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Abstract

Object-oriented analysis and design has become a major approach in the
design of software systems. Recent developments in CASE tools provide help
in documenting the analysis and design stages and in detecting incomplete-
ness and inconsistency in analysis. However, these tools do not contribute
to the initial and difficult stage of the analysis process of identifying the
objects/classes, attributes and relationships used to model the problem do-
main. This paper presents a tool, Class-Gen, which can partially automate
the identification of objects/classes from natural language requirement spec-
ifications for object identification. Use case descriptions (UCDs) provide the
input to Class-Gen which parses and analyzes the text written in English. A
parsed use case description (PUCD) is generated which is then used as the
basis for the construction of an initial UML class model representing object
classes and relationships identified in the requirements. PUCDs enable the
extraction of nouns, verbs, adjectives and adverbs from traditional UCDs for
the identification process. Finally Class-Gen allows the initial class model
to be refined manually. Class-Gen has been evaluated against a collection
of unseen requirements. The results of the evaluation are encouraging as
they demonstrate the potential for such tools to assist with the software
development process.

Keywords: Requirements specifications, object-oriented, parsing, analysis,
natural language processing.
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1. Introduction

The process of requirements identification is considered one of the most
critical and difficult tasks in software design because most of the input to this
process is in natural languages, such as English, which are inherently ambigu-
ous. Developers need to interact with users in their own language. Also they
need to review and analyze documents written in natural language. This pa-
per introduces the Class-Gen CASE tool which was developed as part of an
investigation into the problem of automatic identification of objects/classes
and relationships from a requirements specification (RS) written in a nat-
ural language. Results from applying Class-Gen to some analysis problems
are presented. First, existing literature on the subject of requirements spec-
ifications, object identification and conceptual database design is reviewed.
Different techniques in natural language processing systems that attempt to
transform natural language into conceptual models are considered for their
effectiveness. Also examined are the rules to convert English sentences into
entity relationship (ER) and enhanced entity relationship (EER) diagrams
to determine entity types, attribute types and relationship types.

This work employs use case descriptions as the starting point for iden-
tification of classes and relationships and uses an existing parsing tool to
identify noun phrases, verb phrases, adjectives and adverbs. This stage is
based on existing work on how to map English sentences into conceptual
models. The parsed use case description (PUCD) is proposed as an inter-
mediate representation for capturing the output of the parsing stage, which
is then used in subsequent steps. A PUCD is a set of original sentences,
parsed sentences, nouns, verbs, adjectives and adverbs, which are used to
extract nouns, verbs, adjectives and adverbs from use case descriptions. The
next step is the process of identifying objects/classes, attributes, operations,
associations, aggregations and inheritance so as to produce a class model.
Classes are then refined by a human expert.

Following the literature review is an outline of a proposed method for
object identification, which is based on existing work on how to map English
sentences to conceptual models. Next comes a discussion of how to identify
objects/classes, attributes, operations, and the association, aggregation and
inheritance abstractions in order to produce class models by applying a set of
rules dealing with correspondences between English sentence structures and
ER modelling. The list of rules (see Appendix) was synthesised from several
rule sets found in the literature and is implemented within the Class-Gen
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system to enable it to produce class models.

2. Description of Problem

The successful development of any software system depends on the com-
munication between clients and software developers to identify objects/classes
and relationships from requirements specifications written in a natural lan-
guage such as English, so as to increase efficiency in the use of scarce re-
sources and to reduce errors in dealing with complex requests. Therefore,
this work investigates how natural language processing tools and techniques
can be used to support the object-oriented analysis (OOA) phase. The sys-
tem works with English descriptions of the software requirements. For our
purposes the requirements can be presented either as informal free text or
in the more formalised format of a use case description (UCD). UCDs have
been used in the proposed method as input for identifying classes and rela-
tionships as they are well-structured texts and are effective for analyzing and
capturing functional requirements (for more details see Elbendak [22]). Au-
tomation of the systems development life cycle (SDLC) can help to alleviate
critical problems of ambiguity, inconsistencies and conflicts in the functional
requirements [34].

