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Abstract

Purpose – The application of category theory to interoperability to increase understanding of the
problems and to facilitate the development of practical tools for their solution.

Design/methodology/approach – Category theory is naturally suited to handling interoperability.
The use of first order predicate logic in many information systems may be justified through its
completeness. However, the work of Gödel shows that such systems are undecidable if they rely on
formal systems of number and/or sets. For interoperability dyadic higher order logic is required, which
is neither complete nor decidable if based on sets. However, pure category theory is still axiomatic so is
also neither complete nor decidable. Applied category theory based on cartesian closed categories for
process is natural and is both complete and decidable. Gödel’s theorems therefore do not apply.

Findings – The paper finds that composed adjunctions appear particularly well-suited for modelling
interoperability, with composition of distinct functors for mapping across a number of levels and of
endofunctors for business process interoperability. The monad/comonad category provides a powerful
abstraction of the business process. The development of a tool based on categorial principles written in
Haskell may be a way forward but only as an initial set model approach.

Originality/value – This paper applies categorial constructions which permit a natural formal
approach to interoperability.

Keywords Cybernetics, Open systems, Logic, Modelling, Information systems

Paper type Research paper

1. Inherent difficulty of interoperability
Interoperability has proved to be a severe problem for information systems. Many
avenues have been explored, as can seen by looking at the recent publication
Enterprise Interoperability (Doumeingts et al., 2007), including service-orientated
interoperability, enterprise interoperability architecture, model-driven approaches to
interoperability, methods, models, languages and tools for enterprise interoperability,
semantics and ontology-based interoperability, interoperability of decision models,
inter-organisational interoperability, interoperability of manufacturing enterprise
application, business models interoperability and standards for interoperability. The
plethora of approaches in itself suggests that none has had universal success outside
of carefully controlled semi-automated local conditions. The root of the problem may
lie in the mathematical basis for most information systems: set theory. This method
has worked well in the past when the systems under examination were in general
closed and the logic was that of a closed Boolean world. Recently, applied science has
shifted down into things like nanotechnology and across into intangibles like
information science and how humans behave, none of which is any longer within the
easy ambit of classical physics. Society and medical science are concerned not just
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with interoperating parts of a system but with the relationship between parts and the
system as a whole and with interoperability between systems through increasing
globalisation, including between parts of one system and parts of another system.
The major difference is that these systems have to be treated as open (Rossiter
and Heather, 2006) and therefore not conveniently accessible by first order
predicate logic.

1.1 The results of Gödel
A highly desirable feature required for free and open systems theory is exactness.
As, we shall see below, exactness can be formally defined but may be informally
interpreted as “certainty”. Probably, the most rigorous path by which to approach
certainty in logical foundations is through the work of Kurt Gödel that became
a watershed in twentieth century logic. There are two key concepts in Gödel’s work
which are components of “certainty” and these are completeness and decidability.
Gödel’s (1929) doctoral thesis established that first-order predicate logic is complete,
that is internally consistent. This was followed the next year by his famous theorem of
undecidability that applies to any system depending on axiom and number. Gödel
treated natural numbers and sets as equivalent because of the arithmetisation of sets
(Quine, 1937). Gödel made three major contributions to logic that are very pertinent to
the scientific method of the twentieth century. These are:

(1) the system of first-order predicate (but not intuitionistic (Gödel, 1932, 1933a, b))
logic is complete (Gödel, 1929, 1930);

(2) any formal system of numbers and/or sets derived from axioms is undecidable
(Gödel, 1931); and

(3) the independence of the continuum hypothesis (Cohen, 1963, 1964).

