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Aristotle

  Aristotle coined the word 'categories' to 
describe a structure of classes 

 Used as the title of one of the books of his 
treatise on logic, the Organon. 

  This begun a 2,000 year history for the 
category to describe the structured level at the 
foundation of logic.



  

Symbolic Logic Diversion

  The study of logic diverted to the symbolic logic 
of set theory around 1900

 So the concept of a category with classes at 
various levels was no longer easy to represent. 

 For the elements for the set are independent of 
one another and a set cannot be a member of 
itself 

 No inherent possibility to represent recursion nor 
relations other than by external functions.



  

Indispensable Categories

  Nevertheless the category has become an 
indispensable component for many disciplines 
and the concept is still developing today.

  It is the primary classification system for 
Wikipedia which itself has about 500 types of 
categories defined. 

  With advances in information systems the 
concept of typing is an aspect of categories that 
has increased in importance.



  

Types of Anticipation

  There are two fundamental types of anticipatory 
system

–  the strong

–  the weak 
  which differ markedly one from the other. 



  

Strong Anticipation

  The strong is a unique intension for any given 
configuration of the Universe. 

  The strong anticipatory system is the real world 
one 

 needing some metaphysical representation or 
at least a view at the level of the world itself.  

  Strong anticipation is not then a property of an 
anticipatory system. 

  Rather it is the essence of the system itself and 
requires impredicative (self-referencing) 
mathematics.



  

Weak Anticipation

  Weak anticipation on the other hand is a 
property of an anticipatory system and 
extensionally degenerate for any physical 
reality. 

  It is predicative and may therefore be modelled 
in set theory.



  

Isomorphism in Context

  This mirrors the distinction in the category 
theory of mathematics which represents reality 
up to some isomorphism. 

  The strong version is up to natural isomorphism 
and formalises the concept of 'natural' as found 
in the real world.

  The weak is only up to some assumed 
isomorphism 

 For instance the category of sets holds up to the 
isomorphism of Zermelo-Fraenkel set theory with 
the axiom of choice.



  

Cartesian Closure for Strong 
Anticipation

  In category theory terms the anticipation of an 
anticipatory system resides in the relationships 
of its cartesian closed structure. 

  That is the completeness of the whole
 generalises the local completeness that Gödel 

proved for first order predicate logic of axiomatic 
systems. 

  The cartesian closure provides the full formal 
rigour for strong anticipation.



  

Modelling for Strong Anticipation

  Weak anticipation models the strong.
  The subtypes of possible weak anticipatory 

systems can therefore be categorised by locally 
cartesian closed slice categories. 

  These focus on material relationships for a 
particular context for the system.



  

Logical to Physical

  The underlying drive in knowledge engineering 
is to represent the real world effectively by 
mapping logical structures onto physical ones. 

  Knowledge bases are created according to the 
activities and relationships in which we are 
interested. 

  It is possible that there are more activities 
taking place between the identified entities, but 
the domain of interest is always the crucial 
factor.



  

Aim of Data Normalisation

  The normalization process, as a good 
knowledge engineering practice, aims to 
achieve good designs by testing relations for 
undesirable types of functional dependencies.

  Mathematical structures that match the physical 
world are both desirable and practicable for 
developing knowledge-bases and information 
systems in general. 



  

Attempts with Sets

  Previous attempts at defining knowledge bases 
have involved set theory. 

 For example Ullman in 1988 in 70 pages of text 
developed a complex notation for representing 
many types of constraint such as functional, 
multivalued, join, generalised and inclusion. 

 Constraints were then developed based on these 
dependencies for the design of optimal data 
structures with respect to redundancy and update 
operations. 



  

Problems with Sets

  The notation is 
 idiosyncratic, building on an intricate definition of 

collections of arrows
 not a natural domain for set theory
 external to implemented information systems. 

  Leading to difficulties in understanding, in 
implementation and in enforcement. 

  Such an approach is at the weak anticipation 
level.



  

Potential of Category Theory
  A more suitable form of mathematics is 

category theory where the fundamental 
structures are defined 

 in the form of arrows as identity object, 
category, functor, natural transformation and 
adjointness. 

