outlined for using category theory for formalising databases,
in particular they believe that using the arrow for defining internal structure
of objects, as we do, is just the specification methodology the database area
needs for universal models.

1.1 Object Database Abstractions

Because many of the current object—oriented databases are based heavily on
C++ (or some other object—oriented programming language), they are usually
little more than just persistent object—stores. This means that views and clo-
sure are difficult to implement because they do not migrate easily into object—
oriented programming languages, due to the fact that run—time schema changes
are required, and new objects require creating on the fly.

The matter of a query language is the most interesting prospect. Some of
the newer object database systems are being released with languages based on
SQL, and there is a new SQL3 standard [1] being written, which incorporates



features for handling complex objects. Many of the current systems usually
provide no more than facilities for querying through C+4++4+ methods though,
i.e. the application developer must write most queries as C++ methods rather
than using some complete query language.

Our query language will be heavily influenced by Shipman’s DAPLEX [21],
while supporting the whole of the functionality of an SQL based query lan-
guage. DAPLEX is a data definition and manipulation language based on the
functional data model, with a query language based entirely on functions and
function composition.

1.2 Overview of Paper

The rest of this paper will outline the categorical concepts used for the product
model, in particular highlighting how we aim to achieve queries, closure and
views. Then finally, we will discuss our use of P/FDM for developing a pro-
totype of the product model, highlighting the major implementation problems
that we have encountered, and discussing other implementations of categorical
data types that exist already.

2 The Product Model

Using standard textbook categorical constructions, we now construct the prod-
uct data model to capture the semantics of object—relational databases. The
minimum objectives for our data model are:

1. A clear separation between intension (class) and extension (object) struc-
tures with a rigorous mapping defined between them.

2. Object encapsulation.

3. An orthogonal definition language for functions within a class to include
both functional dependencies and methods, the naming and typing of all
functions and attributes within each class.

4. Constraints on class structures as represented by the concept of primary
and candidate keys, normal forms such as BCNF and functionality and
membership class in object (E-R) models.

5. The standard information system abstractions formulated in the 1970s
[24] and which are prime targets of current object—oriented databases
[2] and object-relational systems [25, 26]. These abstractions include
inheritance (generalisation and specialisation); composition such as ag-
gregation; classification and association.

6. Message passing facilities between methods located in any part of the
system.

7. A query language which can provide results with closure: the output from
a query can be held in a class—object structure which ranks equally pari
passu with other such structures already existing in the database.



8. A multilevel architecture like that in the ANSI/ SPARC standard [27]
with definitions of views, global schemata and the internal structures and
the mapping between them.

All arrow constructions that we employ, as regards composition and associ-
ation, must conform to the four axioms of category theory [3].

2.1 Classes
2.1.1 Basic Structures

The class construction is an essential starting point for representing the in-
tension of a database. The collection of classes 1s represented by an effec-
tive topos CLASS constructed by the Grothendieck method as the category
G(CLS, METC) where METC : CLS — CLASS is a functor embedding
each class definition CLS in a metaobject CLASS.

Each category CLS is a collection of arrows F given by the Hom-set
Homey,g(v,v") for all v,v" € V where V is the collection of objects in the
category CLS given by objcy,g. Individual arrows may be denoted by f.

Arrows are typed as either actions (transformations) or dependencies by
specifying the category (i.e. some pool of values) from which the item is taken.
The actions are typed by the category of methods M:

m:lM—>M

where m is a method arrow in our collection of methods M in the category
CLS found in the universe of methods M. The dependencies are typed by the
category of dependencies D:

where d is a dependency arrow in our collection of dependencies D in the
category CLS found in the universe of dependencies D.

In general, typing is indicated by a collection of mappings {h : Ipyp —
H} where H represents the name of either an arrow in F' or an object in V|
h is an instance of H and TYP is the category upon which the type of H is
based.

Each arrow has a domain and a codomain. Qur domains and codomains may
be either elemental or composite. In the elemental case, the source or target
of the arrow is a single variable v, a member of the object V representing
all the elementary variables for the class CLS. In the composite case, the
source or target of the arrow contains two or more variables z, a member of
the powerobject of V(z € pV) for the class CLS.

of the form ???
with subobject classifier
$c$ and characteristic function $\chi: 77?7



In more detail, each arrow f in the category CLS has domain dom(f) and
codomain cod(f). The domain and codomain names are not necessarily dis-
tinct. The union of all dom(f) and cod(f) in a class gives the collection of vari-
ables in the class which was specified earlier as objcp,g or more conveniently
as the object V. In order to permlt complex actions and dependencies, do-
mains may be structured, that is contain more than one variable. For database
applications, codomains are normally considered to comprise a single variable
although category theory itself need not be restricted to minimal covers [11]
but can cope well with open covers [14]. Variables may be either persistent
variables given by the subobject A comprising the persistent components a of
the class, or memory variables given by the subobject U comprising the tran-
sient components u of the class. A and U are both subobjects of the object
V.

Later, we describe the identification of one or more domains as candidate
keys and the selection of one of these as the primary key.

Functional dependencies involve only persistent variables as their domains
and codomains. Minimal covers are assumed: domains may be composite in-
volving more than one persistent variable while codomains are restricted to
being single persistent variables. Therefore for each functional dependency,
d:z—y, z€pA y€ A thatis, x is a member of the powerobject of A. Al-
though y is a singleton variable, this does not mean that its structure is simple.
y could represent structures such as multivalued sets, lists or arrays. We deduce
the set of persistent variables F/ that participate in functional dependencies, as
domain or codomain, by the union of dom(d) and cod(d).

