An agent system for collaborative version control in

engineering

Keywords
Agents, Engineering,
Database management

Abstract

In this paper we present a system
of distributed co-operating agents
whose goal is to manage change
and organise version sets in an
engineering environment. The
agents are designed for full
lifecycle support and inter-
operation across heterogeneous
networks. The agent
communication is based on
common object request broker
architecture (CORBA) but an extra
messaging layer is developed
which utilises a language built in
Vienna development method-
specification language (VDM-SL).
Problems encountered in the use
of engineering database
management systems are
investigated and solutions are
proposed in the context of agents.
A version model is presented in
two ways; informally based on our
assumptions on a general design
process and formally in VDM-SL.
An industrial case study is
presented and preliminary results
shown.

This research was
supported by the UK
Engineering and Physical
Sciences Research Council
(Grant No. GR/ J40270). The
authors wish to thank John
Fitzgerald for his advice on
VDM modelling and Keith
Hutchinson for his help in
preparing the manuscript.

Integrated Manufacturing
Systems
11/4 [2000] 258-266

© MCB University Press
[ISSN 0957-6061]

Barry Florida-James

Newcastle University, Newcastle, UK
Nick Rossiter

Newcastle University, Newcastle, UK
Kuo-Ming Chao

Newcastle University, Newcastle, UK

| 1. Introduction

The adoption of concurrent engineering
principles in the production of large
made-to-order (MTO) products has
demanded significant progress in the
supporting information systems towards the
goal of an integrated engineering
environment. The paperless design house is
becoming increasingly realistic but total
concurrent engineering activity, supported
by computer aided design (CAD) and other
computer based engineering systems, has
not yet been realised. Whilst it is common
for design engineers to have access to a
central repository, it is unusual for this
system to be optimised for performance and
complete product lifecycle support. We
share the view of Cutcosky et al. (1993), that
a centralised product model is the logical
framework for an integrated engineering
process, however this quickly becomes a
bottleneck when data physically resides on
only one system. Added to this problem are
the business issues of having to replace
existing software and hardware and
therefore re-train designers in the use of
new systems and tools.

We believe that research from artificial
intelligence, especially in the areas of
knowledge sharing and re-use and agent
architectures, should be applied to
engineering systems. An environment
should be produced where information is
shared at formally defined levels instead of
ad hoc data transactions. In this way
designers engaged in traditional
engineering disciplines should be aided in
understanding product data from their
collaborative partners, thus leading to a
reduced product development cycle. In this
paper we present a system for complete
product configuration and version control

@

The current issue and full text archive of this journal is available at
http://www.emerald-library.com

[258]

which allows designers a consistent view
throughout the complete lifecycle and also a
retention of their own product
representation and design tools.

The approach used is an agent-based (Luck
and d’Inverno, 1995; Shen and Barthes, 1995)
framework. This framework incorporates the
standard for the exchange of product model
data, STEP (Fowler, 1995) which is becoming
mature enough to be used in some industries
and also distributed object technology
CORBA. CORBA is the underlying
communication mechanism in our
implementation and has the advantage that
the architecture is abstracted to a level of
communicating agents so that an agreed
vocabulary is all that is required for
integration. In the remainder of the paper,
we present the version model and the
proposed agent architecture, demonstrate the
system with a case study taken from the
petro-chemical industry and we develop a
formal specification of the system using
VDM-SL (IS095, 1996).

| 2. Related work

Over the past ten years much research effort
has been focused on the development of
computer based systems aimed at the
exchange and maintenance of data on large
engineering products. Concurrently,
research in artificial intelligence has been
addressing issues of co-operation and
knowledge sharing in various domains. In
this section we examine these two strands of
research and review recent progress.

A number of system prototypes consider
heterogeneous distributed environments.
KADBASE (Howard and Rehak, 1989) was
one of the earlier systems to address the issue
of semantic and syntactic translation. Later
work at Queensland University (Yang and
Papazoglou, 1995) classifies and organizes
correspondences between heterogeneous
object-oriented schema. This information
resides in a knowledge base attached to each

Barry Florida-James,

Nick Rossiter and

Kuo-Ming Chao

An agent system for
collaborative version control
in engineering

Integrated Manufacturing
Systems
11/4 [2000] 258-266

local database. The knowledge base allows
remote objects to be treated as local data
types and also determines which part of a
query is local and which is remote. At
Stanford (Wiener et al., 1996) a data
warehouse system has been produced based
upon CORBA objects and asynchronous
messaging. Here a meta datastore is used, to
resolve relationships across datastores.
However, none of the above systems consider
an evolution of project descriptions over
time.