For such systems, cybernetic principles suggest a logic that permeates all three
“dimensions” of formal mathematics, empirical science and applied philosophy as
enunciated by Husserl (1900, p. 159) where just one or two on their own without all
three together are insufficient. Husserl wrote around the turn of the twentieth century
at the time when the logistical approach to mathematics was in vogue. Mathematics
and logic had just been merged by Frege and the fine detail was being hammered out
rigorously by Whitehead (1861-1947) and Russell (1872-1970) in their Principia
Mathematica (Whitehead and Russell, 1910) in the belief that logic underpinned
mathematics and there was really no more to mathematics than logic. It was at that
same time around the 1900s, as Husserl (1900) was sowing the seeds of
post-modernism, that David Hilbert (1862-1943) was advancing the cause of the
formalist approach that mathematics was wholly regulated by the manipulation of
formulae irrespective of their meaning or interpretation. To this end, he was presenting
a formal programme (with 23 research problems) of mechanical logico-mathematics for
the modern world. Difficulties were there from the outset like Russell’s paradox to raise
doubts on the sufficiency of both Frege’s axioms and Hilbert’s programme but it was
left to Gödel (1930, 1931, 1932) in the early 1930s by his two theorems of undecidability
to disprove the hope that any mechanistic axiomatic system of logico-mathematical
principles (as Gödel referred to them) based on number or sets could ever be found.
Husserl was also proved right because there were two of his “dimensions” missing –
the science and the philosophy.
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1.2 Basis for set theory of Whitehead and Russell
We cannot apply Gödel’s results properly without understanding logical foundations on
which they are based. Gödel started with Whitehead and Russell’s (1925) system. The
logico-mathematical basis for scientific reasoning is not clearly defined in mainstream
work. If there is any consensus, it is to be found within the tradition of Whitehead and
Russell (1925). However, there is not even a standard version of these principles. For an
analytical exposition of the principles of Whitehead and Russell in 1925, it seems best to
rely on the version given by Kurt Gödel. Because of the significance for all mathematical
work and particularly because of applied mathematics for the rest of the twentieth
century that rested on this foundation for reasoning itself, it is important to be aware of
the nature of these principles consisting of formal axioms and rules of inference. Much if
not all twentieth century mathematical models in science and engineering are postulated
on them. They are nowhere uniquely defined but a typical list is given by Gödel himself
as the starting point of his own work. He claims to rest on the propositions established by
Whitehead and Russell denoted as *1 and *10 in their Principia Mathematica. Gödel
(1929, p. 67, 1930, p. 105) reduced these to just eight axioms accompanied by four rules of
inference.

The four rules of inference are:

(1) The inferential schema: from the truth of p ^ p ! q, there may be inferred q.

(2) The rule of substitution for propositional and predicate variables.

(3) The inference for universal quantification of predicates.

(4) Individual free or bound variables may be replaced subject to scoping.

Whitehead and Russell themselves however point out that there are many implied
assumptions along the way such as the meaning of truth and falsehood and indeed the
Principia is subject to tentative qualifications throughout the original work and even
more equivocation and variance is introduced in the later second (Whitehead and
Russell, 1925) and abbreviated edition (Whitehead and Russell, 1962).

A crucial principle in Whitehead and Russell’s (1925) system of logic is the closed
world assumption with only the two Boolean possible outcomes. The upshot of these
foundational axioms is that inference is defined only in terms of this closed world
assumption. It means that negation, conjunction and disjunction are not independent.
Although not mentioned by Gödel because he treats as given the assumptions of
Whitehead and Russell in 1925, nevertheless there are these fundamental definitions of
true and false which are assumed by Whitehead and Russell. The first edition of the
Principia Mathematica tells us we have to accept the concepts of truth, falsehood and the
assumptions of the logical sum, logical product, complementarity and implication
(Whitehead and Russell, 1910, p. 6). The later writings suggest that these four principles
of deduction enumerated in Whitehead and Russell (1910) could be represented
alternatively by five propositions (Russell, 1919, pp. 149-50) although they do not
explicitly correspond to those of Gödel. The second edition of Whitehead and Russell
(1925) recognises that the four assumptions could be collapsed into one principle with
the use of the Schaeffer stroke where pjq is true if p is true or q is true or p ^ q is true,
which is now further developed in the NAND operation. Whitehead and Russell in 1925
define as “material implication” the concept ,p _ q. The closed world assumption or to
give it its older Latin tag tertium non datur (there is no third way) is relied on by the
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Principia and by those who depend on its inference schema to define inference itself that
is the assertion of implication p ! q from ,p _ q. Scientific models therefore that
draw scientific inferences are assuming the closed world assumption with all its
ramifications.

2. Higher order logic for interoperability
As we have already seen to justify the use of scientific models because they work only
holds where they are close to a first order model (which will then satisfy first order
predicate logic) and problems arising from Gödel’s theorems of undecidability can be
avoided. The scientific method of the last three centuries has actually achieved this by
experimental verification. It is to be noted that this only holds locally and it is the
completeness of first order predicate logic that gives such models their generality. For
higher order and open systems, experimental verification only holds locally without any
guarantee of wider validity. Rather curiously, the current prime promise to meet the
requirements was developed by Alfred North Whitehead. This is process philosophy
(Whitehead, 1929). It appears that while Whitehead and Russell were collaborating on
the Principia they had their doubts about fundamental entities (Heather et al., 2008a, b).
This leads to a formal philosophy, but a metaphysics not a model, the common approach
in theoretical computer science including artificial intelligence, which suffers from Gödel
uncertainty.