Functional dependencies can be composed. Thus the composition of dy :
{a} — {b} and da : {b} — {c} gives dyod; : {a} — {c}. Such compositions
are represented without difficulty in the partially—ordered structures that we
introduce later as a natural consequence of the transitivity rule (if {a} < {b}
and {b} < {c}, then {a} < {c}). However, in some circumstances, partial
comp051t10n occurs, giving rise to a collectlon of pseudotransitivity arrows [28]

={p:x—y} (x€pAyec A0<i<r"). The set of variables B’ that
participate in pseudotransitivities is given by {dom(p;)Jcod(p;) | 0 < i < '’}

For each arrow that is a method, m; : @ — y (0 < ¢ < s), then # € pV,y €
V, that 1s the domain may be any object in the powerobject of the persistent
and memory variables and the codomain is a singleton persistent or memory
variable. If required, memory variables can be considered as derived [21] or
virtual variables which can be manipulated by database operations.

2.2 Normalization

We need to define an identifier to enable individual records to be picked out
from a collection of records and we also need to determine whether our class
structures suffer from storage anomalies. In relational databases, the concept of
normalization is used to provide such constraints within the context of a user—
defined key often providing a degree of content addressability. Normalization is
usually not an automatic task and its benefits as reagrds robustness in update
operations are obatined at some cost in complexity. In object—based systems,
the procedures are much simpler as the identifier is assigned by the system
but there is no methodical attempt to avoid storage anomalies. We consider



the simple object—based system first, including the notation for an identifier,
followed by the more challenging relational concepts.

In object—based systems, the key is a system—assigned object identifier de-
fined as the identity functor on a category, for example, 1op,g : CLS — CLS.
No further checks need be made for dependencies. All our identifiers are initial
objects in categories as there is an arrow from the identifier to every other
object in the category. Initial objects are normally denoted by 0 in category
theory — hence we adopt Kp as the notation for the key. So above, 1¢1,g is
the same as K.

In a relational system, the key Ky is derived as shown below for each class
category CLS [19] following a lattice approach [7] rather than an algorithmic
one [28]. The lattice formalism lends itself more to a categorical approach with
its emphasis on partial-order constructions. We employ the identifiers and
dependencies to test whether our class structures correspond to BCNF. This
normal form is adopted because it is more powerful than 3NF and can easily
be deduced from functional dependencies making it ideally suited to a lattice
approach.

The procedure basically automates the production of normalized classes,
taking as input the category CLS augmented with trivial dependency arrows,
and producing as output collections of normalized classes NOR with identifiers
meeting our rules. In more detail, we first generate two categories PRJ and
PSU containing respectively trivial projection arrows and non—trivial pseu-
dotransititivity arrows (dependencies inferred from the postulated functional
dependencies and their combinations [28]). In the third stage, these two new
categories are injected into CLS to give the equivalent of F'* in standard rela-
tional database theory.

1. Generate the partial-order category PRJ with elements p,q¢ € pA and
projected orderings (px ¢ < m(pxq); pxq < mr(px¢q)) as the arrows, that
is to take the projections by applying the free functor L : A — PRJ.

2. Generate the partial-order category PSU with elements p,q € E’ and
arrows {p} that is to apply the free functor L” : /' — PSU.

3. Take PRJ and PSU. Inject them into CLS, that is add the arrows of
PRJ and PSU to those already in CLS.

Now take the augmented preliminary formulation for each CLS. Consider
the adjointness:

FAU:CLS < NOR

where F' is a free functor taking CLS, which may be a preorder, to a
collection of normalized categories NOR.. F' selects a collection NOR which
meets the normalization rule of BONF (or whatever level to which we are
working). U is the underlying functor which selects those collections of NOR
that can be naturally joined together to return CLS, thus ensuring that NOR
is a lossless decomposition of CLS.

F is left adjoint to U and U is right adjoint to F'. By virtue of the adjoint
functor theorem [Freyd & Scedrov 1990], left adjoints preserve colimits and
right adjoints preserve limits. We can therefore say, that if adjointness occurs
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Figure 1: Commuting Diagram for Test for BCNF

between CLS and NOR, then U preserves limits and gives us readily one of
our requirements: that any decomposition of CLS into NOR. shall be lossless
with the ability to recover CLS by a join operation on the various NOR..

I needs to do more. In our first series of operations, we produce an iden-
tifier for each normalized class. We next determine whether the class meets
our normalization rules through a commuting test. First, the identifier Ky is
determined:

1. The limit of the objects of A in NOR (A A) is the primary key PK. If
there 1s more than one limit, the set of maximal lower bounds is the set
of candidate keys C'K.

2. Each class NOR is in BCNF if each source of a functional dependency
arrow is PK or is a member of C'K.

3. The identifier Ky is either PK or a user—selection from K. When it
is necessary to distinguish the keys for each class, consider K} as the
identifier for the #** class CLS;.

4. Other persistent attributes may be labelled K; ... K, where r = n—c with
¢ as the number of attributes in the key. In the simplest situations, r = ',
where 7’ is the cardinality of the set of dependencies D but in many cases
such as classes with no dependencies or with multiple candidate keys or
with classes that are not in BCNF, this will not be true.