Katz (1990) describes a set of various
criteria that a version model for engineering
databases should meet. He describes
interesting combinations of version
properties as distinguishable version states
but does not propose a suitable architecture
for development of these models.
Krishnamurthy and Law (1997) address many
of these issues in a CAD environment but do
not propose a model that would be generally
applicable beyond this environment.

Morenc and Rangan (1992) state that, in
concurrent engineering environments,
activities typically involve a high degree of
data and function interdependencies.
Designers must be able to design
independently, therefore resulting in
assumptions having to be made about other
design models whilst ensuring that overall
consistency is maintained. We directly
address this issue of consistency within the
demands of these requirements.

Dattola (1996) presents a co-operative
system of agents for hypertext version
control but this system does not have the
strict requirements associated with an
engineering environment. The software
agents that Genesereth and Ketchpel (1994)
present were the starting point for our
system but we chose to narrow the domain of
the agents, in order to make the
implementation more realisable.

Our view of what defines an agent is
derived from Shoham (1993), and also from
the Foundation for Intelligent Physical Agent
(FIPA) standard (FIPA, 1998). We believe that
an agent should have responsibilities and
obligations that determine its behaviour and
that the overall behaviour of the system is
determined by a common goal.

In summary, we have not found a suitable
management system for version control in a
multidisciplinary design environment that
is independent of the underlying design
tools. Co-operating agents appear to offer a
solution to this problem but have not yet
been applied to this domain. In this paper
we present such a version management
system.

| 3. Version management

The scheme for version management is agent
based. The goal of our agent architecture is
global consistency of data and the ability to
reflect change in all models of a disparate
design process. An agent communication
language (ACL) is implemented on top of
CORBA but does not use the CORBA event
services as this is too limited (see KQML and
CORBA at http://www-ksl.stanford.edu/
email-archives/kqml.messages/327.html). In
its present form the ACL that we apply is
specified in Vienna development method
(VDM) and has a very limited vocabulary.
However, we demonstrate that it is
sophisticated enough to convey all the
necessary semantics required for a
configuration management system.

The version mechanism is session-based,
that is updates are made at the end of a user
session. The mechanism is intended to be
used in full lifecycle support and also
provides a history of the design process. In
order to achieve this an agent architecture
has been developed.

The architecture shown in Figure 1,
consists of three layers which may be
considered as the physical layer, the logical
layer and the knowledge layer. Each layer is
depicted by a separate type of agent namely
resource, behavioural and global. As is
shown each agent in the engineering process
is represented by a behavioural agent, the
resource agent manages the physical
resources of the design agent and the global
agent fulfils a specific role in the
maintenance of the global or enterprise
product model (Florida-James et al., 1997).

To understand the role of each type of
agent in more detail we will first present an
informal description of our version model,
based on our assumptions, on a general
design process. The role of each agent in
fulfilling that model is then described. In the
following section formal specifications are
presented in VDM-specification language
(SL) describing the logic controlling the
agent behaviour. An example of change
management, from a case study, is also given.

3.1 Version model

The version model that we present here has a
number of key concepts which separate it
from other schemes (Bohrani et al., 1992;
Cellary and Jomier, 1990; Chou and Kim,
1986; Dittrich and Lorrie, 1988). First, we
place no unrealistic requirements on the
underlying design tools. An ability to export
data is the only assumption. Second, in a
more natural representation, we describe the
tools as communicating agents with

[259]

Barry Florida-James,

Nick Rossiter and

Kuo-Ming Chao

An agent system for
collaborative version control
in engineering

Integrated Manufacturing
Systems
11/4 [2000] 258-266

[260]

Figure 1
Three tier agent framework

Knowledge Layer
Behavioural Behavioural
Agent > Agent
/ Logical Layer
Design Agent Design Agent
g‘X’ ¢ O Q g‘Y’ & Physical Layer
Resource Resource
Agent Agent

d

Local Boundary

O Software Agent

asynchronous messaging capabilities rather
than as remote objects or functions which
may be invoked or called. Finally we allow
design agents to collaborate without relaxing
any autonomy constraints on the individual
design tools.

