The Contravariance of Anticipatory Systems

Dimitrios Sisiaridis, Michael Heather & Nick Rossiter
Northumbria University, Newcastle NE2 1XE, UK

Symposium 10: 8th BCSCMsG International Symposium
on Computational Self-Organised Emergence

CASYS’11 - International Conference on COMPUTING ANTICIPATORY SYSTEMS
HEC Management School
University of Liege, LIEGE, Belgium, August 8-13, 2011
Nature of Anticipation

• Where does anticipation come from?

• By definition strong anticipation resides in the anticipatory system itself.

• If this is so, anticipation is of the nature of the system and forms part of the Universe.

• Anticipation must therefore reside in nature and arise from relationships in nature.

• Likewise from no more than its definition, the Universe consists of entities related one to the other.

• Thus each entity affects every other.
Existence and Cartesian Closure

• Existence is not therefore just a first order effect but needs an inherent higher order formalism to represent such multi-body interdependence.

• The relationship between any pair of entities depends on every possible path between them.

• In category theory this is the property of cartesian closure found in the highest structure possible -- the identity natural transformation designated as the ‘topos’.

• However if every entity is related to every other it follows that the relationship is both ways but not just a simple inverse relationship as appears from the laws of physics.
Duality

• A category \mathbf{C} of objects and arrows between the objects will have a dual \mathbf{C}^{op} with arrows reversed.

• The whole universal structure of both-ways relationships will then be represented by the product $\mathbf{C}^{\text{op}} \times \mathbf{C}$.

• This gives rise to the principle of duality throughout the Universe.
Ubiquity of Duality

• Duality is a common enough concept in mathematics, philosophy and most of the sciences with some renowned examples like the mind-body duality.

 - It also appears in other versions of contrast as between the dynamic and the static and between global and local.

• To capture the full effect and subtleties of opposing views and relationships a single view of the duality is needed as a process.
Duality and Variance

• Duality is not a closed Boolean view.
 - Rather it encapsulates opposite orderings within a single (functorial) concept of variancy.
 - These may be conveniently labelled covariant and contravariant but only relative one to the other and not as absolute descriptions.

• Systems theory is a case in point where these different views need to be integrated.
 - Thus for anticipatory systems, anticipation is an instantaneous, local static instantiation of a dynamic global feature that looks either forward or back.

• The natural categories of process as advanced by Whitehead encompass this contravariancy found in reality.
Covariant and Contravariant Functors

Opposite

C
\[\begin{align*}
 a & \quad f \\
 b & \quad \downarrow
\end{align*} \]

\[\begin{align*}
 a & \quad f^{op} \\
 b & \quad \downarrow
\end{align*} \]

C\text{op}

Covariant F

D
\[\begin{align*}
 F & \quad Fa \\
 Ff & \quad \downarrow
\end{align*} \]

C\text{op}

\[\begin{align*}
 F & \quad Fa \\
 Ff^{op} & \quad \downarrow
\end{align*} \]

Covariant F

D
\[\begin{align*}
 F & \quad Fa \\
 Fb & \quad \downarrow
\end{align*} \]

C\text{op}

\[\begin{align*}
 F & \quad Fa \\
 Ff^{op} & \quad \downarrow
\end{align*} \]

Contravariant F-bar
Contravariancy

- Highlighted by Lawvere in 1969 as basic property in the intension-extension relationship
 - Governing data values in the context of their name and type
 - Basic property of universe
- Lawvere defined the relationship between intension and extension in terms of adjoint functors with contravariant mapping
 - Used concept of hyperdoctrine
 - Some 'translation' needed for applied scene
Why Contravariant?

The extension is of the form:

\[value \rightarrow name \quad N:1 \]

The intension is of the form:

\[name \rightarrow type \quad N:1 \]

If these arrows were reversed, they would not be functions so can reject such forms:

\[name \rightarrow value \quad 1:N \]

\[type \rightarrow name \quad 1:N \]
Turn around one arrow

But the common attribute in extension and intension – *name* – is codomain in extension and domain in intension.

So cannot do simple covariant mapping of one to the other.

Need to turn around the arrow in the intension

\[\text{name} \rightarrow \text{type} \quad \rightarrow \quad \text{type} \rightarrow \text{name} \]

And map this onto *value* → *name* in extension

So that *value* is related to *type* in the context of a common name
Ultimate Contravariancy

• A three-level structure is sufficient to provide complete closure with internal contravariant logic providing a generalisation of negation.
 – Further levels are redundant
• Contravariancy across levels provides more sophisticated reversals such as reverse engineering.
• The ultimate contravariancy is to be found in the universal adjointness
 - between any pair of functors contravariant one to the other
 - to provide both the quantitative and qualitative semantics of intension-extension logic.
Worked Example of Three-level Architecture

- Choices for realisation in formal terms
- Informal look at structures and relationships
- Outline in informal categories
- Two-way mappings as adjunctions
- Examples of Contravariancy
Figure 1: Informal requirements for Information System Architecture