Category theory provides a formal post-modern mathematics, bringing together
algebra, geometry and topology. It is fully formal in its logico-mathematical
representation so far as it is based on the empirical scientific principles for the
particular category known as cartesian closed and embodies this philosophy of process
as understood by Whitehead. Category theory achieves and goes beyond the
post-modern mathematics sought by the Bourbaki French School of Mathematics
(Mashaal, 2006).

3. Adjoint functors for scientific basis
To escape the clutches of Gödel undecidability and to underpin our conceptual ideas, it
is necessary to advance to cartesian closed categories beyond the category of sets to
represent the relationship between different systems as adjoint functors. There are two
particularly useful formal constructions for adjunctions in interoperability, both
involving composition: the first that of distinct functors giving two-cells and the second
that of endofunctors giving monads. The former (Rossiter and Heather, 2004)
represents the composition across a number of levels, for example composing data
naming in turn with metadata and metameta data so that the adjoint relationship is
represented across four levels of category, that is three levels of mapping, from data
values to data abstractions such as aggregation and inheritance. The latter (Heather
et al., 2008a, b) represents the process or behaviour of a system, like in transactions, as
an endofunctor in three cycles to give monads and comonads as described by Mac Lane
et al. (1998, pp. 137-42). The two constructions are complementary: the first handling
principally the data structures and their values and methods and the latter the
behaviour of the data objects. It is interesting that three levels are involved in each
construction: in limit constructions in category theory three levels are often used. The
monadic structure has particular robustness with respect to Gödel’s theorems. Monadic
higher order functions are complete and decidable unlike dyadic higher order ones.
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3.1 Composed adjunctions: distinct functors
The application shown in Figure 1 involves the composition of adjunctions, that is an
expression derived in which two or more adjunctions are adjacent to each other. It is part
of the power of category theory that adjunctions can be composed in the same way as
other arrows.

The data functor (level pair) type change F maps target objects and arrows in the
category A to image objects in the category B for each type of system. This mapping
provides at the meta-meta level the data for each kind of system, that is to say how each
abstraction is to be represented. We also label the functor pair �F relating for each system
the constructions in B with the names in a particular application in C and ��F relating for
each system the names in C with the values in a particular application in D. The
remaining functors G, �G and ��G are the duals of F, �F and ��F, respectively. G for a given
system relates the data modelling facilities provided by a system in B to the universal
collection of abstractions defined in A. �G relates the schema definition in C to the
constructs available in the system defined in B. ��G for a given D relates a data value type
to its property name as defined in the schema C.

It will be noted that in Figure 1 all the mappings are two-way and that compositions
naturally emerge. Thus, we may have six adjunctions (if the conditions are satisfied):

F s G; �F s �G; ��F s ��G; �FF s G �G; ��F �F s �G��G; ��F �FF s G �G��G

These adjunctions give the following isomorphisms:

Dð��F �FFa; d Þ ø Cð �FFa; ��Gd Þ ø BðFa; �G��Gd Þ < Aða;G �G��Gd Þ

So Dð��F �FFa; d Þ represents the collection of arrows from ��F �FFa to d in category D
where a is an object in A and d an object in D. Each equivalent expression represents
the collection of arrows from source to target so Dð��F �FFa; d Þ represents the collection of
arrows from ��F �FFa to d in category D.

We can define the adjunctions in more detail with their units and counits of
adjunction as follows:

kF;G;ha; 1bl : A! B ð1Þ

ha is the unit of adjunction 1a ! GFa and 1b is the counit of adjunction FGb ! 1b:

k �F; �G;hb; 1cl : B! C ð2Þ

hb is the unit of adjunction 1b ! �G �Fb and 1c is the counit of adjunction �F �Gc ! 1c:

k��F; ��G; ��hc; ��1dl : C!D ð3Þ

��hc is the unit of adjunction 1c !
��G��Fc and ��1d is the counit of adjunction ��F��Gd ! 1d :

k �FF;G �G;GhaF ·ha; �1c · �F1c
�Gl : A! C ð4Þ

Figure 1.
Composition ofadjunctions

F

G

A
F
–

G
–

B
F
=

G
=

C D
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GhaF ·ha is the unit of adjunction 1a ! G �G �FFa and �1c · �F1c
�G is the counit of

adjunction �FFG �Gc ! 1c.
The unit of adjunction is a composition of ha : 1a ! GFa with

GhaF : GFa ! G �G �FFa.
The counit of adjunction is a composition of �F1c

�G : �FFG �Gc ! �F �Gc with
1c : �F �Gc ! 1c.

