

Symposium 2: Applied Mathematics, Dynamical
Systems, Logics and Category Theory

CASYS’11 - International Conference on COMPUTING ANTICIPATORY SYSTEMS
HEC Management School

University of Liege, LIEGE, Belgium, August 8-13, 2011

Categorising Anticipatory Systems

Dimitrios Sisiaridis, Nick Rossiter & Michael Heather

Northumbria University, Newcastle NE2 1XE, UK

Aristotle

 Aristotle coined the word 'categories' to
describe a structure of classes

 Used as the title of one of the books of his
treatise on logic, the Organon.

 This begun a 2,000 year history for the
category to describe the structured level at the
foundation of logic.

Symbolic Logic Diversion

 The study of logic diverted to the symbolic logic
of set theory around 1900

 So the concept of a category with classes at
various levels was no longer easy to represent.

 For the elements for the set are independent of
one another and a set cannot be a member of
itself

 No inherent possibility to represent recursion nor
relations other than by external functions.

Indispensable Categories

 Nevertheless the category has become an
indispensable component for many disciplines
and the concept is still developing today.

 It is the primary classification system for
Wikipedia which itself has about 500 types of
categories defined.

 With advances in information systems the
concept of typing is an aspect of categories that
has increased in importance.

Types of Anticipation

 There are two fundamental types of anticipatory
system

– the strong

– the weak
 which differ markedly one from the other.

Strong Anticipation

 The strong is a unique intension for any given
configuration of the Universe.

 The strong anticipatory system is the real world
one

 needing some metaphysical representation or
at least a view at the level of the world itself.

 Strong anticipation is not then a property of an
anticipatory system.

 Rather it is the essence of the system itself and
requires impredicative (self-referencing)
mathematics.

Weak Anticipation

 Weak anticipation on the other hand is a
property of an anticipatory system and
extensionally degenerate for any physical
reality.

 It is predicative and may therefore be modelled
in set theory.

Isomorphism in Context

 This mirrors the distinction in the category
theory of mathematics which represents reality
up to some isomorphism.

 The strong version is up to natural isomorphism
and formalises the concept of 'natural' as found
in the real world.

 The weak is only up to some assumed
isomorphism

 For instance the category of sets holds up to the
isomorphism of Zermelo-Fraenkel set theory with
the axiom of choice.

Cartesian Closure for Strong
Anticipation

 In category theory terms the anticipation of an
anticipatory system resides in the relationships
of its cartesian closed structure.

 That is the completeness of the whole
 generalises the local completeness that Gödel

proved for first order predicate logic of axiomatic
systems.

 The cartesian closure provides the full formal
rigour for strong anticipation.

Modelling for Strong Anticipation

 Weak anticipation models the strong.
 The subtypes of possible weak anticipatory

systems can therefore be categorised by locally
cartesian closed slice categories.

 These focus on material relationships for a
particular context for the system.

Logical to Physical

 The underlying drive in knowledge engineering
is to represent the real world effectively by
mapping logical structures onto physical ones.

 Knowledge bases are created according to the
activities and relationships in which we are
interested.

 It is possible that there are more activities
taking place between the identified entities, but
the domain of interest is always the crucial
factor.

Aim of Data Normalisation

 The normalization process, as a good
knowledge engineering practice, aims to
achieve good designs by testing relations for
undesirable types of functional dependencies.

 Mathematical structures that match the physical
world are both desirable and practicable for
developing knowledge-bases and information
systems in general.

Attempts with Sets

 Previous attempts at defining knowledge bases
have involved set theory.

 For example Ullman in 1988 in 70 pages of text
developed a complex notation for representing
many types of constraint such as functional,
multivalued, join, generalised and inclusion.

 Constraints were then developed based on these
dependencies for the design of optimal data
structures with respect to redundancy and update
operations.

Problems with Sets

 The notation is
 idiosyncratic, building on an intricate definition of

collections of arrows
 not a natural domain for set theory
 external to implemented information systems.

 Leading to difficulties in understanding, in
implementation and in enforcement.

 Such an approach is at the weak anticipation
level.

Potential of Category Theory
 A more suitable form of mathematics is

category theory where the fundamental
structures are defined

 in the form of arrows as identity object,
category, functor, natural transformation and
adjointness.

 In type theory Robert Seely in 1984 presented
a proof that

 the category LCCC (Locally Cartesian Closed Category)
and

 the category ML of syntactically presented
Martin-Löf type theories (with Pi, Sigma, and
extensional identity types)

 are equivalent.

Potential of LCCC

 LCCC do appear relevant for our work as they
facilitate the construction of relationships in the
context of the dependencies identified by
Ullman.

