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Abstract. Information systems anticipate the real world. Classical databases store, organise and search collections of data
of that real world but only as weak anticipatory information systems. This is because of the reductionism and normalisation
needed to map the structuralism of natural data on to idealised machines with von Neumann architectures consisting of fixed
instructions. Category theory developed as a formalism to explore the theoretical concept of naturality shows that methods
like sketches arising from graph theory as only non-natural models of naturality cannot capture real-world structures for
strong anticipatory information systems.

Databases need a schema of the natural world. Natural computing databases need the schema itself to be also natural.
Natural computing methods including neural computers, evolutionary automata, molecular and nanocomputing and quantum
computation have the potential to be strong. At present they are mainly at the stage of weak anticipatory systems.
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1 INTRODUCTION

1.1 Computation as an Anticipatory System

The Universe as a natural computer calculates [65] its new configuration at every instant of Planck space-time
This computation operates as the ultimate anticipatory system: every other [53] is but its pale reflection. Formally a
strong anticipatory system is a proper subcategory; a weak anticipatory system is a local or small subcategory [32].
A classical computer is a weak anticipatory system where its output by means of software interprets the states of
its hardware operating as a strong [53, 17, 18] anticipatory system. Weak anticipation can be very accurate even for
non-linear phenomena like weather forecasting where the data capture and data processing can be on a large enough
scale to contain the complexity. Where this is not possible (for instance in forecasting earthquakes) a weak anticipatory
system in the form of a classical computer may not really be adequate.

A strong anticipatory system as part of the Universe operates with the same precision as the universe itself. It is
characteristic of this precision that gives natural computing its potential superiority over the von Neumann architecture
operating locally and with fixed instructions between bit cells. Today’s classical information systems anticipate the real
world in the way that they store, organise and search collections of real-world data. By a process of reductionism and
normalisation the data is adapted to fit the bit cells and to be manipulated by the fixed instruction set of von Neumann
machines. This is the function of databases which because of the reduction and normalisation act as weak anticipatory
systems. The same distinction is to be found in experimental work in biology. Prodessesare naturally strong,
those invitro are naturally weak because they are locally constrained as a part of the reactive system of the environment.

1 See Pagels [50] where however the Universe is treated more as a classical computer and thus a weak anticipatory system. As such by now
according to Lloyd [42] the Universe could have factored a million bit number using classical methods*8bit fmber using Shor’s quantum
algorithm mentioned below.



1.2 Classical Data Structures

Classical information systems employ some suitable model to mediate between the data and the hardware. A
database model is a representation of policies in a structured form according to some perceived view of reality.

The prime objective of a database management system (DBMS) is to make application programs independent of the
physical structure of the data. To achieve this objective, the ANSI/SPARC architecture [60] may be used. A conceptual
schema or model is defined as a global logical definition of the data structure. This schema relates to the internal
(physical) definition by a mapping from the logical level to the physical level. The schema is protected from changes
at the physical level by adjusting this mapping. Each user has a particular view (external schema) of the database
which may be a restricted view. The architecture including the series of mappings shown in Figure 1 provides aspects
such as security and logical data independence. From the early days of computing a number of well-known models
have been employed using sets, trees and links to connect data in logical relationships. These have been developed into
more elaborate relational, hierarchical, network and functional models. The way in which relationships are expressed
is the main classifying feature of databases. In the relational model a key from one table (a foreign key) cites a primary
key of another table. In the hierarchical, child-parent links provide the relationships. In the network the address of an
object is included in another object to give a pointer-based approach.

Relationships are often performed in a separate process such as earlier Entity-Relationship Modelling or current
Unified Modelling [9]. Normalisation is needed to verify schema design, particularly to relate key and non-key
attributes. The levels, mappings and relationships all have to be integrated in a consistent database design.

More recent developments include database systems founded on the object-oriented paradigm. Such systems have
a more open extensible type system enabling a more flexible approach to data management but their acceptance has
been hindered by their lack of a formal basis in set theory.
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FIGURE 1. Classical ANSI/SPARC Architecture for Databases

1.3 Naturalised ANSI/SPARC

The classical ANSI/SPARC architecture of Figure 1 has the disadvantage that the levels are not independent of each
other. This may be compared with the natural architecture of Figure 2 [33]. The four levels (top-down) are categories
for concepts (real-world abstractions), constructs (facilities available for schema design), schema (definition of data
types available in system) and data (the data itself). The types of the three levels are similar to the external schema but
the internal schema is composed of subcategories of the conceptual schema. The top level, the external schema, is not
a universal closure of types but a local closure of the conceptual schema. The four-level architecture in Figure 2 has
orthogonal types with the relationships between the levels expressed as adjunctions as already applied to structures
in GRID data processing [33]. Adjunctions relate one level to another. The relationship between levels is measurable
by the unit of adjunction. For instance the adjunctifalicy 4 MetaMetaindicates that the free funct®olicy is left
adjoint to the underlying functdvietaMeta The unit of adjunction is given by : 1, — MetaMetav Policy(cpt).