We have retained the symbol · indicating vertical composition as distinct from
normal horizontal composition indicated by the symbol + (Kelly and Street, 1974):

k��F �F; �G��G; �G ��hb
�F ·hb; ��1d · ��F 1d

��Gl : B!D ð5Þ

G ��hb
�F ·hb is the unit of adjunction 1b ! �G��G��F �Fb and ��1d · ��F 1d

��G is the counit of
adjunction ��F �F �G��G ! 1d .

The unit of adjunction is a composition of hb : 1b ! �G �Fb with
�G ��hb

�F : �G �Fb ! �G��G��F �Fb.
The counit of adjunction is a composition of ��F 1d

��G : ��F �F �G��Gd ! ��F��Gd with
��1d : ��F��Gd ! 1d :

k��F �FF;G �G��G;G �G ��ha
�FF · GhaF ·ha; ��1d · ��F 1d

��G · ��F �F1d
�G��Gl : A ! D ð6Þ

G �G ��ha
�FF · GhaF ·ha is the unit of adjunction 1a ! G �G��G��F �FFa and ��1d · ��F 1d

��G · ��F �F1d
�G��G

is the counit of adjunction ��F �FFG �G��G ! 1d .
The unit of adjunction is a composition of:

ha : 1a ! GFa with GhaF : GFa ! G �G �FFa with G �G ��ha
�FF : G �G �FFa ! G �G��G��F �FFa

The counit of adjunction is a composition of:

��F �F1d
�G��G : ��F �FFG �G��Gd ! ��F �F �G��Gd with ��F 1d

��G : ��F �F �G��Gd ! ��F��Gd with ��1d : ��F��Gd ! 1d

The advantage in deriving these compositions is that we have the ability to represent the
mappings in either abstract form to increase understanding or in detailed form to facilitate
the development of a tool. The overall composition gives a simple representation for
conceptual purposes; the individual mappings enable the transformations to be followed
in detail at each stage and provide a route for implementation. The uniqueness of the
components means that an adjunction can be resolved where there is a component
missing.

If a further level E is added to Figure 1 with the adjoint k���F��F �FF s G �G��G
���Gl,

categorically the five levels are equivalent to the four levels above because composition
is natural. The practical consequence is that a fifth level is equivalent to an alternative
fourth level. So there is ultimate closure at a fourth (metameta) level.

3.2 Composed adjunctions: endofunctors
A monad is sometimes described as a triple, comprising an endofunctor say T, the unit
of the monad h and the multiplication of the monad m : T 2 ! T :

Monad is kT;h;ml ð7Þ

A pair of adjoint functors is an endofunctor: in this case the source category of F, L, is
also the target category of G. So for the endofunctor T as the pair of adjoint functors
GF, F : L! R and G : R! L:
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Monad is kGF;1L ! GF;GFGF ! GFl ð8Þ

where 1L ! GF is the unit (h) of the monad and GFGF ! GF is the multiplication (m).
The monad gives the left-hand perspective. There is also a dual comonad which

gives the right-hand perspective. A comonad is a triple, comprising an endofunctor say
S, the counit of the comonad 1 and the comultiplication of the comonad d : S ! S 2:

Comonad is kS; 1; dl ð9Þ

A pair of adjoint functors is an endofunctor: in this case the source category of G, R, is
also the target category of F. So for, the endofunctor S as the pair of adjoint functors
FG, G : R! L and F : L ! R:

Comonad is kFG;FG ! 1R ;FG ! FGFGl ð10Þ

where FG ! 1R is the counit (1) of the comonad and FG ! FGFG the comultiplication (d).
The diagram in Figure 2 assists with interoperability as follows. There is a unique

solution, ensuring reproducibility, through the adjointness F s G. The displacements
in the left category 1L of h and in the right category 1R of 1 are given by the monad
and comonad, respectively. If there is no displacement in the left- or right-categories,
that is h maps onto ’ and ` maps onto 1, then the relationship is the special case of
equivalence between F and G and the two categories are isomorphic. Determinism is
measured through the arrow m : T 2 ! T (looking back). Closure is achieved through
the third cycle with TmðGFG1FÞ comparing the second and third cycles from the
viewpoint of the third cycle (again looking back) and dSðFGFhGÞ comparing the