There are many problems and difficulties often associated with the use of
natural language (NL) which can be summarised as follows:

• The ambiguity and complexity of NL are major problems in require-
ments specifications as they may lead to misunderstanding between the
parties involved, which may badly affect customer satisfaction with the
implementation produced. Furthermore, any errors, mistakes or in-
consistencies incurred at this stage can be very costly later, especially
when a system has already been implemented. It has been reported
that the cost difference to correct an error in the early stage compared
with leaving it till the end is 1:100 [8, 39, 37].

• The analysis process is considered to be one of the most critical and
difficult tasks because most of the input to this process is in a natural
language.

• Automatic identification of objects/classes and relationships is poten-
tially faster than manual identifications but may be less accurate.
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• There is no standard method for automatically identifying objects and
classes from NL sentences.

• There is no standard template for requirement specifications. There-
fore, the use case description may be more useful or effective in com-
parison to free form English prose as it is based upon functional re-
quirements.

• There is little or no adoption of standards like UML for expressing
requirements specification (RS) for the purpose of object identification.

Attempts to use NLP in the automatic generation of class models have
been rather fitful, often being limited by the inherent difficulties in NLP
(i.e. ambiguity and complexity, as mentioned above) and the last few years
have witnessed a pause in development. Now two factors would seem to
encourage a renewal of efforts in the area. First, dictionaries have become
more sophisticated with the advance in ontologies, so that dynamic content
targeted to a particular subject area can be used. Secondly, the capabilities
of the NLP tools themselves have increased with respect to the syntactic
classification of words in sentences (nouns, verbs, gerunds, etc). These two
factors are of course linked in that the NLP tools themselves are also using
more sophisticated dictionaries.

3. Background and Related Work

The identification of objects and classes is still often performed manu-
ally, using techniques such as textual analysis, common object lists, patterns
and Class-Responsibility-Collaboration (CRC) cards. CRC cards, used as
a manual technique in OO systems analysis methods, are considered to be
an effective tool for conceptual modelling and detailed design [28]. There
have been attempts to automate some of these manual approaches. For in-
stance in the automation of CRC cards, Agile Modelling (AM) has been
developed for the business architecture, domain object model and software
design stage. AM provides tools for CRC cards to enable users to follow an
active stakeholder participation practice. However to use the cards requires
the specification to be decomposed into atomic statements, making it more
appropriate for single requirements such as user stories, business rules, or
system use cases [3]; this is not necessary in our semi-automated approach.
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Previous studies have provided some rules for mapping natural language
elements to object-oriented concepts. However, the coverage is incomplete.
For example, Abbott [1] first suggested that nouns indicate classes and ob-
jects, while verbs can denote relationships. Researchers and software de-
signers such as Booch [9] and Liang et al. [38] have concluded that object
identification and the refinement process are ill-defined tasks because of the
difficulty of heuristics and the lack of a unified methodology for the anal-
ysis and design stages. This is mainly due to the lack of a formalism for
object-oriented analysis and design.

Although there are many projects focusing on CASE tools for object-
oriented analysis and design, there are only a few focusing on the formal-
ization and implementation of the methodology for the object model cre-
ation process. In addition they are not well developed for software design
project that require collaborative working among members of a software de-
sign project team. Wahono and Far [53, 54] examined the issues associated
with the methodology for collaborative object-oriented analysis and design
with their OOExpert system.

Data Model Generator (DMG) is a rule-based design tool proposed by
Tjoa and Berger [52] which maintains rules and heuristics in several knowl-
edge bases and employs a parsing algorithm to access information from the
grammar using a lexicon designed to meet the requirements of the tool. Dur-
ing the parsing phase the sentence is parsed by retrieving necessary informa-
tion using the rules and heuristics to set up a relationship between linguistic
and design knowledge. The DMG has to interact with the user if a word does
not exist in the lexicon or if the input of the mapping rules is ambiguous. The
linguistic structures are then transformed by heuristics into EER concepts.
Although there is a conversion from natural language to EER models, the
tool has not yet been developed into a practical system.