The ANSI/SPARC architecture was a useful way of capturing abstractions of the relational model in the 1970s and
1980s. It has proved less suitable to facilitate the techniques needed today such as interoperability where systems
with different underlying models are required to work together. ANSI/SPARC can be viewed as pseudo-natural. It
was developed using mathematical techniques and theories like sets. But there is a gap between classical theory and



real-world performance and pragmatics. Triggers are an example of an attempt to patch the weakness of the system by
providing some local strong anticipation using Event- Conditions-Actions (ECA) [14].
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FIGURE 2. Interpretation of Levels: natural schema with strong anticipation

14 Natural Computing

Natural computing on the other hand involves data and operations as they are to be found in the natural world. This
natural computing would be real-world processing needing not to rely on any model. Data would be input neat without
any reductionist pre-processing. The corresponding information system or database using natural computing would
therefore be strong anticipatory.

New developing areas promoted as natural computing include: quantum computation which exploits quantum me-
chanics principles in physics, nanoscale chemistry, bio- and molecular-computing processing as in genetics, Artificial
Neural Nets (ANN) and genetic algorithms.

The wordnatural in natural computing does not have a settled meaning linguistically. It is necessary first to look
at how the word is used to see if we can give it the rigour of a formal definition. A difficulty arises because the
word natural is used analogously in weak anticipatory systems and not reserved for strong anticipation where it might
otherwise be simply treated as a synonym. It is the purpose of this paper to review the main methods which might have
some claim to be natural computing and then to examine them for data processing in the real world.

2 NATURALITY

Mathematics in western culture deals with collections and operations as its basic components like nhumbers and
arithmetic, sets and functions, matrices and algebra. These may be identified almost at will in pure mathematics
but in applied mathematics the collections and related operations need to have some manifestation in the real world to
be of use. Data processing is likewise involved with collections and operations existing in the real world. Reality is a
cognate word to natural and has similar problems in its definition.

The leading formalism for the last century has been axiomatic set theory promoted by mathematicians like Hilbert
and Gddel as having an objective realgyi generis Russell interpreted axioms as comparable to the laws of
physics. Their justification lies in the effects they have on our sense perceptions. Although obviously aware of the
undecidability of formal arithmetic operations Gddel took the view that constructive weaknesses in this ‘set realism’
could be corrected by additional axioms which have been investigated by Maddy [46] under the label of ‘axiom of
constructability’. The effect of this additional axiom is to provide closure by asserting that the Zermelo-Fraenkel
axioms taken with the axiom of choice are true. To counter any weakness in this position, Maddy has taken the step
further with the conclusion to replace set realism with set naturalism [47], namely that the axioms are justified by the
practice of mathematics and its usefulness. Rather strangely the whole of formal axiomatic set theory seems to rest on
the ultimate basis that it works in practice. This stance is confirmed by Feferman [24] who highlights the role of the
axiom of choice (Moore [48]). It is exercise of the choice that reduces strong anticipation to weak anticipation [31, 32].



The mathematics within the sights of Maddy and Feferman is concerned mostly with collections and operations
that exist only in the mind. These can be very fruitful in so far as they have an existence in the world at least locally.
The world need not be limited to the physical world to be natural. What goes on the human mind is still natural in
some sense. This mathematics is weak anticipatory where it can be quite useful as the last three centuries of classical
progress has shown. However the use of such mathematics to model strong anticipatory systems is much less certain.
As Francis Bacon pointed out: a stream never rises higher than its first spring. Natural computing on any interpretation
will be the operation of a strong anticipatory system. However a concentration on the real world does not mean that
we can neglect the theory. Rather we need a more rigorous natural theory. However, to investigate them as practical
systems requires close scrutiny of their theory as viable systems logically needed as a precursor to any thought being
given to any hardware implementation. As Lenin remarked ‘theory without practice is pointless and practice without
theory is mindless’. So we will begin with theories of data processing that we need to apply.

Database management systems as discussed above are classical and weak. Strong versions cannot be "built on sand’
as Hermann Weyl described axiomatic systems. Category theory, the general formalism sufficiently developed which
we have available to us, fortunately is built on a formal concept of naturality in the sense of natural isomorphism.