We will proceed with a description of our
model by defining the main terms used in it.

An entity is an item which is considered as
a design object in any participating model at
some stage in the product lifecycle.

A configuration is a unique set of entities
which when logically related describe the
complete product model at a given point in
time.

A version is a specific instance of a given
entity, which may be derived from any
previous version through a series of change
operations.

Change operations are defined as add,
delete and modify.

Version levels are described as private,
declared and recorded.

3.2 Entity version management

Local models are managed by the local
database and we assume no control or access
to this structure. This allows designers to
continue working with tools they are
familiar with and also to introduce the
system to legacy applications. We use the
commonly described wrapper method (Roth
and Schwarz, 1997) to access these systems
but our wrapper is contained within the
resource agents. The resource agent
understands STEP and hence performs the
translating of design entities from the local
repository to the global repository.

Engineering Design
Agent

B

The proposed scheme is a forward deltas
scheme (Rochkind, 1975) where deltas are
stored as a list of entities on which primitive
operations have been performed. It is
assumed that the three primitive operations
we describe, modify, create and delete, can be
used to represent all design actions across all
domains.

The labelling scheme applied by the
resource agent is external to any local
scheme the design tool or database may have.
It is, of course, possible to utilise any
available local scheme provided that in the
global context we get a unique version set
identifier. The scheme is adapted from that of
Keller et al. (1995) but at present we do not
implement their optimisation processes.
Entities are initially created within a version
set with a unique identifier corresponding to
the EXPRESS model entity name. The entity
is physically stored within the resource
agent but rules concerning the creation and
deletion of entities and their relationships at
the global level are controlled by the global
agent. An advantage of our scheme of
resource agents is that it is reactive in the
sense that changes made in another model
are automatically reflected in all local models
by the application of a new label. This label is
actually designated by the resource agent
and is required to be unique in the local
context and to tell us which agent caused the
change. Rules that govern the resource agent
behaviour are given in Section 4.2 along with
examples. These rules are further formalised
in the VDM-SL specification.

As stated earlier we do not distinguish
between complex and simple entities in our
versioning system. Entities are related in

Barry Florida-James,

Nick Rossiter and

Kuo-Ming Chao

An agent system for
collaborative version control
in engineering

Integrated Manufacturing
Systems
11/4 [2000] 258-266

terms of a hierarchy by the global agent.
STEP, however, defines a rigid hierarchical
structure in its application protocols. The
system does not choose to ignore this and
indeed this structure is available within the
local models where it is very useful. We use a
less rigid definition of an entity for global
version control. As stated this allows entities
to exist at different levels of detail in different
models or domains. The reason this is useful
is that models based on mismatched domains
can be related and merged using hierarchies
containing generalisations and
specialisations of existing terms (Florida-
James et al. 1997). The difficulty is that a
consistent representation of the knowledge of
these relations has to be stored somewhere;
this is one role of the global agent.

For example, consider a structural design
representation consisting of a deck entity
which contains four subsystems — high
pressure, medium pressure, low pressure
and power supplier. In the process design
representation the low pressure subsystem is
further decomposed into two pumps a
compressor and an inspection gear launcher.
In this example we can easily visualise the
domain mismatch. The process
representation is much more detailed than
the load bearing concerns of the structural
agents. It is also easy to see how the problem
may be addressed by a hierarchical
representation of the relationships between
entities. Hence in the global agent there
exists a list of entities and a set of relation
types, namely, is a part of or is equivalent to.