 Indeed LCCC, in the form of comma categories,
can explain the relations in typed systems, as
representations of logical structures that handle
effectively the physical world.

Outline of Paper

 We next
 define LCCC
 provide further details on the various forms of

normalization
 bring together, with examples, the two strands of

LCCC and normalization as pullbacks and
pushouts

 discuss the strengths and weaknesses of the
methods of categorising data normalisation in the
context of anticipatory systems

Formal Representation

 Based very much on
 Cartesian closed category (CCC)
 Connectivity (exponential)
 Product (prerequisite for relationships)
 Initial object (unique starting point)
 Terminal object (unique finishing point)

 Fits in with philosophy
 Everything is connected
 Everything is related
 Everything is limited

LCCC

 In practice we use a variant of Cartesian closed
categories
 Locally Cartesian closed category
 Product is replaced by a relationship

 Product is all possible pairs
 e.g. account number X borrower name (A X B)

 Relationship is those pairs that satisfy a particular
context
 e.g. account number X borrower name in the context of

cash owed (A X
C
 B)

 In category theory this is a pullback (with
adjointness properties)

Pullback

A

B

CA X
C
 B

π
l

π
r

ι
l

ι
r

C is A+B+C

Pullback

A

B

CA X
C
 B

π
l

π
r

ι
l

ι
r

E

E is an equaliser: E = ι
l
ₒ π

l
= ι

r
ₒ π

r

Pullback

A

B

CA X
C
 B

π
l

π
r

ι
l

ι
r

E

Adjointness requirements E ┤ Δ and Δ ┤V

V
Δ

Working Assumption

 The Pullback has underpinned much of our
work on information systems

 But is this justified?
 Information systems are open ended.
 We cannot prove all our instances of data are

pullbacks.
 But we can try to relate pullbacks to accepted

practice in software engineering.

Software Engineering Principles

 Information system data design
 Normalisation

• Commonly to 3NF (third normal form)

 How do these concepts relate to LCCC?
 LCCC have been popular in theoretical

computing science
 But little attempt to handle design issues

Normalisation Outline
 A relation comprises a collection of attributes

 e.g. delivered (customer_id, customer_name,
customer_address, item_code, driver_id,
driver_name)

 Decide on those that provide uniqueness and
make these the key

 customer_id, item_code
 The others become non-key

 customer _name, customer_address, driver_id,
driver_name

 Requires knowledge of how things are done
physically

Normalisation Stages
 Then check validity against 3 forms of increasing

severity:
 1NF: for relation R each non-key attribute is functionally

dependent on the key
 2NF: R is in 1NF and each non-key attribute is fully

functionally dependent on the key (not dependent on
any component of key)

 3NF: R is in 2NF and no non-key attribute is
functionally dependent on another non-key attribute

 Maths in set theory is convoluted – students find it
challenging. e.g. Ullman, J D, Principles of Database and Knowledge-base Systems (1988).

 Some category theory work has tried to directly
represent set approach in categories – categorification
e.g. Johnson, M, & Rosebrugh, R, Sketch Data Models, Relational Scheme and Data Specifications,
Electronic Notes in Theoretical Computer Science 61 51-63 (2002).

1NF

 A relation is in 1NF if there is a functional
dependency from the key to each non-key
attribute.

 So expectation is:

customer_id, item_code → customer _name

 customer_address

 driver_id

 driver_name

If add something unrelated such as football_club then not in 1NF: need everything to
be connected

 LCCC view of 1NF - Pullback

A

B

CA X
C
 B

π
l

π
r

ι
l

ι
r

E

key
key component

key component

non-key

All attributes must be related;
adding stand-alone attributes means it is not even CCC

functional
dependency

1NF is insufficient

 Everything is connected
 But may not be connected optimally

 May be other arrows
 From key component to non-key as a functional

dependency
 From non-key to non-key as a functional

dependency

 Tests for these arrows are done in 2NF and
3NF respectively

 Potential presence of these unwanted arrows
means that the diagram is not yet a LCCC

Introducing arrow to invalidate 2NF

A

B

D +
CA X

C+D
 B

π
l

π
r

ι
l

ι
r

E

key

fd
1
: A → D; ι

l
 : A → A + B + C +D;

adding fd
1
 means that component of key determines non-key

functional
dependency

fd
1

two non-key
attributes

Example of failing 2NF relation

customer_id customer_name
customer_address

Functional dependencies below are from
component of key to non-key

Vast duplication of customer data each time
something is delivered

Not a Valid Category, let alone
LCCC

A

B

D +
CA X

C+D
 B

π
l

π
r

ι
l

ι
r

E

key

Diagram does not commute. D+C obtained by following top path
does not equal that obtained by following bottom path.

functional
dependency

fd
1

two non-key
attributes

Solution

 Take A → D arrow out of pullback diagram
 Insert A → D dependency within category A,

giving A more internal structure
 Alternative: possibly paste an additional

pullback onto previous structure.