2.1 Natural Isomorphism

Category theory was originally developed in the 1940s to explore naturality [43]. Drawing together algebra,
geometry and topology it provides a mathematical workspace where the notion of natural existence can be rigorously
represented. Concepts like 'same’ or ‘equality’ present some difficulty whether expressed in words or symbols, even
the very familiarA = B may not be properly defined. There are two components: existence and similarity. Category
theory has the advantage that there is only one fundamental symbol that of the arrow and whose use can therefore
be much more easily controlled and concepts rigorously defined by usage. The fundamental form of existence
corresponding to what is loosely referred to as ‘same’ is isomorphism.

Isomorphism identifies by the existence of an inverse arrow. This is a categorical manifestation of naturalness in the
real world — of a natural identity. So when we come to apply this to the world of data processing, we are dealing with
naturally identified structures where there is an inverse. So for instance a person is identified as the same person by
their intensioreven though their extensiatanges for it is always possible to apply a simple inverse to confirm that
it is the same person. There is no simple inverse of the extension naturally. This would require rebuilding the person
collecting together all the component parts from around the real world. Intension/extension distinction is fundamental
to data structure and inherent in natural systems and therefore essential to the processing of natural data. Most DBMS
have a basic ‘entity’ corresponding to the intensional form. The object-oriented movement recognises the concept of
the object and open internal structure to such an entity which characterises the non-atomic nature of modern data. This
is typical of new types of data such as genes. A prime example is the personal DNA in the way that it propagates the
particular characteristics of a person.
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FIGURE 3. Composition of Identity Triangles

For objectsA, B related by arrowd, g as:

2 “daRjenes Haus zu einem wesentlichen Teil auf Sand gebaut est”, Das Kontinuum [64], Vorwort p.iv



f:A—B ¢g:B—A

then there is an isomorphism betwekmandB when f, g are mutually inverse. This may be written &s= B and
B = A. The proof diagram for this is Figure 3 which defings1 gf and % = fg to describe the isomorphism of
AandB by A=BandB = Aandfg=gf 3 This diagram is universal in the sense that it also holds whdhare
categories (conventionally printéd B in bold in the category of sets and in gothic for large categories or classes) and
f,gare functors (conventionally, G). Furthermore if in Figure 2\, B are functors and, g are natural transformations
(conventionallyp, v) fg=gf are the identity natural transformation§ (1,) (Johnstone [38] p.247-248 A1.1.7-1.1.8)

4. The result is no different if ordinanp, B represent natural transformations. This is natural isomorphism which
operates as a natural closure.

2.2 Natural Closure
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FIGURE 4. Comparison of Mappings in two Systems

To summarise therefore, four levels are required to define an arrow as unique up to natural isomorphism. The four
levels are: 1) objecor identity arrow (within a category), 2) categofgomparing objects), 3) functqcomparing
categories) and 4) natural transformat{oomparing functors). No more levels are required.

The relationships between one four-level architecture and another can be constructed as in Figure 4, the expanded
view of Figure 2. Here for simplicity the mappings are viewed in one direction only. Two systems are compared,
one involving categorie€PT, CST, SCH andDAT, the otherCPT, CST, SCH andDAT’, representing concepts
(CPT), constructs €ST), schema $CH) and data DAT) from Figure 2.CPT is the same in both systems as there
is one universal type for concepts. As usual the functors relate the categories. We have now though added natural
transformations to relate the mapping between one functor and another. It needs to be emphasised that none of these
categories are discrete: all have an internal arrow-based structure so the natural transformations are non-trivial [55].
The functors need to be of the same variance for a meaningful natural transformation to exist between them and this
is the case for, B andy.

An arrow comparing natural transformations is itself a natural transformation. Some categorists use an older
terminology with degrees of ‘cell’ and describe the identity arrow as O-cell, an arrow in a category as 1-cell and
an arrow between arrows as a 2-cell [39]. The figures 5 and 6 show what happens when an arrow maps between two
natural transformations. So an arrow from one natural transformation to another gives a composition of the natural
transformations, not a new level ([7], at p.85). This means that four levels are needed to give the natural closure [33].

Two squares, derived from Figure 4, are shown. Figure 5(a) commutes for eachfarmmt — cstif « is a
natural transformation. Similarly Figure 5(b) must commute for each agowst — schif § is to be a natural
transformation. Note that viewed in this way a natural transformation is not a layer above functors and functions. The
levels are interwoven with natural transformations determining how every arrow defined at the lowest level is mapped.