Gomez et al.’s ER generator [27] is another rule-based system which gen-
erates ER models from natural language specifications. The ER generator
consists of two kinds of rules: specific rules linked to the semantics of some
words in the sentences, and generic rules that identify entities and relation-
ships on the basis of the logical form of the sentence and of the entities
and relationships under construction. The knowledge representation struc-
tures are constructed by a natural language understanding (NLU) system
which uses a semantic interpretation approach. Al-Safadi [2] presents a semi-
automated approach for designing databases in enhanced ERD notation. In
this approach, the natural language source is used for the semi-automated
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generation of a conceptual data model. The work was concentrated primar-
ily on the creation of a tool to convert a natural language description into a
conceptual data model, in this case an enhanced ER model.

CM-Builder by Harmain and Gaizauskas [30] is a natural language based
CASE tool which aims to support the analysis stage of software develop-
ment in an object-oriented framework. The tool documents and produces
initial UML conceptual models. The system uses discourse interpretation
and frequency analysis in a linguistic analysis. For example, attachment of
postmodifiers such as prepositional phrases and relative clauses is limited.
Other limitations include the state of the knowledge bases which are static
and not easily updateable nor adaptive. Bajwa et al. [5] have presented
work in which the primary focus is upon the designing of a theory to analyze
natural language texts fully and the subsequent development of a software
tool UMLG (UML-Generator) based on an implementation of this theory.
It is claimed that UMLG can extract requisite information from a natural
language text and, thereafter, convert this into a UML class diagram. How-
ever, details of the system are not given and no evaluation of the method’s
performance has been published so its efficacy can not be determined at this
time. Bajwa with Choudhary [4] has also put forward a rule based system
that has the capacity to select from a natural language text the information
required. The system understands the context and then extracts respective
information. Meziane and Vadera [45] and Meziane [44] have implemented
a system for the identification of VDM data types and simple operations
from natural language software requirements. The system first generates an
entity-relationship model (ERM) from the input text followed by VDM data
types from the ERM.

Another tool for the measurement and validation of UML class diagrams
is MOVA [16]. However, it was unable to identify OO constituents automati-
cally. Thus, in order to identify classes, objects and their particular methods
and attributes the system had to be supplemented through help from the
user. Mich [46] and Mich and Garigliano [47] have described an NL-based
prototype system, NL-OOPS, which is aimed at the generation of object-
oriented analysis models from natural language specifications. This system
has demonstrated how a large scale NLP system called LOLITA can be used
to support the OO analysis stage.

Some researchers, also advocating NL-based systems, have tried to use a
controlled subset of a natural language to write software specifications and
build tools that can analyze these specifications to produce useful results.
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Controlled natural languages are developed to limit the vocabulary, syntax
and semantics of the input language. Macias and Pulman [40] discussed
some possible applications of NLP techniques, using the CORE Language
Engine, to support the activity of writing unambiguous formal specifications
in English.

The research described above has provided valuable insights into how
NLP can be used to support the analysis and design stages of software de-
velopment. However, each of these approaches has limitations, which means
that as yet NL-based CASE tools have not emerged into common use for
OO analysis and design. Abbott [1], Booch [9], and Booch et al. [11] de-
scribe similar approaches but they have not produced working systems that
implement their ideas. Meziane [44] and Meziane and Vadera [45] produced
workable systems but these required an unacceptable level of user interac-
tion such as accepting or rejecting noun phrases to be represented in the
final model on a sentence by sentence basis as the requirements document is
processed.

Giganto [25] and Giganto and Smith [26] have proposed a controlled lan-
guage employed to write the requirements document and generated use case
specifications. Their approach is aimed at obtaining classes from use cases,
rather than directly from the specification. For example Giganto [25] pro-
posed an algorithm to extract use case sentences from the requirements, val-
idate the functional specifications of each sentence and reuse the validated
domain dependent use cases to supply the missing functional specifications
that may contain the participating classes. A limitation of this approach
is that it is written in rules restricted to the functional requirements. By
contrast, the advantage of the Class-Gen system (see below) is that it can be
used by software engineers to generate a class model from the functional re-
quirements. Mich and Garigliano’s [47] approach, which is the closest to our
proposed method, relies on the coverage of a very large scale knowledge base
but the impact of (inevitable) gaps in this knowledge base on the ability of
the system to generate usable class models remains unclear. It is also worth
noting that none of these systems, so far as we are aware, has been evaluated
on a set of previously unseen software requirements documents from a range
of domains. This ought to become a mandatory methodological component
of any research work in this area, as it has in other areas of language pro-
cessing technology, such as the DARPA-sponsored Message Understanding
Conferences (e.g., see Hirschman [32]).