3.3 Configuration management
The global and behavioural agents combine
to give an overall configuration management
system for the complete product lifecycle.
This system has been developed to support
earlier work on change propagation in an
integrated design environment (Guenov,
1996). In this system the behavioural agents
may be described as the logical layer and the
global agent as the knowledge layer. The
behavioural agents define the rules for
co-operation and change management
whereas the global agent has knowledge
about design entities and their relationships
in the global context of the total product.
The first aspect of the configuration
management scheme is the labelling of
design models. Versions are caused by
change and hence the process of change is
represented within our labelling scheme.
When a requirement for a change is issued a
conversation on this change is started
between the behavioural agents and the
currently declared versions of each model
are updated with a new label as shown in

Figure (2a). If this change is agreed the label
on each version then becomes the timestamp
and the other labels are removed. The change
issue and delta storage are handled by the
resource agent. In Figure (2b) a change is
issued but this conflicts with constraints in
another model so this agent produces a set of
alternatives which compromise both
constraints and the label is now composed by
adding the agent’s alternative. At this point
the behavioural agents are in a state of
conflict resolution and all subsequent
alternatives are labelled in the same way.
When the conflicts are resolved the label
reverts to the timestamp as in the previous
scenario.

In order to cope with the situation where
the above resolution fails at this point in
time, that is where parallel designs exist, we
simply clone (Dattola, 1996) the global agent
and give it another label based on the same
scheme. For example in our case study, from
the offshore industry, the development of two
designs progressed simultaneously for a
period whilst a decision on whether a
concrete or metal jacket would be produced.
Eventually however one design became
inactive. Our experience shows that, whilst
cloning the global agent may be expensive in
system terms, it allows the model to continue
consistently without inhibiting the design
process. These clones very rarely stay active
for long periods.

la. Agent descriptions

4.1 Messaging design

The messaging system supports
communication in both broadcast and
directed modes. The implementation chooses
how to send messages depending on the
circumstances in which the agents
communicate. Messages may be sent to all,
some or just one specific agent depending on
its content. The system is supported by
CORBA remote object calls and so the
diversity of what can be sent is almost
unlimited, in fact it would be possible for
agents themselves to be transferred. A
centralised post office, which is controlled by
the global agent, determines the assignment
of agents to subjects and conversations
within the system.

4.2 Resource agent

The following state-based model shows the
function of the resource agent, in its role as
the version control. The resource agent also
handles physical storage optimisation and
conversion from local repositories to the
STEP data standard.

[261]

Figure 3 showing the state changes in the
resource agent is adapted from
Krishnamurthy and Law (1997), but
significantly we allow external messages to
influence the internal states. This is
illustrated by the change request arrow. This
message causes an alternative to be declared.
This alternative now has only one route to
being declared, that is by being activated and
incorporated into the private model. This
process is analogous with an approval
process and this is unique to our model.

Barry Florida-James,

Nick Rossiter and

Kuo-Ming Chao

An agent system for
collaborative version control
in engineering

Integrated Manufacturing
Systems
11/4 [2000] 258-266

4.3 Behavioural agent
The behavioural agent is the representative
of each design discipline in the agent
structure. It contains rules about co-
operation and negotiation with other
behavioural agents and uses these to operate
version control over its own resources. The
behaviour is controlled by a number of state
variables which represent change activity
and design activity.

Design activity is designated by two states:
1 active - it is safe for design to continue as

normal; or

Figure 2
Labelling scheme

z20] () Eaos

(») 2031 3

[(o)
© (o)
(a) (b)
Figure 3

State changes at resource agent

2 frozen - legitimate design activity is
currently postponed due to some global
inconsistency or constraint violation.

Change management is represented by a
unique change identifier and two sets of
variables: activator, a variable representing
the agent which originated the change and
respondor which represents the agents acting
in response to a change. Agents must act as
either an activator or responder in a given
change conversation but may participate in
any number of changes. Hence an agent may
be acting as am activator and a respondor
simultaneously. An agent’s design activity
can only be either active or frozen. An
activator may be in the following states
pending (evaluation/wish), pending
(requirement), resolving or recording. A
respondor may be evaluating or conflicting.
These states represent the following
conditions:
* pending — awaiting one or more responses
to a change request;
* resolving — awaiting the result of a
management decision process;
* recording — updating the agent details
after a change has been accepted;
* evaluating — assessing locally the effects of
a change; and
» conflicting — having a change violate a
local design constraint.

The rules for controlling these states are
described in the change management
examples and formally represented in VDM-
SL.

Changes are described in three levels
required, evaluation or wish. These levels
have different effects on the state variables
and different message passing priorities.