Now if we write the arrowd : @ — 3, we can see tha is a compositior o o giving the commuting square shown
in Figure 6 ([7], at p.85). Theory suggests that four strong-anticipatory levels of computational types are sufficient to
provide ultimate systemic closure in unique strong anticipation. Between the four levels are three layers of adjoint

3 It was for this reason that the early categorists referred to abelian categories [25] where statements were identically true up to natural isomorphism
if they held in the dual category obtained by reversing the arrows.
4 There is a typographical error in the diagram on p.247 of Johnstone [38]. Th& fimaluld beA.



functors that relate each type-pair. A free functor allows selection of a target type at a lower level and its right adjoint
determines the higher-level type. Because of the uniqueness a higher-level anticipates a lower level and a lower level
a higher. Between each level is a functor.

P(cpt) %ept P'(cpt) O(cst) Best O'(cst)
P(f) P'(f) O(9) O(9)
P(cst) o P/(cst) O(sch B O'(scH)

cst sch

FIGURE 5. Commuting Target Square for Natural Transformationso(a)P — P/, comparing policies in two systems; (b)
B : 0 — O/, comparing use of constructs in two systems
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FIGURE 6. Commuting Target Square for Natural Transformation composjfier, comparing mapping from concepts to
schema in two systems

An alternative view to Figure 4, shown in Figure 7, is closer to the four levels inherent in category theory. The
fundamental levels are considered to be data values, named values, classified values and contrasted representation
corresponding in category theory to object, category, functor and natural transformation respectively. The natural
transformations are now the duals of those shown earlier in Figure 4 as indicated dyy shperscript. The earlier
natural transformations were comparing the downward functorial mapping (towards data) while the current ones
compare the upward mapping (away from data) [56].
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FIGURE 7. Alternative Interpretation of Levels in the Architecture

It can be seen that the addition of further levels is possible but nothing is gained by it type-wise. Thus addition of an
extra level to the top of a four-level architecture simply results in the top level (comparison of mapping from concepts
to schema) being a composition of three arrows rather than two. Thus consider the addition of a new Hllevel



with the mapping$ : PHI — CPT, G: CPT — PHI anda®” : F — F’ wherea®” compares the mappings

andF’ in two different approaches. The adjoint is nbwOoPoF 4 Go AoMoC. The level four of Figure 7 is now

o°P o a®Po 3OP and is still a natural transformation through the rules of composition. The practical consequence is
that a fifth level is equivalent to an alternative fourth level. The meta-meta level gives ultimate closure of types.

2.3 Natural Calculus

We therefore have three types of mapping to consider: within a category (for instance from a name to a value), from
one category to another (for instance the fun&dirom CPT to CST') and from one functor to another (for instance
the natural transformatios from P to P').

Following the constructive principles of category theory, the composition of these arrows is natural. This con-
sequently gives rise to a natural calculus first expounded by Godement ([27]; [7], pp 94-97) in the form of rules
governing composition. The composition of functors and natural transformations is associative so that for instance:

('0)a=1'(Oa); y(OP)=(yO)P
Natural transformations may be composed with each other:

B =(v0)o(I'B); Ba=(BP)o(Qa)

The consequence of this is that a categorical approach ensures that the various arrows of different types can be
composed with each other, irrespective of their level in the system. Equations can be solved, representing an equality
of paths, with unknown components that can be determined from an evaluation of the known properties. For instance
in comparing methods with the pat®P from CPT — CST — SCH — DAT defining one approach, then the
pathl’O’a from CPT — CST — SCH — DAT’ might define an alternative approactPifmaps onto constructs
in the categonCST'.

2.4 Natural Logic

The identity natural transformation, at the limit for natural isomorphism, is in an applied context a topos. It has been
shown that the internal logic of a topos is intuitionistic i.e. Heyting [45, 38].
The world as a topos has intuitionistic logic. The internal logic of the topos is Heyting:

a entails——a but ——a may not entaih

Every Boolean logic is a Heyting logic but not every Heyting logic is Boolean. For an open system ca&egory
objectA implies objectB:

Heyting implication

classically represented by
CNA<B

C<(A=B)

Although Heyting logic has been known for some time its possible great significance as the fundamental underlying
logic of the world is only now just emergirigbecause it is the natural internal structure of a topos.

5 [44); itis to be noted that Mac LaneGategory Theory for the Working Mathematicidmes not deal with Heyting logic even in his second edition
although it was referred to in [45] in 1991.