Then each NOR is tested for BCNF by performing the following test shown
in the diagram 1. Every menber of a collection of NOR must commute ac-
cording to the equation 777 for it to be a valid selection by the free functor

G.

K ———————- >dom(d)
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Our final task is to transfer our results from PRJ into the class category
CLS. This is necessary as, particularly if the key is composite, K is not
guaranteed to be a variable in the class CLS. We apply an injective functor
from a view of the poset PRJ into CLS. The category that we inject into C is
the exponential construction PRJ*° (the arrows of PRJ with Ky as source).
CLS now includes the key Ky and the arrows from Ky to each of Ky ... K,.
If therefore Ky was not already in PRJ, the injection increases the number of
persistent variables n in CLS by one and the number of arrows k by r, that is
n—mn+land k — k+r.

7?7 3NF may be more fun - need to use adjointness to give free and under-
lying 77 functors

2.3 Relationships

The association abstraction between classes is represented in object models by
notation based on the Entity—Relationship [6] (E-R) approach. In categorical
terms, the E-R model is represented by pullbacks.

Our pullback is on class identifiers K as initial objects in categories repre-
senting classes. To give an example, consider the pullback of K} and KZ over
O shown in Figure 2, where K} and K2 are initial objects in the categories for
the entity—types supplier (CLSq) and parts (CLSo) respectively and O is a
relationship orders between suppliers and parts.

The collection of relationships in a database intension is represented by a
family of pullback categories (ASS; | 0 < ¢ < p) where p is the number of
relationships. We next include information to cover aspects such as function-
ality and membership class. First let us consider the nature of each object and
arrow in the category:

e K¢ is the identifier for the supplier class CLS;.

e K7 is the identifier for the parts class CLSo.

e O is the relationship orders representing all instances of this type of as-
sociation between suppliers and parts. Instances for O are of the form
(< kb, k20 >| F(kL) = g(k}), kb € KLk} € K3,0 € pO} where o is
information such as quantities and dates of orders and i1s an element in
the powerset of O (or is a subset of O representing that set of orders
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Figure 2: Diagram of Pullback of K} and K2 over O

for a part from a particular supplier). O can be considered as a simple
structure including j properties for orders {o; | 1 <i < j}.

Alternatively, where there is considerable complexity in the structure and
operations of O, it would be desirable to create a category, say CLSg, to
handle as a class the internal complexity of the orders and to include in
the pullback structure the identifier for this class K2 defined as pairs of
values < k}, k2 > as a surrogate for the orders category.

K} x oK2 is the subproduct of K} and K2 over O: it represents the
subset of the universal product K3 x K2 that actually occurs for the
relationship O.

By considering the nature of the arrows we can now provide more informa-
tion concerning the relationship O:

The arrow f maps from identifier K} to the relationship O. It represents
associations between suppliers and orders.

The arrow g maps from identifier K2 to the relationship O. It represents
assoclations between parts and orders.

When f(k}) = g(k2), we have an intersection between the two associa-
tions, that is a supplier and a part both point at the same order: a set of
such orders is associated with a particular supplier—part pair.

The arrow 7 is a projection of the subproduct K} x o KZ over K} rep-
resenting all suppliers.

— If this projection arrow is onto (epimorphic or epic in categorical
terms) then every supplier appears at least once in the subproduct.
Thus every supplier participates in the relationship and the mem-
bership class of K} is indicated as mandatory. If, however, 7 is not
epic, then not every supplier participates in the relationship and the
membership class of K¢ is indicated as optional.



— If this projection arrow is one-to—one (monomorphic or monic in
categorical terms) then each supplier appears just once in the sub-
product. If, however, 77 is not monic, then a supplier may participate
more than once in the relationship.

— If 77 is both monic and epic, the projection is said to be isomorphic
with each supplier appearing once in the subproduct and K¢ having
mandatory participation in the relationship.

Analogous reasoning can be applied to the arrow =,.

It should be emphasised that the handling of the entity-relationship mod-
elling here is very much stronger than in conventional data processing where
the functionality and membership classes are represented by labels. In the cat-
egorical model, the functionality and membership class are achieved through
typing of the arrows so that the constraints cannot be violated. Categorical
structures are universal rather than conventional. There is an underlying func-
tor from a categorical E-R model to a conventional one with structure loss
through typing constraints being represented as labels.

2.3.1 Enhancements

So far we have considered binary relations (relationships between two entity—
types) and have neglected n—ary and involuted relationships, multiple relation-
ships between the same classes and the abstractions of inheritance and compo-
sition. These are readily handled by standard categorical constructions. n—ary
relationships are represented by finite products [18]. Involuted relationships are
handled directly: for example K} x g K¢} is the subproduct of K¢ with itself
over the relationship with the object B. Multiple relationships between the
same classes are handled by a series of pullbacks over the same two initial ob-
jects, for example K¢ x g K2 and K} x p K2 represent pullbacks of K¢ and K2
over B and D respectively. Inheritance and composition are described below.

2.8.2  Pullback Identifiers

The values for a subproduct in a pullback will always be unique so generally
this component of the diagram can be used as an identifier. Therefore in Figure
1 the identifier is K} x o KZ. Note that, as in the class diagram, the identifier
is the infimum of the diagram.