4.4 Global agent

The global agent has the responsibility for
maintaining consistency across the
information sources. It has the following

declare

declarelalternative
(reject)

declared-alternative

remove

[262]

(accepted change)

removed

change request

Barry Florida-James,

Nick Rossiter and

Kuo-Ming Chao

An agent system for
collaborative version control
in engineering

Integrated Manufacturing
Systems
11/4 [2000] 258-266

Figure 4

commitments or obligations (Shoham, 1993):

* knowing the location of resources;

* knowing the current configuration of the
product;

« controlling creation and deletion of
system objects; and

+ knowing relationships between objects at
the global level.

Global objects and global relations can only
be created and destroyed by the global agent.
These global IDs are maintained across
transactions and access to global objects and
relations is only via the global agent. As well
as knowing the current configuration the
global agent maintains a history of the
product evolution.

| 5. case study - change
management

This change scenario is taken from a case
study of an offshore platform. Here we can
see how the system of agents cope in a
concurrent engineering environment. There
are four agents in the system: process design,
layout design, electrical systems and cost.
The process engineer is required to change
the export pressure of a pump. This increases
the pump size and causes the generator size
to be increased. As a consequence these can
no longer fit in the available deck area so a
constraint is violated within the layout
design. Figure 4 shows the model changes
and the version numbering.

The layout agent has replied to the change
request with a conflict. The activator invokes
a stage of resolution and design is frozen by
all agents. At this point the cost engineer
produces an alternative generator which is

Application to models of labelling scheme

more expensive but smaller, as shown in
Figure (4.b). In this example the agents
evaluate the new equipment fit and respond
that this arrangement is within the specified
constraints and the change is accepted. If this
were not true then a management process
would be invoked and a new global agent
created. Figure 4 shows the various changes
in the state variables at the agents involved.

Table I shows stage 1 with all agents active
and activator and respondor states normal
(N). After the requirement for the pump
change is issued by the process designs
behavioural agent, all design activity is
frozen (F). The process activator state is set
to pending-requirement (PR) whilst the other
agents respondor states are evaluating (E).
The layout respondor is then set to conflict
(C) due to the constraint violation on the deck
size. The activator replies to this by applying
resolution (RE) and all respondors are now
set to conflict. Concurrently, the cost
engineer activator is set to pending-
requirement (PR) as the alternative
generator is selected and the process
activator is now set to evaluating (E). As the
final step, all design activity is now resumed
and the respondor and activator states are set
to normal (N) with the cost engineer
recording (RC) the decision.

| 6. VDM-SL model

The VDM-SL model gives a formal
representation of our versioning mechanism.
VDM-SL is a model oriented language and we
develop it by defining the data types and then
developing the functionality. Using the IFAD
VDM-SL tool-box (The VDM-SL Tool Group,
1994) we were able to make our model

s

(a)

oo

i

2-P0

2-P0 2-P0
2-PO 2P0
2-P0 2-P0

(1]

(b)

-PO . 2-P0-CO

[~]

5

[~]

2-P0-CO

5

[~]

2-P0-CO
Process- P
Electrical- E
2-P0-CO Layout. L
_N :) Cost- C

[263]

Barry Florida-James,

Nick Rossiter and

Kuo-Ming Chao

An agent system for
collaborative version control
in engineering

Integrated Manufacturing
Systems
11/4 [2000] 258-266

Table |

executable and validate it. The model is
defined in three parts representing the
resource agent, the global agent and a model
representing the concurrent message passing
and the co-operating behavioural agents. The
models are too large to be presented
completely here but we will show the
essential stages in model development with
suitable extracts in VDM-SL. The third part
is the largest and most complex and so we
will examine it first.

6.1 Implementation of version control
The function described below ApplyRes is
invoked when an agent receives a message
from an activator telling it that conflict
resolution has been applied.
ApplyRes: AgentID * ChangelD * AgentID *
VersionControl -> VersionControl
ApplyRes (agent, change, thisAgent, vc) ==
let conflict: RespondorStates = <Conflict>,
frozen:DesignActivity = <Frozen>,
a = vc.AgentInfo (thisAgent)
in
mk_VersionControl(vc.timestamp, vc.labels,
vc.AgentInfo++
{thisAgent |-> mk_DesignAgent (a.version,
frozen, a.activators, a.respondors ++ {change
|-> conflict},
a.alternatives, a.replies, a.vState)}, vc.
ChangeDetails, vc.MessageBox)
pre vc.Agentinfo (thisAgent).respondors
(change) = <Evaluating>;

In this case the action is fairly straight
forward, all responder states are set to
conflict and design activity is frozen. No
other changes to the version control model is
made and no messages issued to other agents.
The pre condition asserts the allowable
design states before the application of the
new states.