3 NATURAL SCHEMA

3.1 Natural Number Object

The natural numbers are the foundation of most classical systems for computation including numerical indexing
and data processing. The collection consists of a sequence of abstract labels and the operations are those of arithmetic.
The natural numbers can be built up to give more elaborate structures like the complex, quarternion, octonion, p-
adic, Conway and even surreal numbers as well as matrices, spaces from vector up to Hilbert spaces and beyond.
Because of their infinite nature the collection needs to rest on some philosophic basis such as Platonism and the
fundamental operation of the axiom of choice. It is rather a paradox that natural numbers are only a weak anticipatory
system. Because of the choice of definition of the unit the relationship between ordinality and cardinality is not unique.
Cardinality is a weak anticipatory system of ordinality.

Because category theory represents naturality in the strong anticipatory sense, it does not therefore have an inherent
concept of natural numbers and they are not to be found in the topos. However, because of the importance of natural
numbers for the modelling of properties of weak anticipatory systems, categorists introduce the natural number object
from a suggestion by Lawvere [41] as categorical formulation of the axiom of infinity ([38] p.108). The natural number
object in a categorg is defined by the following commuting diagram in Figure 8. The terminal object 1 identifies a
first natural number object by the arr@sro 0: 1 — N. Successors are then identifieddsyN — N so that there is
a 1:1 relationship between each natural objetind some objed in the category.

The successor function picks out the next copy of itself. This gives recursion. However, it is weak and appears
inadequate even for applications in pure mathematics where the more elaborate version involving a slice category
seems more popular [7]. Johnstone defines the general case for recursion of the natural number object in a cartesian
closed category ([38] p.108g9. Enriching a weak anticipatory system cannot in itself convert weak to a strong
anticipatory system. In applied categories in general and to deal with natural computing in particular we cannot rely on
this restricted approach Natural numbers always need to be treated with great caution in real-world data processing.

N_S , N

Zero

A f A

FIGURE 8. Natural Number Object

Information systems anticipate the real world. Databases store, organise and search collections of real-world data.
The conceptual organisation of data according to its inherent logical structure as a database was early recognised
in computing as an efficient method for the storage and retrieval of information. In terms of anticipatory systems,
information systems as databases constructed using classical methods are weak anticipatory. This is because of the
reductionism and normalisation needed to operate databases on the familiar but idealised machines with von Neumann
architectures of fixed instructions between bit cells.

In the first instance category theory was devised (around 1945) to explain why certain manipulations are 'natural’
and others are not. This uncovered the notion of a natural transformation as the appropriate way to compare functors.

6 For instance in quantum processing a copy is not a natural concept.



3.2 Reducing and Rationalising Naturality

A normalised structure in databases is one that satisfies particular requirements as to its form and the relationship
between key and non-key attributes. Normalisation rules often seek certain positive features and the absence of other
undesirable features.
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FIGURE 9. Punctured Commuting Diagram

A commuting diagram is itself a proof of some naturality. Figure 8 is a commuting diagram of a weak naturality
but it should still guarantee consistency subject to any assumptions already invoked. An even weaker version of the
commuting diagram may be represented by the punctured diagram promoted by Freyd ([26] section 1.251) as in Figure
9 where the puncture mag removes the commutation of the right-hand triangle although it retains the commutation
of the left-hand triangle and the commutation of the rectangle as a whole. That is the punctu@ iigroves the
equivalent of one equation. In data processing there are examples where this might be used. For instance the problem of
representing partial functions. If in FigureAdis a library stockB is the book issueC is the catalogud) is accession
number, theu = zandxy = zfor issued books butrelates the library to the books. The outer diagram still commutes
in the sense that it is still possible to go frothe library throughC the catalogue t® the accession numbers. In
that sense the outer rectangle commutes but it could be more confusing than illuminating in practical implementations.
In this example the punctured diagram has not unequivocally satisfied the requirement of most current on-line library
catalogues which need to display whether the book is in the library or out on issue.

The usual approach in relational databases to match the natural data structure to one of a number of standard types
is to adopt a process of normalisation expressed in some level of normal form relative to some search/storage key
as in Figure 10. These are the normalisation processes for databases relying on the relational model. Other models
may use other approximation techniques. For example inheritance is used in hierarchical or network systems and 1NF
is bypassed in object based databases where multiple values may occur for an attribute. These may then give rise to
mismatch in interoperability between models relying on different rationalisation procedures.

Natural computing needs to operate without any kind of normalisation. Besides these very specific database
normalisations, there are other kinds with which there may be interaction. For instance programming languages are
often described in BNE. In logic there are normal forms and Skolem functions related to Horn clauses equivalent to a
universal Turing machine [1]. In natural language processing formal grammars have been normalised in types 0,1,2,3
by Chomsky [13].