2.3.8 Inherttance

Inheritance in object—oriented terms is the assumption by classes of properties
and methods defined in other classes. It is an intensional concept affecting the
manner in which classes are created. In categorical terms, this is achieved by
the coproduct construction shown in Figure 3 which yields a disjoint union of
two or more objects. Consider:

e a category CLS3 (employers) with the set of arrows HomCLS3p, q be-

tween objects p, ¢ and set of domains and codomains objCLS3; and
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Figure 3: Coproduct Cone for Objects CLSg and CLSy4

e a category CLSy4 (managers) with the set of arrows HomCLS4p, q and

the set of domains and codomains ObjCLS4'

The coproduct CLSg + CLS, is the disjoint union of the arrows
(HomCLS3p, q—|—HomCLS4p, q) and the domains and codomains (objCLS3 +

obicLs,)-

In this example, CLS5 and CLS4 contain the specific properties and meth-
ods for employers and managers respectively and CLSg + CLS4 is the amal-
gamation of these objects and arrows into a new category which 1s in effect
the specialisation of CLSg over CLS4. The arrow s (meaning subclass) shows
the direction of the specialisation: s : CLS3 — CLSy4 (employee has sub-
class manager). In general, the superclass category will be identified by one or
more properties in the data and the subclass category (being a weak entity)
by an identity functor to give an object identifier. In more concrete terms, s
can therefore be considered as the mapping between the key of the superclass
category CLSg and the identity functor 1CLS4 of the subclass category:

S [{g I 1CLS4

Since a coproduct can, in turn, be the base of another cone, it is a simple
matter to construct inheritance hierarchies [15]. The ancestry of each class
in the hierarchy is preserved in the construction of pushouts. Note though
that, with our scheme at present, multiple inheritance is not permitted as the
disjoint union would not include properties or arrows that appeared in both
categories at the base of the cone, although we are currently investigating the
use of pushouts [3] for multiple inheritance. At present therefore, our model
provides inheritance through the arrangement of categories in a partial order
restricted to hierarchical constructions rather than the more general poset of
Cardelli [5].

For convenience, we consider the additional g class categories (CLS; : ¢ +
1 <i<ec+yg), such as CLS3+ CLS4 above, created as coproducts to comprise
the family of categories UNI.

Polymorphism at its simplest level is achieved by the coproduct construc-
tion. Methods defined for CLSg as arrows in the set (HomCLS3p, q) are also

available automatically in the set (HomCLS3p, q+ HomCLS4p, q).



2.8.4 Composition

Composition including aggregation is the creation of new classes from a col-
lection of other classes. The method of composition is flexible varying from
standard mathematical operations such as products or unions on classes [13]
to qualified operations such as relational joins. The basic ways of representing
these compositions have already been introduced such as universal product,
disjoint union, qualified product and amalgamated sum.

2.4 Typing

Arrows and attributes are typed, as described earlier, by specifying the cate-
gories from which their values will be drawn. These categories may be other
classes, basic pools of values such as integer and string, or domains of arbitrary
complexity such as complex objects, arrows, lists, graphs and sets.

2.5 Objects

Objects represent the extensional database holding values which must be con-
sistent with the intension (the class structures).

There is a mapping V; from each class CLS; to the instances for each
object—type OBJ; which ensures that the constraints specified in the intension
hold in the extension. The mapping is a functor as it is between categories.
The functor V; takes each arrow f in CLS; to a set of arrow instances V;(f) in
OBJ;, each domain dom(f) in CLS; to a set of instances V;(dom(f)) in OBJ;,
each codomain cod(f) in CLS; to a set of instances V;(cod(f)) in OBJj;, the
key Ky to a set of instances V;(Ky), each non—key attribute (K; | 1 < ¢ < r)
to a set of instances V;(K;) and each functional dependence (d; | 1 <i < r) to
a set of arrow instances V;(d;). All assignments by the functor V; are of values
for arrows, domains and codomains.

For each class CLS;, the functor V; should preserve limits with respect to
the functional dependencies, that is the diagram in Figure 4 should commute
for every cone where [ A is the product of (V;(Ky) x Vi(K1)... x Vi(K,)),
(m; ] 0 < j <r)is a projection coordinate from [[ A and {V;(d;) : Vi(Ko) —
Vi(K;) | 1 <i < r}are the postulated functional dependencies. The commuting
requirement is for all V;(K;) where (1 < < r) it is true that Vi(d;) o mp = ;.

We are checking that the limit is preserved when real-world data is exam-
ined: that is, all cones in our family of cones commute and therefore an infimum
can be constructed for the family of cones, in this case [] A.

In object—oriented terms, objects contain values consistent with their class
definitions (including typing) and perform operations according to the methods
defined in their classes. The classes are the intension, the objects the extension.
This can be represented generically by the diagram in Figure 5 where CLS
represents a family of class categories, OBJ a family of object categories and
TYP a family of type categories.

E, P and [ are functors representing the mappings from object to class,
from class to type and from object to type respectively. E (the dual of V) maps
extension to intension. [ is an inclusion functor so that OBJ is a subcategory of
TYP. P indicates the typing constraints applied to classes and 1s a collection
of arrows comprising;:
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Figure 4: Cone for extension [] A in the Category OBJ

o {v; : lpyp. — Vi}, representing the constraint that each instance v;

i
of an object Vi(1 <i < ) is found in the category TYP;.

o {fi : 1pyp. — I3}, representing the constraint that each instance f;
i
of an arrow F;(1 < < k) is found in the category TYP;.