 LCCC view of 2NF - Pullback

A

B

CA X
C
 B

π
l

π
r

ι
l

ι
r

E

key
key component

key component

non-key

Category A contains dependency fd
1
 : A → D

functional
dependency

Introducing arrow to invalidate 3NF

A

B

 F
+
 C

A X
C+F

 B

π
l

π
r

ι
l

ι
r

E

key

fd
2
: C → F;

adding fd
2
 means that one non-key determines another non-key

functional
dependency

two non-key
attributes

fd
2

Example of failing 3NF relation

driver_id driver_name

Functional dependencies below are from
non-key to non-key

Vast duplication of driver data each time
something is delivered

Not a Valid LCCC (Pullback)

A

B

 F
+
 C

A X
C+F

 B

π
l

π
r

ι
l

ι
r

E

key

Terminal object should be A+B+C+F (typed as a sum);
May not even be a category (depends on how constructed)

functional
dependency

two non-key
attributes

fd
2

Solution

 Take C → F arrow out of pullback diagram
 Develop new pullback to represent relationship

between C and F
 Paste new pullback onto existing structure.

B C F

AA X
F
 C

(A X
F
 C) X

C
 B

3NF and LCCC

 3NF (non-stepping stone via 1NF and 2NF)
 A relation is in 3NF if each non-key attribute is

dependent on the key, the whole key and
nothing but the key

 LCCC
 Relations are in 3NF if representable as a

pullback

 LCCC view of 3NF – Single
Pullback Diagram

A

B

CA X
C
 B

π
l

π
r

ι
l

ι
r

E

key
key component

key component

non-key

No other arrows permitted

functional
dependency

B C F

AA X
F
 C

(A X
F
 C) X

C
 B

LCCC view of 3NF –
Pasted Pullback Diagram

Complex pullback diagrams can be pasted together
as below
Format of squares as below must be respected
No other arrows allowed

Higher Normal Forms

 In database theory go up to Boyce-Codd, 4NF
and 5NF.

 But 3NF is industry standard
 5NF is Project-Join Normal Form

 Define relations so that projection of attributes
followed by joining together again returns
starting point

 Already provided by LCCC in the adjointness
between the X side and the + side.

Pullback showing both Intension
and Extension

a x

General Case for Single Relation in 3NF

Pullback showing both Intension
and Extension

General Case for Pasting Relation with Composite Key in 3NF

Pullback showing both Intension
and Extension

Single Relation in 3NF showing data values for extension

Higher Normal Forms

 In database theory go up to Boyce-Codd, 4NF
and 5NF.
 But 3NF is industry standard
 5NF is Project-Join Normal Form
 Define relations so that projection of attributes
followed by joining together again returns starting
point
 Already provided by LCCC in the adjointness
between the X side and the + side.

LCCC for 5NF

A

B

CA X
C
 B

π
l

π
r

ι
l

ι
r

E

Adjointness E ┤ Δ and Δ ┤V between functors
mapping between X and + (project-join)

V
Δ

Existential Pullback functor (f*)

Universal (limit)

Interesting Points

 So assumption that LCCC is a satisfactory
basis for information system representation is
justified by its close correspondence to data
normalisation at industry standard (and beyond)

 Data normalisation has a sounder basis in
LCCC than in set theory

 Conceptual bases conform naturally
 All normal forms up to 5NF are handled in a

single diagram

Concluding Remarks

 LCCC are indeed justified as the choice of
category for representing information systems

 Data structures as pullback
 Data normalisation to 3NF industry standard and

beyond to 5NF
 Advantages of LCCC over Sets

 3NF is achieved directly through the pullback
construction

 Not through an optional external design process
of normalisation, unenforced in relational
database systems

Weak versus Strong Anticipation for
Normalisation

 Weak anticipatory approaches include
 Set-theoretic approaches such as Ullman
 Industry approaches such as 1NF-3NF
 Categorification approaches such as Rosebrugh

 As they are:
 Models of the real-world
 External to the operational system

 5NF approaches LCCC in intent and purpose. It
is still weak as external to system.

Weak versus Strong Anticipation for
Normalisation

 Strong anticipatory approaches include
 Locally Cartesian Closed Categories (LCCC)

 As they are:
 Not a model (artefact) of the real-world

 First-class construction in category theory
 Inherently within the operational system

 Enforced at all times through adjointness

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