  In type theory Robert Seely in 1984 presented 
a proof that 

 the category LCCC (Locally Cartesian Closed Category) 
and 

 the category ML of syntactically presented 
Martin-Löf type theories (with Pi, Sigma, and 
extensional identity types) 

 are equivalent.



  

Potential of LCCC

  LCCC do appear relevant for our work as they 
facilitate the construction of relationships in the 
context of the dependencies identified by 
Ullman. 

 Indeed LCCC, in the form of comma categories, 
can explain the relations in typed systems, as 
representations of logical structures that handle 
effectively the physical world.



  

Outline of Paper

 We next 
 define LCCC 
 provide further details on the various forms of 

normalization 
 bring together, with examples, the two strands of 

LCCC and normalization as pullbacks and 
pushouts 

 discuss the strengths and weaknesses of the 
methods of categorising data normalisation in the 
context of anticipatory systems

 



  

Formal Representation

 Based very much on 
 Cartesian closed category (CCC)
 Connectivity (exponential)
 Product (prerequisite for relationships)
 Initial object (unique starting point)
 Terminal object (unique finishing point)

 Fits in with philosophy 
 Everything is connected
 Everything is related
 Everything is limited



  

LCCC

 In practice we use a variant of Cartesian closed 
categories
 Locally Cartesian closed category
 Product is replaced by a relationship

 Product is all possible pairs 
 e.g. account number X borrower name (A X B)

 Relationship is those pairs that satisfy a particular 
context
 e.g.  account number X borrower name in the context of 

cash owed (A X
C
 B)

 In category theory this is a pullback (with 
adjointness properties)



  

Pullback

A

B

CA X
C
 B

π
l

π
r

ι
l

ι
r

C is A+B+C



  

Pullback

A

B

CA X
C
 B

π
l

π
r

ι
l

ι
r

E

E is an equaliser: E = ι
l 
ₒ π

l 
= ι

r 
ₒ π

r
  



  

Pullback

A

B

CA X
C
 B

π
l

π
r

ι
l

ι
r

E

Adjointness requirements E ┤ Δ and  Δ ┤V    

V
Δ



  

Working Assumption

 The Pullback has underpinned much of our 
work on information systems

 But is this justified?
 Information systems are open ended.
 We cannot prove all our instances of data are 

pullbacks.  
 But we can try to relate pullbacks to accepted 

practice in software engineering.



  

Software Engineering Principles

 Information system data design
 Normalisation 

• Commonly to 3NF (third normal form)

 How do these concepts relate to LCCC?
 LCCC have been popular in theoretical 

computing science
 But little attempt to handle design issues



  

Normalisation Outline
  A relation comprises a collection of attributes

 e.g. delivered (customer_id, customer_name, 
customer_address, item_code, driver_id, 
driver_name)

  Decide on those that provide uniqueness and 
make these the key

 customer_id, item_code
  The others become non-key 

 customer _name, customer_address, driver_id, 
driver_name

  Requires knowledge of how things are done 
physically



  

Normalisation Stages
  Then check validity against 3 forms of increasing 

severity:
  1NF: for relation R each non-key attribute is functionally 

dependent on the key
  2NF: R is in 1NF and each non-key attribute is fully 

functionally dependent on the key (not dependent on 
any component of key) 

  3NF: R is in 2NF and no non-key attribute is 
functionally dependent on another non-key attribute

  Maths in set theory is convoluted – students find it 
challenging. e.g. Ullman, J D, Principles of Database and Knowledge-base Systems (1988). 

  Some category theory work has tried to directly 
represent set approach in categories – categorification 
e.g. Johnson, M, & Rosebrugh, R, Sketch Data Models, Relational Scheme and Data Specifications, 
Electronic Notes in Theoretical Computer Science 61 51-63 (2002).



  

1NF

  A relation is in 1NF if there is a functional 
dependency from the key to each non-key 
attribute. 