In Rosen’s terms data in the world is a reactive system anticipated by normalisation and within Dubois’ distribution
of weak or strong [18], the normal form is a weak anticipatory system of the data structure to be ascertained by the
application of some search method such as SQL. The use of natural numbers for normal forms is a reminder that as
anticipatory systems these are weak. The collections are simplified by the process of normalisation but there are still
more complex operations on them such as JOIN, PROJECT and SELECT [14]. At first sight hierarchical and network
structures might seem more natural than in the relational model. Connections are more explicit and there are natural
paths established for navigating data e.g. child to parent links. Hierarchical is false natural and is weak. Network is a

7 BNF is sometimes known as Backus-Naur Form from the modification by Peter Naur to the original version of Backus Normal Form of John
Backus [63].



| Normal form | explanation ]

1 all values are atomic (non-nested)

2 non-key attributes are a function only of the primary key and not any sub-
key

3 non-key attributes are mutually independent

BCNF all sources of dependency are possible keys

4 multi-valued dependencies are reduced to equivalent functional depen-
dencies

5 cyclic dependencies are reduced to acyclic

PJINF tuples preserved under projection and join

FIGURE 10. Adapting naturality to formal structure

full partial order so may be strong but is heavily constrained in practice and so therefore weak. Serialisation of parallel
data transactions is a reductionism and rationalisation of the real-world.

3.3 Sketches

A more sustained use of category theory as a theoretical basis for databases has been pursued using formal sketches
as an adaption of graph theory. Data processing in natural computers provides a good theoretical testing ground for
the approach. The sketch was originally presented by Charles Ehresmann [21] as a culmination of work on structured
categories, in particular the notion of an internal category in any category under the naatégdrie structurée
généraliséd19]. Wells [62] claimed that the worsketchis used with at least three meanings:

1. a structure which is a weakening of the concept of category (the composite may not be defined for all composable
pairs) plus specified cones and/or cocones (Ehresmann [22]).

2. a graph with specified cones and/or cocones plus some commutativity conditions on paths (Barr [7], Wells [61]).
3. a category with specified cones and/or cocones.

Apparently at the time Ehresmann had in mind the need for a formal representation of Plato’s ideals but thought
that this could be achieved by relaxing some categorical requirements. The first two senses above follow Ehresmann’s
general approach [21]. The third sense [49] develops small, conguegssible categoriess a mapping from sketches
to a 2-cell categorial model. It is the first two that have been employed in work on database theory. In the database
area sketches are at first sight appealing as they seem to match categorical concepts to those of design practice in
conventional information systems in entity-relationship (ER) modelling. There is then a well-established route, as
simple as the use of a function key, from a complete ER model into a definition for a relational database. Sketches
mirror the reductionism in formal models for relational databases in that sketches permit non-commuting diagrams.
This corresponds to database practice of 1990s.

Not all of the features of the relational model can be handled by sketches [36]. The normalization concept up to
third normal form is assumed in the sketch construction rather than being integrated and tested. The restriction of a
primary key in a sketch to one attribute is also unrealistic since relations involving associations always have at least two
attributes for the primary key, each identifying a participating type. The claim by Jolsdm [36] that the sketch
construction is superior to the relational model in aspects such as view updating may be true for the SQL standard
implementation but not for the underlying model itself [14].

Sketches can represent schema construction: graphs match the architecture, commuting diagrams match constraints;
the cones match relationships; the cocones match attribute collections. There are many variants of sketches. Wells [61]
identifies 12 different kinds and Johnstone ([38] D22 863-864) eight. The number of different kinds suggests a
lack of consensus as to the fundamental concept. Johnstone considers sketches to be a digression in his development
of category theory. He also notes a lack of flexibility:

“And sketches share with theories the disadvantage of 'signature-dependence’: equivalence of sketches is a
much stronger condition than the assertion that they have equivalent categories of models in all appropriate
categories” ([38] D2.2 p.861- 862).



Johnstone is referring here to the tight correspondence between a signature of a sketch and its subsequent model. The
signature comprising functions, relations and constants is defined when the sketch is established. Subsequent changes
to the signature, e.g. through adding new functions as in the object-oriented paradigm, require a redefinition of the
sketch and a re-working of the model functor. The sketch/model construction is suited more to static type systems
such as the relational model than to the extensible object-oriented approach.