The following excerpt is from the function
CreateVersion which is called as a response
to an IssueChange message.

if ve.ChangeDetails(change) = <Conflict>

then

State changes at design agents

Agent state

1

Proc-activity
Activator
Responder
Electrical-activity
Activator
Responder
Layout-activity
Activator
Responder
Cost-activity
Activator
Responder

ZZ2r=Z22rr=22r=22=2>

el
el
m
m

o)

o)
Z 0> Z2=2r=222r=2Z22 0

Mz TTMm=zZ"TTM=zZ™TT=Z0VT|N
ZZ2TOZ2TTZ2=2Z2TTZ=Z2"™T| W
O U TMOZTO=Z"T=ZmT|h
Z U MM mZ=ZmTmZZ™TmZ>>;o™T | o

[264]

if type = 1 then

mk_VersionControl (vc.timestamp, vc. labels,
vc.AgentInfo ++ UpdateAgent (thisAgent,
vers, frozen, norm, eval, change, vc), vc.
ChangeDetalils,

Send (type, recip,mk_ReplyConflict
(thisAgent, change), vc.MessageBox))

In this function the changes to the state
variables are made by an auxiliary function
UpdateAgent. Concurrently a ReplyConflict
message is sent to the activator on this
change. As can be seen the priority denoted
by type is the same as the priority of the
original message.

The following functions Record, Resolve
and MoveOn show an agreed change being
recorded and the agent states being updated.

Record: AgentID *VersionLabel *ChangelD

*VersionControl -> VersionControl

Record (agent, version, change, vc) ==

let da = vc.AgentInfo (agent) in

mKk_VersionControl (vc.timestamp, vc.labels,

vc.AgentInfo ++ {agent |-> mk_DesignAgent

(da.version, da.activityState, da.activators ++

{change |-> <Recording>} ,da.respondors,

da.alternatives, da.replies, <recorded>)} ,

vc.ChangeDetails, vc.MessageBox)

pre vc.AgentInfo (agent) . vState =

<declared>;

The pre condition states that an agent must
be in the state declared before it can be
recorded.

Resolve: AgentID * ChangelD *

VersionControl -> VersionControl

Resolve (agent, change ,vc) ==

let version = mk_VersionLabel

(ve.timestamp, ChooseAlternative (vc.labels

(change)))

in

Record (agent, version, change, vc)

post MoveOn (vc);

MoveOn: VersionControl -> bool
MoveOn(vce) ==

forall agent in set rng vc.AgentInfo &
agent.vState = <recorded>;

The post condition on MoveOn is that all the
agent states must now be recorded.

6.2 Resource agent
The resource agent model demonstrates the
internal state changes and the external
messages that influence it. The complexity of
queues and priorities is not included in this
state based model.
Messages = NewVersion | Retrieve |
EvaluateChange | Resolve;

state ResourceAgent of

version: VersionLabel

objects : set of ObjectID

changes: map ChangelD to Deltas
modelStates: map VersionLabel to
VersionState

expressmapping : map UniqueObject to
Express

Barry Florida-James,

Nick Rossiter and

Kuo-Ming Chao

An agent system for
collaborative version control
in engineering

Integrated Manufacturing
Systems
11/4 [2000] 258-266

inv mk_ResourceAgent (version, objects,
changes, states, express ==
ObjectsUnique (objects)

and ChangesUnique (changes)

and Consitent (changes, states)

init ra == ra = mk_ResourceAgent(<a0>,
0> {1->}, {1->))

end;

The resource agent consists of a version, a
list of objects, a mapping between change
identifiers and the changes, a mapping to
represent the version states as mentioned
earlier and a mapping representing the
conversion from local object to EXPRESS
model. The invariant functions ensure that
objects and changes have unique identifiers
and that the domain of modelStates is a
subset of version.