In relational database terminology, each category TYP is a domain and
each V is an attribute name. The database is consistent when the diagram
commutes, that is P o ' = [, representing the situation that our objects in
the extension conform both to the class definition in the intension and to the
typing constraints.

In a similar way, another functor R takes each pullback category ASS at
the intension level to its extension LNK. This functor also preserves limits so
that the constraints, such as for monic, epic and multiple relationships must
apply in every case to the arrows between the actual data values. Diagram
chasing ensures that type declarations are obeyed. Note how the model is not
simply labelling constraints in the intension, it i1s enforcing them as limet or
commuting requirements in the actual data values held in the extension.

2.6 Encapsulation

The mapping between intension and extension naturally provides an encapsu-
lation of attributes and methods for a class. Operations are only permitted on
the extension if they are defined in the intension and are performed so as to
enable the functor from intension to extension to preserve consistency.
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Figure 5: Commuting Diagram for Consistency of Objects
with Classes and Types

2.7 Physical Storage Structures

In a similar way to the mapping between classes and objects, it is straight—
forward to define mappings as functors between categories for objects and cat-
egories representing disk structures, say, hash tables or indexes. In earlier work
Rossiter and Heather [18] considered the various approaches to hashing in cat-
egorical terms.

2.8 Families of Categories

Shortly, we turn our attention to manipulation of our categories. For this
purpose, it is convenient to introduce the concept of families of categories?. In
effect, we make the following groups:

e The category INT representing the intension as a family of ¢ classes
CLS, p association definitions ASS and g coproducts UNI representing
inheritance.

e The category EXT representing the extension as a family of ¢ objects
OBJ and p association instances LNK.

e The functor D mapping from category INT to category EXT. This
functor is called D (for database) because this is effectively the purpose
of a database management system.

Between any two intension categories INT; and INTj (not necessarily dis-

tinct), m message passing routes (see later) can be defined using arrows of the
form 7 described earlier between the corresponding arrow categories INTi_’

and INTj_’ respectively.

?In future work, we intend to employ the concept of the categorical topos to represent the
families described above



2.9 Manipulation

A fundamental difficulty in current object—based systems is that of closure. It
is not easy to obtain an output from a database that can be held as objects with
associated class definitions such that the new structures rank equally par: passu
with those in the existing database. Another difficulty with some object systems
is that the output is a subset of variables in an object without any consideration
of the arrows (functions) which are an equally important part of the data. This
latter difficulty is readily handled in a formal manner by subcategories [3] which
provide a means of selecting some of the objects and arrows in a category and
hence give in a natural manner the basis for a query mechanism. We remind
ourselves that category INTj is a subcategory of category INT; if:

ObjINTj C ObJINTi/\ HomINTj (p,q) C HomINTi(P, q) (Vp,q € ObjINTj)

Query operations can be defined at two levels: intra—object and inter—
object. In categorical terms, in the general sense, there is no difference between
the two as both are handled by arrows. The query language that we have devel-
oped is therefore based on arrows as in a functional data model database such
as DAPLEX [21], but our arrows are higher—order mappings from one category
to another. Qur arrows are in fact functors between the input structure and the
output structure. The input for each operation is a category and the output is
another category or a subcategory.

A functor arrow will return a category. It is therefore the norm that the
output of a query on a category will be another category complete with ar-
rows and objects which can be held in the database in the same way as other
categories. The output or target category could contain structured values not
present in the source category and assigned by another functor. It is there-
fore possible to create complex categories through manipulating values from
a number of database categories. Alternatively, a forgetful functor applied to
a category forgets some of the structure and this could be used, if the user
desires, to forget the arrows and return simple tables of values as is the normal
practice in network and some object—oriented databases.

An example of a query is given in the next section.

2.9.1 Query Frample

We take the supplier—parts example given earlier, augmenting it with an inher-
itance structure where electrical parts are a specialisation of parts in general.
The following categories are defined:

o INTq for the class CLSy for suppliers: identifier K}
arrows:
f1: K} — sname
Jo 1 K} — saddress
f3 : K — mno.shares
fa : K} — share.price
fs : (no.shares x share.price) — capitalisation



where sname, saddress, no.shares, share.price € A; capitalisation € U
fi,.. fa€D; fse M. AJU F, M are defined in section on Classes.
More detailed typing is not shown here.

o INT for the class CLSo for parts: identifier K2
arrows:
fe : K& — pname
Jr: K — size
s 1 K2 — weight
0 g

where pname, size, weight € A; fs,..., fs € D.

e INT3 for the pullback ASSq of suppliers and parts over orders as in
Figure 2: identifier K} x o K2
arrows:
K x oK2 — K}
7 K} x oK — K2
[:Ki—O
g: K — O

— K¢ is the identifier for the supplier class CLS;.

K¢Z is the identifier for the parts class CLSo.
— O 1s the powerset of orders.

Instances for O are of the form {< k}, k2,0 >| f(k}) = g(k2), k¢ €
K} k2 € K2,0€ pO}.

o INT, for the class CLSg for electrical parts — a specialisation of parts
with object identifier 1INT4 as the identity functor on INT4
arrows:

fo: 1INT4 — voltage
fio: 1INT4 — capacity

where voltage, capacity € A; fo, fio € D.

e INTj for the union (coproduct) UNI; = INTo + INTy: identifier K7
arrows:
fe,..., fe from INTo
fg, f10 from INT4

51 : [{g — 1INT4

The natural language query is ‘What are the names and identifiers of suppli-
ers with capitalisation greater than one million pounds who supply an electrical
part with voltage rating of 90 volts?’.