The Finite Discrete Disjunctive kind (item (e) in Peter Johnstone’s list) has been used by Michael Johnson and his
co-workers [37] for relational databases. In their context a sketishdefined as a 4-tuple E,L,R, S> whereE is a
finite graph for the data structure,is a set of diagrams i& giving the constraintR is a finite set of discrete cones
in E giving the relationships anfl a finite set of discrete cocones specifying the attributes. Sketches have also
been employed by Diskiat al[16] for modelling information systems, in particular again the ER model. His use of
sketches follows the method identified by Johnstone as type (b) i.e. finitary product sketches i igréafpty and
all the cones iR are discrete. Although Diskin compares his use of sketches with those of Makkai [49], his sketches
are much less constrained: Makkai is more concerned with provability, Diskin with expressibility. Diskin develops the
concept of markers ([16], section 5.2) which are constraints such as identity functions or relationship arcs, treated as
diagram predicates. Diagram transformations are used extensively with inputs of an operation converted to outputs
embedding the operation in a commuting diagram.

A model functorM can be applied to the graghin a sketchD by a sketch homomorphisM : E — C to map
any finite graphk to a categoryC. Because of the simple graph-based natur& o€ is a small category so the
sketch approach is very much set-badédgreserves graph morphismslirso thatM(d) commutes for every diagram
d:E’ — E in E. M also preserves limit cones Rin M(R) and colimit conesSin M(S). In the work of Johnson,
Rosebrugh and Wood [37] the sketch is the intension and the model functor the database state.

Barr & Wells ([7] p.109 4.7.6, 4.7.7) state that a “modél of a sketch with constants is called a term model
if for every nodea of the underlying graph, every element Mdf(a) is reachable by beginning with constants and
applying various operations (arrows of the sketch)”. The natural numbers are the unigue, up to natural isomorphism,
initial model. This shows that the foundation for the model functor is natural numbers with a consequent limitation
to the representation capability of that concept. Johnstone notes that “the more detailed the sketch, the less value is
the model”. This presumably refers to the model functor being excessively constrained by an over detailed sketch
construction.

It is possible to view sketches in a similar way to set-based approaches such as Hilbert spaces in quantum
computation. Both are models of models. It is not possible to recover enrichments that are lost. A categorical model
of a set theoretic model cannot recover what is lost in the assumptions of the set theoretic model. The model is weak
anticipatory as it is based on the natural number object.

Sketches are weak anticipatory as all structures and constraints have to be pre-specified. In difficult areas such as
interoperability sketches are inadequate as they do not offer natural closure. The difference between a natural structure
and a sketch is like that between typing and labelling. A graph is richer than an ER model as its arrows are typed with
identity functors. Labelling in the ER model is an informal typing whereas the identity arrow is a formal typing.

4 APPLICATIONS

4.1 Parallelism

Early progress with data processing on analogue computers was quickly surpassed in the middle of the last century
by the serial digital methods based on the classical von Neumann architecture. Nevertheless interest in alternative
approaches continued through the latter part of the century particularly in the use of parallelism. Attempts in the 1980s
like the DAP [51] to produce parallel machines based on digital hardware of the time failed to compete with the
power of the serial machines because of the complexity issues inherent in parallel nfefRloesaturality of real-
world processing of data is mainly in parallel but serial digital methods can perform surprisingly well with appropriate
software to perform tasks in parallel. For databases this includes the collection of parallel data, maintenance of mirror
sites with appropriate version management, searching databases in parallel although usually where the parallelism is
only homogeneous. These two types are sometimes classified as single instruction multiple data (SIMD) and multiple

8 particularly in the interface between the syntactic and semantic processing of the data.



instruction multiple data (MIMD) but this may over-simplify the real world whose processes involve heterogeneous
parallel operations on parallel heterogeneous data. This is the full naturality to be found in Figures 5 and 6 discussed
previously above undeéMatural Closure

4.2 Natural Architectures

Over the years there have been a number of processing initiatives with alternative architectures with some elements
of parallelism and by the 1990s they have formed a general class referred to under the umbrella of ‘natural computing’.
In the context of data processing this may divide into four subclasses. 1. neural cormpimécshe 162 neurons
directly interconnectable on a dendritic tree in the brain and nervous system. 2. evolutionary awalcdtte
by natural selection possible paths for development as in biology. 3. Molecular and nanotechoolthgy other
hand rely on comparable processes in chemistry to compute the viable from all possible physical configurations.
4. Quantum computatioexploits the parallel property of entanglement.