Perez-Gonzalez and Kalita [48] have also proposed a semi-natural lan-
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guage (4WL) to automatically generate object models from natural language
text. Their prototype tool GOOAL [48] produces OO static and dynamic
model views of the problem. Li et al. [37] also presented work to solve prob-
lems related to NL that can be addressed in OOA. Different NLP based tools
have been proposed for this purpose. Zhou and Zhou [56] proposed another
conceptual modelling system based on linguistic patterns. A framework was
proposed to generate class diagrams from unstructured system requirement
documents.

The methods and techniques discussed above are not automatic as they
involve systems analysts taking many decisions during the OO analysis and
modelling stage. On the other hand, these methods were dealing only with
basic OO concepts.

Table 1 summarises the comparison above of existing object identification
approaches with respect to techniques used, input types, breadth of coverage
and automation.

Coverage
Authors Technique Input C/E A O R I Automated
Abbot [1] Texual Analy-

sis
RS in plain En-
glish

Yes Yes No Yes No No

Chen [14, 15] ER model RS in plain En-
glish

Yes Yes No Yes Yes No

Beck and Cun-
nigham [6]

Object identifi-
cation

RS Yes Yes Yes No No No

Gomez [27] Textual analy-
sis

RS Yes Yes Yes No Yes semi-
automatic

Wahono and Far
[53]

Textual analy-
sis

RS in UML use
case

Yes Yes Yes No Yes No

Mich and
Garigliano [47]

Textual analy-
sis

RS in plain En-
glish

Yes Yes No No No No

Meziane and
Vadera [45]

Logic Form
Language

RS Yes Yes No Yes Yes semi-
automatic

Harmain and
Gaizauskas [30]

Object identifi-
cation

RS Yes Yes No Yes No semi-
automatic

Hartmann and
Link [31]

Textual analy-
sis

RS in plain En-
glish

Yes Yes No Yes Yes No

Giganto [25] Object identifi-
cation

Use Case de-
scription

Yes No No No No No

Dennis et al., [19] Textual analy-
sis

Use Case de-
scription

Yes Yes Yes No Yes No

Al-Safadi [2] ER model RS Yes Yes No Yes No semi-
automatic

Table 1: Comparison of Object Identification proposals
C/E: Class/Entity; A: Attribute; O: Operation; R: Relationship; I: Inheritance; RS: Require-
ment Specification
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4. Strategy and Design

Class-Gen is a modular NL-based CASE tool which performs a domain
independent OO analysis. Its input is a single software requirements docu-
ment which it analyzes linguistically to build an integrated discourse model
and extracts the main object classes and the static relationships among the
objects of these classes. Class-Gen is written in Java (approximately six
thousand lines of source code). The system produces two kinds of output:
a list of candidate classes and a list of candidate relationships. The steps
involved can be summarised as follows:

a) Take a set of functional requirements, use case descriptions or a problem
statement description in natural language.

b) Use PUCD generation to analyze syntactically the informal requirements
text and keep all the intermediate analysis results for further analysis.

c) Use the results produced by the PUCD generation to extract nouns, verbs,
adjectives and adverbs from use case description as part of an identifica-
tion process to identify objects/classes, attributes and the relationships
among them.

d) Produce a class model by applying the set of rules given in the Appendix.

e) Produce a first-cut static structure model of the system from the extracted
objects/classes in a standard format and use manual intervention to
refine the initial class model.

5. Implementation

Figure 1 gives an overview of the identification of classes and relation-
ships where UCDs represent the input to the process. Class-Gen is not an
iterative tool. That is, it permits review by the user but is not iterative in
its operation. As will be explained in more detail later, the parsing process
as a whole involves a tokenizer as a preliminary stage, a sentence splitter, a
part-of-speech tagger and chunking followed by the parser itself. The PUCD
generated from this stage is a set of the original sentences, parsed sentences,
nouns, verbs, adjectives and adverbs. A preliminary class model is generated
from the PUCD, which is then refined by a human expert. The steps involved
in deriving the class diagram from NL are listed below.
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Step 1: Parse the use case description(s) using a memory-based shallow
parser (MBSP) to generate noun and verb phrases.