The series of functorial operations is given below. As is usual in database
systems, these operations are defined in intensional terms but later, in order
to introduce the closure concept, we look in more depth at what is actually
involved in a query in terms of deriving an intension—extension mapping.



1. X; :INTg — INT5
(Hom-set in INTg = fo,s1; subobjects in INTg = (Kg,lINT4,

voltage | voltage = 90));
2. X5 :INT7 — INT3

%I;I(?{‘n—)s)et in INT7 = m;; subobjects in INTy = (K} x o K3, K§ | K3 €
6))

3. X3 : INTg — INTy,
(Hom-set in INTg = {}; subobject in INTg = K});

4. X4:INTg — INTq

(Hom-set in INTq = fi,fs, fa,fs; subobjects in INTg =
(K¢, sname, no.shares share.price,capitalisation | capitalisation >
1000000));

Hom-set in INTq = fi; subobjects in INT1g = (K}, sname | K €
10 10 0 0
ObJINTS));

The first functor X; derives the subcategory INTg from INTpg by taking
the composition of the arrows 51 : K2 — 1INT4 and fo : 1INT4 — voltage

to determine which part identifiers K2 are associated with a voltage of 90.

The second functor X, derives the subcategory INT7 from INT3 by re-
strictions on INTg to the arrow m; and on the source of m; to cases where the
part is in the subobject K2 derived by X;.

The third functor X3 takes the output INT7 from X, and restricts it
further to produce the subcategory INTg with no arrows and subobject K.
This subobject represents suppliers who supply parts rated at 90 volts.

The fourth functor X4 produces subcategory INTg from INT; with the
arrows f1, f3, fa, f5 and subobjects, including (K}, sname), for which the appli-
cation of f3, f4, f5 to K} gives a capitalisation of more than a million pounds.

The final functor X5 produces the answer in a new subcategory INTg
which is a subcategory of INTg with arrow f; and subobjects (K&, sname)
such that the values for K are found in the category INTg, effectively giving
an intersection between INTg and INTg over K.

Note that the strategy involves a selection of both arrows and objects rather
than just objects as in the relational approach. The selection of arrows is
achieved through defining hom-sets and the selection of objects through defin-
ing subobjects. Further, subobject specifications can involve predicates of arbi-
trary complexity to facilitate sophisticated searching techniques. All operations
produce new subcategories. Results can also be injected into other categories
so that new categories of arbitrary complexity can be constructed through free
functors.

2.9.2 Closure in Queries

So far we have seen how intensional subcategories can be defined as results for
searches. But can we store the results obtained in our example queries back



INT, EXT;
Dy

04

D
INT, ? EXTy

Figure 6: The Query o4 as a Natural Transformation
with source D and target Dg

in the database in their current form to be used in exactly the same way as
existing classes?

The answer is that we have defined a series of subcategories
INTg ... INT{( in intensional terms but have omitted to define the corre-
sponding extensional subcategories. The relationship between each intension
INT; and extension EXT; is given by the mapping D; : INT; — EXT;.
Therefore for a query earlier, say no.4, we can write in more detail:

Dy :INT; — EXTq

Dy : INTg — EXTg

Dy and Dy are functors representing intension to extension mapping for
the source and target respectively of the query. Each query therefore involves
a mapping between an intension—extension pair as source and an intension—
extension pair as target. We can represent this structure as shown in Figure 6
with the query now represented by the natural transformation oy4.

To be a natural transformation, the square in Figure 6 for our current query
o4 should commute for every arrow f; : dom(f;) — cod(f;) in the source
category INT; (1<j<k,1<i<(c+p+yg)).

This means that for all f; in INT; then o4, o Di(f;) = Do(fj) o 04,,
that is our two paths from the values for domains of arrows in the source
category Di(dom(f;)) to the values for the codomains of arrows in the target
category Dg(cod(f;)) should be equal. One path A involving o4, navigates
from domain values in the source category via domain values in the target
category to codomain values in the target category; the other B involving o4,
has the same starting and finishing points but navigates via codomain values
in the source category.

In path A, the arrow o4, creates a subobject of the domains for arrows f;
in EXT{ to be assigned to the extension category EXTq. In path B, the
arrow o4, creates a subobject of the codomains for arrows f; in EXTy to be
assigned to the extension category EXTg. Referring back to the syntax used
in our query examples, the hom-—set of the target category is defined as the set



D1 (dom(f;)) T4, Do(dom(f;))

Di(cod(f;)) o4, Da(cod(f;))

Figure 7: The query o4 as a Commuting Target Square with
Covariant Natural Transformation o4 from functor D,
to functor Dy

of f; assigned by Dy and the subobjects in the target category are defined as
the union of dom(f;) and cod(f;) for arrows f; assigned by Ds.

The output from o4 is clearly a structure which can be held in our database,
ranking equally with other classes and objects in the system. Typing con-
straints will continue to be enforced in the output structure. So the typing for
objects and arrows in INTg will be based on that in INTy with the addi-
tional constraint that capitalisations must be greater than one million pounds.
In computing terms, we are expressing the constraint that no object can exist
in our database which is not fully described by a class definition.