  So expectation is:

customer_id, item_code → customer _name                 
                                         

                                            customer_address

                                            driver_id

                                            driver_name 

If add something unrelated such as football_club then not in 1NF: need everything to
be connected



  

 LCCC view of 1NF - Pullback
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1NF is insufficient

  Everything is connected
  But may not be connected optimally

 May be other arrows
 From key component to non-key as a functional 

dependency
 From non-key to non-key as a functional 

dependency

  Tests for these arrows are done in 2NF and 
3NF respectively

  Potential presence of these unwanted arrows 
means that the diagram is not yet a LCCC 



  

Introducing arrow to invalidate 2NF
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Example of failing 2NF relation

customer_id customer_name
customer_address

Functional dependencies below are from 
component of key to non-key

Vast duplication of customer data each time 
something is delivered



  

Not a Valid Category, let alone 
LCCC
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two non-key
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Solution

  Take A → D arrow out of pullback diagram
  Insert A → D dependency within category A, 

giving A more internal structure
  Alternative: possibly paste an additional 

pullback onto previous structure.  



  

 LCCC view of 2NF - Pullback
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Introducing arrow to invalidate 3NF
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Example of failing 3NF relation

driver_id driver_name

Functional dependencies below are from 
non-key to non-key

Vast duplication of driver data each time 
something is delivered



  

Not a Valid LCCC (Pullback)
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Solution

  Take C → F arrow out of pullback diagram
  Develop new pullback to represent relationship 

between C and F
  Paste new pullback onto existing structure.  

B C F

AA X
F
 C

(A X
F
 C) X

C
 B



  

3NF and LCCC

  3NF (non-stepping stone via 1NF and 2NF)
 A relation is in 3NF if each non-key attribute is 

dependent on the key, the whole key and 
nothing but the key

  LCCC
 Relations are in 3NF if representable as a 

pullback



  

 LCCC view of 3NF – Single 
Pullback Diagram
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B C F
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F
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F
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C
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LCCC view of 3NF – 
Pasted Pullback Diagram

Complex pullback diagrams can be pasted together
as below
Format of squares as below must be respected
No other arrows allowed



  

Higher Normal Forms

  In database theory go up to Boyce-Codd, 4NF 
and 5NF. 

  But 3NF is industry standard
  5NF is Project-Join Normal Form

 Define relations so that projection of attributes 
followed by joining together again returns 
starting point

  Already provided by LCCC in the adjointness 
between the X side and the + side. 



  

Pullback showing both Intension 
and Extension

a x

General Case for Single Relation in 3NF



  

Pullback showing both Intension 
and Extension

General Case for Pasting Relation with Composite Key in 3NF



  

Pullback showing both Intension 
and Extension

Single Relation in 3NF showing data values for extension 



  

Higher Normal Forms

  In database theory go up to Boyce-Codd, 4NF 
and 5NF. 
  But 3NF is industry standard
  5NF is Project-Join Normal Form
 Define relations so that projection of attributes 
followed by joining together again returns starting 
point
  Already provided by LCCC in the adjointness 
between the X side and the + side. 



  

LCCC for 5NF

A

B

CA X
C
 B

π
l

π
r

ι
l

ι
r

E

Adjointness E ┤ Δ and  Δ ┤V between functors  
mapping between X and + (project-join)

V
Δ

Existential Pullback functor (f*)

Universal (limit)



  

Interesting Points

  So assumption that LCCC is a satisfactory 
basis for information system representation is 
justified by its close correspondence to data 
normalisation at industry standard (and beyond)

  Data normalisation has a sounder basis in 
LCCC than in set theory

 Conceptual bases conform naturally
 All normal forms up to 5NF are handled in a 

single diagram



  

Concluding Remarks

  LCCC are indeed justified as the choice of 
category for representing information systems

 Data structures as pullback
 Data normalisation to 3NF industry standard and 

beyond to 5NF
  Advantages of LCCC over Sets

 3NF is achieved directly through the pullback 
construction

 Not through an optional external design process 
of normalisation, unenforced in relational 
database systems



  

Weak versus Strong Anticipation for 
Normalisation

  Weak anticipatory approaches include
 Set-theoretic approaches such as Ullman 
 Industry approaches such as 1NF-3NF
 Categorification approaches such as Rosebrugh

  As they are:
 Models of the real-world
 External to the operational system

  5NF approaches LCCC in intent and purpose. It 
is still weak as external to system.  



  

Weak versus Strong Anticipation for 
Normalisation

  Strong anticipatory approaches include 
 Locally Cartesian Closed Categories (LCCC) 

  As they are: 
 Not a model (artefact) of the real-world

 First-class construction in category theory
 Inherently within the operational system

 Enforced at all times through adjointness 
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