There is the further constructive (Brown [11] Chapter 8) characteristic of natural world parallelism that it is self-
consistent. For instance cellular automata are in Rosen’s terminology [54] reactive systems but with a much simplified
version of the laws of physics operating between cells. In von Neumann'’s self-reproducing cellular automata the
assumption has to be made that the underlying rules are self-consistent [59]. Data applications have already begun
using neural and evolutionary methods [23] for data classification with potential for data mining and network analysis
or synthesis for use in schedules, timetables and financial and business models [40].

Molecular computing on the other hand seems very much restricted to heavy numerical data processing [52] and
therefore a prime candidate for applications in cryptography, where it is claimed [5] that a DNA system is capable
of breaking the common DES (Data Encryption Standard). A DNA molecule composed from the four bases ATCG
(Adenine, Thymine, Cytosine and Guanine where the first and last pairs respectively complement each other) in some
sequence can be treated as a bit-stream memory complex. The processing of these can be halved by using the Sticker
model [12] which treats subsequences of the bases as a bit value 1 or its complementary subsequence (a sticker) as a bit
value 0. Subsequences are unigue and it is therefore possible to construct a programming language of simple logical
operations with a XOR gate. All the strands in a test tube will be processed together giving rise to massive data parallel
processing. It is estimated that by utilising a library, with 20 oligonucleotide length memory strands, and an overall
memory strand of 11,580 nucleotides it should be possible to break a DES with about four months of laboratory work
[35]. This is in effect very promising for non-silicon replacement of classical computing. However while the process
may be called natural because it involves chemical reactions in test tubes the structure of the data will nevertheless
still be in conventional form with the only advantage so far of an increase in speed rather than as a closer approach to
naturality.

Following the seminal work of Deutsch [15], Shor [58] was able to produce a quantum version of the fast Fourier
transform requiring only? rather than(2n)" steps. Grover [28] developed this idea of using quantum algorithms for
faster searching of databases. Selinger [57] has produced a collection of operations at such a level that they could
form the basis of a quantum programming language. Both offer potential for the development of quantum databases.
In databases Grover’s transform method of 1996 flips a matrix in such a way that the odd record out (the one sought)
is identified through amplitude amplification. The method of Grover has been extended for multiple occurrences but
the number of occurrences needs to be known in advance [10].

If databases in general require a conceptual level for the representation, querying and updating of data, the questions
needs to be posed: wherein lies the typing and schema in quantum data processing? These of course reside in the
inherent natural structure of the data which is then preprocessed by normalisation as already discussed in conventional
databases. True natural computing needs no reductionism but to rely on the rationalism that is already in the data.
Shor’s algorithm is a look up of a natural number type. For this same reason an ordinary computer can be programmed
to model the operation of a quantum computer with Grover’s algorithms [29] but only as a weak classical model
of quantum processing and therefore very inefficiently. It will also be true to say that any of the four types of
natural computing listed above may be modelled on traditional computers which may be illuminating but can have
no predictive power beyond the weak anticipatory system.

As pointed out in the review by Aharonov [4] the Grover iteration can be understood as a product of two reflections.

In this way Bhattacharyet al [8] have implemented a quantum search algorithm showing that classical waves can
search a N-item database just as efficiently. It is claimed that although the lack of quantum entanglement limits the
database size, entanglement is neither necessary for the algorithm itself, nor for its efficiency. The present approach




relies on low-level operations analogous to classical methods like the CNOT gate (controlled NOT gate) where two
input qubits, control and target, are XOR’d and stored in a target superposed qubit. Grover makes use of the 'oracle’,
treated as a black box and used for collapsing the wave function, that is to determine when a solution has been derived.
However, this form of the oracle may lack non-locality [34].

The present position in data processing by natural computing may be summed up in the table below in Figure 11
by classifying each of the four subclasses in respect of their power as weak or strong anticipatory systems. There are
the two separate formal components as discussed aboekeetionsandoperations The former therefore relates to
whether the data structure is natural and the latter to whether the processing is natural.

| |  anticipatory information systems |

| subclass | structure | processing |
neural computers strong weak
evolutionary automata weak weak
molecular and nanocomputing weak strong
guantum computation weak strong

FIGURE 11. Classification of Subclasses as Anticipatory Information Systems

5 CONCLUSIONS

It is hardly news that there is more to the real world than might seem from first impressions. The theory should not
surprise us that naturality takes us beyond a simple classical world. Whether in the human physiology of the brain, in
biology, in chemistry or in physics there is the same distinctive naturality. Each has its own respective representative
version of what must be some ultimate form of natural computation — the strong anticipatory information system that
is the Universe. From a database perspective it is clearly still early days where we are operating mainly within weak
systems but these should only encourage us to break through the classical ceiling.
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