Figure 2.
After three cycles

GFGFGF from left-hand
category and three cycles
FGFGFG from right-hand

category: h and d map
onto other than ’ , `

maps onto other than
1 and m

l

Fl SFl S2Fl

F G

f

g Ff g′ Ff ′ g′′ Ff ′′

1L

1R

Monad = < T,h,m >

Comonad = < S,e,d >

Gg

Gr

r

e

e

e

e
d

e

TGr
T2Gr

f ′ Gg′ f ′′ Gg′′

Tl T2l

Tm
m

T3l

S2r S3rSr

dS

h hh

h h
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second and third cycles from the viewpoint of the second cycle (looking forward).
If GFG1F maps onto idT3 and idS2 maps onto FGFhG then the relationship is the
special case of equivalence between F and G and the left- and right-categories are
“synchronised”. Consentient is the term used from the process perspective by
Whitehead (1925, Scientific relativity, Article 7, pp. 31-2). Anticipation is measured
through the arrow d : S ! S 2 (looking forward) in the context of m : T ! T 2 (looking
back). The arrow d as a free functor is non-deterministic.

Further technical details of the monad and comonad are given in a recent paper on
time jitter (Heather et al., 2008b), including the adjointness between the monad and
comonad as confirmed by Barr and Wells (1985, pp. 136-7).

3.3 Practical significance
In terms of the various levels of interoperability recognised by the European Union and
their working parties, composed adjunctions with distinct functors deliver semantic
interoperability by relating data values to metameta data. Composed adjunctions for
endofunctors provide a route through to the more challenging enterprise interoperability
(Li et al., 2006) by delivering a description of process. Dynamic composition of services
has been proposed (Nieto et al., 2007) as a way forward for interoperability and this
would benefit from a categorial approach.

To apply categorical techniques it should not be necessary for users to have an
understanding of category theory. Rather the goal should be to develop tools, based on
category theory, that assist users in providing interoperability between systems. A tool
based on sound mathematical principles is more likely to provide the basis for a
standard (Heather et al., 2008a, b). As Egyedi (2007, p. 562) noted:

[We] explored why standard-compliant products often do not interoperate and what solutions
are possible. Although the problem usually lies in the way standards are implemented, most
of the underlying factors are located earlier in the standardization chain, namely either in
a weakness in the standards ideas, the standards process or the standard specification.

Such tools could be written in any language but in practice some languages are more
suitable than others. Simple functional languages are hardly sufficient for the
multi-level category theory but functional languages with multi-level capabilities such
as the ability to represent higher order logic as a basic construction look much more
promising. In this respect, Haskell may be a strong contender as an initial set model
approach, particularly as it has the monad construction already available as a
first-class structure (Wadler, 1998). However, first the “Gödel-freeness” of Haskell has
to be carefully examined.
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Gödel, K. (1933b), “Zur intuitionistischen Arithmetik und Zahlentheorie”, Ergebnisse eines
mathematischen Kolloquiums, Vol. 4, pp. 39-40, Reprinted: on Intuitionistic Arithmetic and
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Husserl, E. (1900), Logischen Untersuchungen: Prolegomena zur reinen Logik I (1900/1901),
Routledge, New York, NY, Logical Investigations: Prolegomena to Pure Logic,
Findlay, J.N., translator from 2nd German ed., 1, Moran, D. (ed).

Kelly, G.M. and Street, R. (1974), “Review on the elements of 2-categories”, in Kelly, G.M. (Ed.),
Proceedings Sydney Category Theory Seminar 1972-73, Lecture Notes in Mathematics,
Vol. 420, Springer, London, pp. 75-103.

Li, M.-S., Cabral, R., Doumeingts, G. and Popplewell, K. (2006), Enterprise Interoperability –
Research Roadmap, Final Version (Version 4.0), 31 July, available at: www.ftp://ftp.cordis.
europa.eu/pub/ist/docs/directorate_d/ebusiness/ei-roadmap-final_en.pdf

Mac Lane, S. (1998), Categories for the Working Mathematician, 2nd ed., Springer, London.

KYB 116901—10/6/2009—SVARADHARAJAN—340159

Fragmentary
structure of

global knowledge

1413



Mashaal, M. (2006), Bourbaki: A Secret Society of Mathematicians, AMS, Providence, RI, p. 260,
Pierrehumbert, A. (translated).

Nieto, F.J., Bastida, L., Escalente, M. and Gortazur, A. (2007), “Development of dynamic
composed services based on the context”, in Doumeingts, G., Müller, J., Morel, G. and
Vallespir, B. (Eds), Enterprise Interoperability: New Challenges and Approaches, Springer,
London, pp. 3-12.

Quine, W.V. (1937), “New foundations for mathematical logic”, American Mathematical Monthly,
Vol. 44, pp. 70-80.

Rossiter, B.N. and Heather, M.A. (2004), “Data structures in natural computing: databases as
weak or strong anticipatory systems”, CASYS’03, Sixth International Conference on
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