StoreDeltas(chng : ChangelD, delta:Deltas)

ext wr objects

wr changes
post objects = objects~ union
ProcessDelta(deltas)

and changes = changes~ munion {chng |->
deltas};

The function StoreDeltas processes changes
and stores them. The post condition states
that the set of objectIDs after the change is
equivalent to those before with the
application of the changes. Also, the value of
changes now includes the old value plus the
new set of changes.

RetrieveObject(o:0ObjectID, version:

VersionLabel) obj : Express

ext rd expressMapping

post obj =

expressMapping(mk_ObjectMarker(o,

version));

RetrieveObject returns an EXPRESS model of
the given object selected from the version set
by the identifier version.

Activate(version : VersionLabel)

ext wr modelStates

pre modelStates (VersionLabel) =

<alternative>

post modelStates(VersionLabel) = <private>;

Activate demonstrates an internal state
change caused by an alternative being
activated. The pre and post conditions
control the state change.

6.3 Global agent
The global agent model is the most straight
forward as we represent simply the agents
ability to manage the consistency of global
objects and relationships between them.
state GlobalAgent of
configuration : VersionLabel
objects : map ObjectID to Object
relationships : map RelationID to Relation
agents : set of Agent
inv mk_GlobalAgent (configuration, objects,
relationships, agents) ==

ObjectsUnique(objects) and
RelationShipsUnique(relationships) and
ObjectRelationsConsistent(objects,
relationships)

init ga == ga = mk_GlobalAgent (<a0>,
>3, {0->, {)

The global agent stores the global
configuration, the list of global objects and
the relationships between these objects. It
also stores a directory of the participating
agents in the variable agents. The invariants
make sure that IDs are unique within the
global agent and that the cross referencing
between objects and relationships is
consistent.

CreateObject(oid:ObjectID) == (objects :=

objects munion {oid |-> object})

ext wr objects

pre ObjectID not in set dom objects;

DeleteObject(oid:ObjectID) == (objects :=

{oid} <-: objects)

ext wr objects

pre oid in set dom objects;

DeleteObject and CreateObject show the
operation of the global agent, similar
functions also exist for the relationships in
the global agent. The pre conditions ensure
that consistency is maintained by not
allowing duplication within or removal of
object identifiers not in the domain.

| 7. Conclusion

A novel system of version control has been
presented which uses agents to fulfil its
responsibilities. These agents address
problems in three distinct layers: physical,
logical and knowledge. Hence, we have three
distinct types of agent: resource, behavioural
and global.

In order to represent the agents in a
declarative manner and also to verify the
version control we chose to first specify our
agent system in VDM-SL. The advantages of
doing this were:

1 An executable model was available before
system implementation on which test
cases could be run.

2 The rules governing version control were
explicitly stated and therefore could be;

» verified using formal techniques; and
* revised prior to a costly
implementation.

It is our belief that the formal model has been
successful for the reasons stated and also
because version control is in essence a rule
based exercise rather than an algorithmic
one. Therefore it is much more intuitive to
devise a set of rules and compare these with

[265]

Barry Florida-James,

Nick Rossiter and

Kuo-Ming Chao

An agent system for
collaborative version control
in engineering

Integrated Manufacturing
Systems
11/4 [2000] 258-266

[266]

design practice than to verify a complex
algorithm.

Finally, the ability to describe product data
in a meaningful manner throughout the
complete lifecycle is critical in the successful
engineering of large made-to-order products.
This is the role of a version management
system. In today’s complex design
environments, traditional storage
mechanisms are inadequate. The use of
agents, enabling one to incorporate
predicates, knowledge and data models in
one software component, addresses this
issue. The architecture presented gives the
ability not only to store data but also to
manage global change and record design
decisions meaningfully.

References

Borhani, M., Barthes, J.P.A., Anota, P. and
Galliard, F. (1992), “A synthesis of the
versioning problems in object-oriented
engineering systems”, Proceedings of the
Third International Conference on Data and
Knowledge System for Manufacturing and
Engineering, Lyon.

Cellary, W. and Jomier, G. (1990), “Consistency of
versions in object-oriented database”,
Proceedings of the 16th International
Conference on VLDB, Brisbane.