In categorical terms, we are expressing a query as a natural transformation.
Fach functor can be considered as a continuous function (infimum preserving)
between two posets with limits: each structure Dy : INT; — EXT; is then
viewed as a closed cartesian category where I); is a continuous function pre-
serving the infimum (as key) within the poset INT; in EXT;. Closed cartesian
categories have been used in other areas of computing science, in formalisms
such as Scott domains, as they are equivalent in theoretical power to the typed
lambda calculus [3].

2.9.3 Views on Classes
The mechanism required for views is similar to that for queries. In fact a

snapshot view will be identical to a query. However, there are two other aspects
of views that need further consideration:

e The need to retain the definition within the database and produce views
of the current data on demand by the user.



e The problems of updating the database by users who have limited views
of the data structures.

The first involves creating a mapping in intensional terms only as we did
with the queries which were originally defined as X; ... X5. Thus the functors
in the family X defined earlier can all be construed as defined views. When
a view is realised, the corresponding natural transformation is activated to
deduce the extension.

The second involves the definition of another functor, say 7, to relate the
result from the query back to the main database values. Thus if we define a
view as shown in Figure 8, we can achieve updatable views on a class.

A well-known special case of a view is that taken of the complete database.
In this case for every D; : INT; — EXT; in the database, the application of
o; returns an identical D; : INT; — EXT; in the view. The application of
7 to each Dy : INT; — EXT; in the view should then faithfully return our
initial database. If this is so, there is a natural 1somorphism between o and 7
and our database is consistent.

2.9.4 Message Passing

We consider message passing to be a function from one arrow to another arrow,
where the arrows may be within the same category (intra—class) or in different
categories (inter—class). This function is best viewed in category theory as a
morphism in the arrow category [3] which is written C™ to view the arrows of
C as objects in C™. For example, suppose the arrow 7; takes a value from an
arrow for the method my in the class CLS: to an arrow for the method m,

i
in the class CLSj where CLS; and CLSj are not necessarily distinct. This

is viewed in the arrow category as a morphism between objects in CLSi_’ and
CLSj_’ as shown below:

n;imyp — my,  (my € CLSi_’,mn € CLSj_’)

We can show that message passing is performed in a consistent manner if
the diagram in Figure 9 commutes, that is m, on;, = n;, o my.

Figure 9 is the natural transformation target square and shows that the
message passing function is a natural transformation between objects in the
category of arrows [23]. A simple way to realise that inter—arrow morphisms
are natural transformations is to consider that the mapping between CLS and
CLS™ is a functor; hence a mapping between CLS — CLS™ pairs is a natural
transformation.

The constructions above provide a sound framework for investigating as-
pects of message passing such as control of types of initiators/ receivers and a
formal basis for reflective systems. We also note that updates can be simply
performed as a result of a particular message.

3 Prototyping the Model

To implement any system based on category theory requires finding a suit-
able language for handling categorical data types, and handling multi-level



INT, EXT;
Dy
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Figure 8: The View o4 as a Natural Transformation
with Updates through =

mappings between complex structures. The criteria we have for evaluating
languages to determine the most suitable are [16]:

e an ability to handle functions as first class objects;

e a loosely typed language to reduce the difficulty in handling categorical
data types;

e the concept of persistency for complex structures, such as categories;

e facilities for a high productivity rate.

Finding a language which best fits these criteria should enable the quick
development of the prototype categorical database system. Obviously, if the
first three criteria are attainable, then the productivity rate should be quite
high, a major advantage in developing a prototype.

An obvious choice was to use a functional language such as ML or Haskell.
Previous research by Rydeheard [20, 8] developed a set of categorical data types
in the functional language ML, and Duponcheel [9] developed a set of categorical
data types in Gofer, a version of Haskell which permits class constructors.
The problem with both systems, though, was that functional languages are
too strongly typed, and so they do not permit a heterogeneous collection of
arrows to be stored easily within a category. Both of their systems really
handle only particular types of cartesian closed categories (a category with
a continuous function), which is fine for most areas of computing, but falls
down when the requirement of a category is to store database properties and
functional dependencies, etc.

Another possibility was C++, or some other object—oriented language such
as Fiffel or Smalltalk, which may be suitable as they are based on objects,
and so should give a natural structure for representing categories. The main
problem with object—oriented languages is again in their strong typing, where
polymorphism is still too strict to handle the complexity of categorical map-
pings, and higher order functions would break encapsulation in object—oriented
languages. Also, although an object structure can be visualised as being quite



dom(my) Nja dom(m,)

cod(my) cod(mpy)

Figure 9: Commuting Square for Message n; between m;,
and my, in Arrow Categories CLSi_’ and CLSj_’

respectively

similar to categories, extensibility would be limited in that it would be difficult
to add structure to an object once it had been defined.

This led to the P/FDM functional database system, developed by the Object
Database group at the University of Aberdeen. P/FDM is a semantic data
model database system, with object—oriented extensions. It 1s based on the
functional data model, specifically that of the DAPLEX language, having both
a DAPLEX query interface and a query language in SICStus Prolog [22].