Downward arrows are intension-extension pairs
Formalising the Architecture

• Requirements:
 – mappings within levels and across levels
 – bidirectional mappings
 – closure at top level
 – open-ended logic
 – relationships (product and coproduct)

• Choice: Category theory as used in mathematics as a workspace for relating different constructions
Figure 2: Interpretation of Levels as Natural Schema in General Terms

blue – category, red - functor, green - natural transformation
Figure 3: Example for Comparison of Mappings in two Systems

Categories: CPT concepts, CST constructs, SCH schema, DAT data,
Functors: P policy, O org, I instance,
Natural transformations: α, β, γ
Figure 4: Defining the Three Levels with Contravariant Functors and Intension-Extension (I-E) Pairs
<table>
<thead>
<tr>
<th>Level</th>
<th>Template</th>
<th>Property</th>
<th>Relational Database (aggregation)</th>
<th>Abstract Data Type (encapsulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT</td>
<td>name → type</td>
<td>attribute property</td>
<td>table → aggregation</td>
<td>ADT → encapsulation</td>
</tr>
<tr>
<td>P'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CST</td>
<td>value → name</td>
<td>registration_no → attribute</td>
<td>birth_type → table</td>
<td>BST → ADT</td>
</tr>
<tr>
<td>O'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCH</td>
<td>name → type</td>
<td>car_reg → registration_no</td>
<td>birth_record → birth_type</td>
<td>aTree → BST</td>
</tr>
<tr>
<td>I'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAT</td>
<td>value → name</td>
<td>'x123yng' → car_reg</td>
<td><'Smith', 25 mar 1980, 'Torquay'> → birth_record</td>
<td>instance of tree (nodes/links) → aTree</td>
</tr>
</tbody>
</table>

Figure 5: Examples of Levels in the Three Level Architecture

Cross-over arrows indicate contravariant mapping
If functors are adjoint, there is a unique relationship between them (a natural bijection).

Figure 6: Composition of Adjoints is Natural
Further Work needed on Three-level Architecture

- Lack of detail on
 - Adjoint relationships
 - Underlying categories
- How are they defined?
Unit and Counit of Adjunction between levels DAT and SCH

\[F \dashv G \]
\[\eta_{\text{value}} : \text{value} \to GF(\text{value}) \]
\[\varepsilon_{\text{type}} : FG(\text{type}) \to \text{type} \]

\[F \dashv G \]
\[\eta_{\text{value}} : \text{value} \to G(\text{name}) \]
\[\varepsilon_{\text{type}} : FG(\text{Name}) \to \text{type} \]

\[F \dashv G \]
\[\eta_{\text{value}'} : \text{value}' \to G(\text{name}') \]
\[\varepsilon_{\text{type}'} : FG(\text{Name}') \to \text{type}' \]
Example Mapping derived from Relative Ordering of F --|-- G

Can think of adjointness as a relative ordering. The contravariant mapping enables arrows g to $type$ to be slotted onto the appropriate $name$. $name$ and $type$ are both preorders. Contravariant functors reverse the direction of composition.
Nature of Categories in Three-level Architecture

Consider categories DAT and SCH.

DAT holds values in the form:

\[\text{value} \rightarrow \text{name} \]

But the basic structure must be more complex than this as also need to hold:

- Relationships between values
- Identifiers of data items
Suitable Constructions

Cartesian closed for connectivity, product (universal relationship) and identifier.

Locally cartesian closed to refine relationship from a general product to a specific context.

Locally cartesian closed categories:

- Pullback
- Comma (two functors with same codomain, Lawvere)

In theoretical computing much use of locally cartesian closed categories after work by Seely on type theory of Martin-Löf.
Adjoint Functors in a Pullback Diagram in level DAT

VN is NAMES+VALUES

VxN is NAMESxVALUES

VN_{dom}, VN_{cod} are forgetful functors

T↓S is comma category, relationship between T and S in context of VN;
T is identity functor on VALUES in VN, S is selection functor on NAMES in VN;
P, Q, E, N are projection functors; M is right adjoint to T; K is right adjoint to S; L is product functor
Generalisation of DAT

Comma category $T \downarrow S$ acts as a constraint limit on the product category $E \times D$.

Product functor L and inclusion functor R compose a bifunctor (binary functor).

- T may be a free functor.
- S may be an underlying functor.
- E and D can be any level in the four levels of categories involved in a three-level architecture.

C is $E+D$.

26
Further Work

Investigate further the generalisation of DAT

Look at applicability to dynamic application of three-level architecture

Suggested application domain is security

Explore further the details of DAT and SCH

Conditions for isomorphism
Contravariance and Anticipation

An anticipatory system is but the structured ordering of adjointness between the systems as a whole and every locality within it.

- Thus in the special case of time, the present is the particular locality of interest as a reductionist self-duality.

The past and the present is a contravariant view of the past from the present

- while the present access to future states is also a contravariant arrow from the future to the present.