Chou, H.-T. and Kim, W. (1986), “A unifying
framework for version control in a CAD
environment”, Proceedings of the 12th
International Conference on VLDB, Kyoto.

Cutkosky, M.R., Englemore, R.S., Fikes, R.E.,
Genesereth, M.R., Gruber, T.R., Mark, W.S.,
Tenebaum, J.M. and Weber, J.C. (1993),
“PACT: an experiment in integrating
concurrent engineering cystems”, Computer,
Vol. 20, pp. 28-37.

Dattola, A. (1996), “Collaborative version control
in an agent-based hypertext environment”,
Information Systems Journal, Vol. 20 No. 4,
pp. 337-59.

Dittrich, K.R. and Lorie, R.A. (1988), “Version
support for engineering database systems”,
IEEE Transactions on Software Engineering,
Vol. 14 No. 4, pp. 429-37.

FIPA (Foundation for Intelligent Physical
Agents), (1998), Draft Specifications, 1998.

Florida-James, B., Hills, W. and Rossiter, N.
(1997), “Semantic equivalence in engineering
design databases”, Proceedings, 4th
International Workshop on Knowledge
Representation Meets Databases, Athens.

Fowler, J. (1995), “STEP for data management,
exchange and sharing”, Technology
Appraisals.

Genesereth, M.R. and Ketchpel, S.P. (1994),
“Software agents”, Communications of the
ACM, Vol. 37, pp. 48-53.

Guenov, M. (1996), “Modeling design change
propagation in an integrated design
environment”, Computer Modeling and
Simulation in Engineering, Vol. 1, pp. 353-67.

Howard, H.C. and Rehak, D.R. (1989), “KADBASE:
interfacing expert systems with databases”,
IEEE Expert, Vol. 4 No. 3, pp. 65-76.

IS095 International Organisation for
Standardisation (1996), “Information
technology — programming languages, their
environments and system software interfaces
— Vienna development method specification
language — part 1: base language”,
International Standard ISO/IEC 13817-1.

Katz, R. (1990), “Toward a unified framework for
version modelling in engineering databases”,
ACM Computing Surveys, Vol. 22 No. 4,
pp. 375-408.

Keller, Ullman, A.M. and Ullman, J.D. (1995), “A
version numbering scheme with a useful
lexicographical order”, Proceedings of the
IEEE Data Engineering Conference, Taipei,
pp. 240-8.

Krishnamurthy and Law (1997), “A data
management model for collaborative design
in a CAD environment”, Engineering with
Computers, Vol. 13 No. 2, pp. 65-86.

Luck, M. and d’Inverno, M. (1995), “A formal
framework for agency and autonomy”,
Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS
95), San Francisco, CA.

Morenc, R. and Rangan, R. (1992), “Information
management to support concurrent
engineering environments”, Proceedings of
the 1992 ASME International Computers in
Engineering Conference, San Francisco, CA,
pp. 135-48.

Rochkind, M. (1975), “The source code control
system”, IEEE Transactions on Software
Engineering, Vol. SE- 1 No. 4, pp. 364-70.

Roth, M.T. and Schwarz, P. (1997), “Don’t scrap it,
wrap it! A wrapper architecture for legacy
data sources”, Proceedings of the Twenty
Third International Conference on Very Large
Databases, Athens.

Shen, W. and Barthes, J.P. (1995) “DIDE: a
multi-agent environment for engineering
design”, Proceedings of the First International
Conference on Multi-agent Systems (ICMAS
95), San Francisco, CA.

Shoham, Y. (1993), “Agent-oriented
programming”, Artificial Intelligence, Vol. 60,
pp. 51-92.

The VDM-SL Tool Group (1994), “The IFAD
VDMS-SL language”, Technical Report IFAD-
VDM-1, The Institute of Applied Computer
Science.

Wiener, J.L., Gupta, H., Labio, W.J., Zhuge, Y.,
Garcia-Molina, H. and Widom, J. (1996),

“A system prototype for warehouse view
maintenance”, Materialized Views:
Techniques and Applications, Montreal,
pPp. 26-33.

Yang, J. and Papazoglou, M. (1995), “A
configurable approach for object sharing
among multidatabase systems”, 4th
International Conference on Information and
Knowledge Management, Baltimore, MA,
pp. 129-36.