The DAPLEX interface is based on the concepts of entities and functions
which map entities to other entities, where the functions are either direct (per-
sistent) relations or derived methods. Queries are based on function compo-
sition. The use of entities and functions matches quite closely the concepts
required for producing a categorical system, and the query language is ideal for
handling these categorical structures. Queries and methods in P/FDM can be
defined in either DAPLEX or in Prolog, so the system can be enhanced with
Prolog extensions when DAPLEX alone is unsuitable. As well as this, P/FDM
contains an integral metadata level and support for constraints, which should
allow us to perform the necessary consistency checks and type handling that a
categorical database would need.

Other advantages of P/FDM are that queries can be closed, which gives us
a simple mechanism of storing results from our queries back into the database.
It also supports automatic definition of inverses, which gives us a solution for
deriving categorical concepts such as duals, adjoints, etc., and we can define
subclasses, i.e. (Student is a subclass of Person). Subclasses may be over-
lapping (i.e. Student is a Person and Student is a Staff, for the case where
a student is also employed by the university), but we do not have multiple
inheritance, which is not a problem because our categorical system does not
currently support multiple inheritance either.



Although i1t would appear to be advantageous to define arrows in category
theory as functions in P/FDM, they are after all similar, there are drawbacks
in handling arrows as functions in the model. It is restrictive when storing
these arrows within categories, because their source and target entities vary
for each arrow and so can not simply be stored in a P/FDM set structure,
where P/FDM functions are classified by the type of their source entity (or
entities). This implies that it is simpler to store arrows as entities, with two
main functions in each one, for referencing the source and target. These arrows
can then be stored in a heterogeneous list for a category, where the source and
target entities have different types for each member of the set of arrows.

Another concern is that P/FDM is statically typed. For any subclasses
which redefine a function from the parent, we must specifically instruct a
P/FDM query to use the new function, otherwise the parent function is called
instead. This 1s a problem because we need a form of dynamic binding, since
attributes in the database are subclasses of some common attribute superclass,
so that arrows only need to know about the common superclass. So it is diffi-
cult for us to view the value of an attribute, because we do not know directly
the type of the subclass. To get round this, a Prolog method has been defined
which first finds out the type of the subclass, and then correctly calls the value
method for the subclass, giving us a form of dynamic binding.

3.1 Implementing Partially Ordered Sets

Our method for storing categories as partially ordered sets requires storage
of the powerset of attributes, along with the majority of projection arrows
(which are trivial functional dependencies) and then adding the extra non-
trivial functional dependencies. This is very inefficient in storage terms. So in
the implementation, we only store the set of attributes, the non—trivial func-
tional dependencies and the key, and we alter the poset method for determining
the key.

The Prolog method recursively subtracts permutations of the non-trivial
functional dependencies from the maximal element in the poset (e.g. {a, b, ¢,
d} when attributes are {a}, {b}, {c} and {d}), which gives us a list of powerset
members which can be the key, and then by examining the minimality of these
elements, we can determine which 1s the primary key, or which are the candi-
date keys, if we have a choice. For example, if the attributes are as above, and
the functional dependencies are {a, b} — {c} and {b, ¢} — {d} (note, thisis a
pseudotransitivity because we can infer that {a, b} — {d}) then the sequence
of subtractions is:

{a, b, ¢, d} — ({a, b}— {c}) = {a, b, d} (we remove the target)
{a, b, d} = ({b, ¢} — {d}) = {a, b, d} (we can not complete this subtrac-

tion, as ¢ is not in the key)
So, from this permutation, {a, b, d} is the key.

For the second permutation we have:

{a, b, ¢, d} — ({b, ¢} — {d}) ={a, b, ¢}
{aa ba C} o ({aa b} - {C}) = {aa b}



From this second permutation, {a, b} is the key, and it is the infimum (as
{a, b} is minimal compared to {a, b, d}), so the primary key is {a, b} as we
would expect.

In this algorithm, we have a straightforward test to determine whether the
object conforms to BCNF. The simple test is that the sources of the non—
trivial functional dependencies (i.e. {a, b} and {b, ¢}) are candidate keys. In
our example, this is not true, as {b, c} is not a candidate key ({a, b} is the only
key, and is therefore the primary key). Our algorithm does not pretend to be
highly efficient compared to previous algorithms [17] (where Osborn’s algorithm
is based on determining the set F'* [28] of all functional dependencies to check
whether a relation is in BCNF) for testing whether a relation is in BCNF, but
our algorithm also determines the key whereas previous work does not usually
give the key.

3.2 Manipulation

To complement the categorical data types, we need to add some form of ma-
nipulation, i.e. queries, closure, views and message passing, as well as some
system for actually setting up a database. The intention is that the interface
to the user will consist of a collection of pre-written Prolog methods for creat-
ing objects, etc. and that the eventual query language should look no different
to DAPLEX syntax, so that the user just needs to learn DAPLEX queries, with
the required categorical extension.

There may be a difficulty in implementing natural transformations, which
will be needed for most of the database manipulation parts. This is because
the mapping is between functors and across multiple levels, i.e. the mappings
are at the object, arrow and functor level, which may be difficult to represent
in a DAPLEX schema, or in many other currently available languages [16].

4 Conclusions

We consider that our work is a positive contribution towards solving the three
main problems in object—oriented databases simply by using subcategories and
natural transformations in category theory, and that our use of P/FDM pro-
vides the necessary functionality for actually implementing this categorical
model. The implementation is a non—trivial problem because category the-
ory constructs do not map in a direct manner onto the constructions of current
programming languages, but the combination of DAPLEX and Prolog appears
promising.
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