Step 2: Generate the PUCD from the output of step 1.

Step 3: Identify the classes including the association, aggregation and in-
heritance abstractions from PUCD objects/classes using the system’s
rules to produce a class model.

Step 4: A human expert works with Class-Gen to refine the output of step
3.

5.1. Use case descriptions (UCDs)

UCDs written in a natural language are usually employed to specify func-
tional requirements but their format is not standardized. If the requirements
document is written in English no limitations are imposed on its form which
can be in the structure of a general problem statement describing the soft-
ware problem or a list of more detailed functional requirements. Therefore,
because UCDs do not have a defined format or structure, Class-Gen will
accept as input any plain text file containing the software requirements in
English.

5.2. Comprehension of the input using memory-based shallow parsing

Memory-based shallow parsing (MBSP) is an essential component in text
analysis systems for text mining applications such as information extraction
and question answering [55]. Shallow parsing provides only a partial analysis
of the syntactic structure of sentences as opposed to full-sentence parsing.
Parsing includes the detection of the main constituents of the sentences (for
example noun phrases (NPs) and verb phrases (VPs)). An MBSP system for
English usually consists of the following modules:

Tokenizing: The tokenizer splits a plain text file into tokens. This includes,
for example, separating words and punctuation, identifying numbers,
and so on.

Sentence Splitting: The sentence splitter identifies sentence boundaries.
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Figure 1: Overview of identification of classes and relationships
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Part-of-Speech (POS) Tagging: The POS tagger assigns to each word
in an input sentence its proper part of speech such as noun, verb and
determiner to reflect the word’s syntactic category. For example, for
the clause “The man likes the car”, the POS tagger produces: The/DT
man/NN likes/VBZ the/DT car/NN (see Brill [13, 12]).

Chunker: : Chunking is the process of detecting the boundaries between
phrases (for example noun phrases) in sentences [18]. ]. Chunking can
be regarded as light parsing. In MBSP, branded prediction is used
during the task.

Parsing: Parsing is the process of determining the syntactic structure of
a sentence given a formal description of the allowed structures in the
language called a Grammar. An example of a parse tree for the sentence
“The man likes the car” is shown in Figure 2.

Figure 2: Parse tree for the sentence “The man likes the car”

5.3. Parsed use case description (PUCD)

The inputs to the PUCD generator are parsed and tagged as text. The
main purpose of the PUCD generator is to extract the nouns, verbs, ad-
jectives and adverbs so as to collect the class/entity type, attribute and
relationship from the tagged input.

In some circumstances a single UCD may not be enough to provide all
of the information required. Therefore, it is recommended to employ more
than one UCD to cover all the information needed about properties such as
attributes and relationships to produce an effective class model.

The parsed and tagged text PUCD is defined as a set of tuples as follows:
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Ns Nouns Vs Verbs ADJs/ADVs Adjectives/Adverbs

NN Noun, singular or
mass

VBD Verb, past tense JJ Adjective

NNP Proper noun, sin-
gular

VBG Verb, gerund/
present participle

JJR Adjective, compar-
ative

NNPS Proper noun, plural VBN Verb, past partici-
ple

JJS Adjective, superla-
tive

NNS Noun, plural VBP Verb, non-third
person singular,
present

RB Adverb

VB Verb, base form VBZ Verb, third person
singular, present

RBR Adverb, compara-
tive

RBS Adverb, superlative

Table 2: List of PUCD Abbreviations

PUCD = {< OS, PS, Ns, Vs, ADJs, ADVs >}

Ns = {< N, tag>}, where N is any noun and tag ∈ {NN, NNP, NNPS,
NNS}

Vs = {< V, tag>}, where V is any verb and tag ∈ {VB, VBD, VBG, VBN,
VBZ, VBP}

ADJs = {< ADJ, tag>}, where ADJ is any adjective and tag ∈ {JJ, JJR,
JJS}

ADVs = {< ADV, tag>}, where ADV is any adverb and tag ∈ {RP, RB,
RBR, RBS}

OS is an original sentence

PS is a parsed sentence

Figure 3 shows an example of the PUCD generator extracting nouns,
verbs, adjectives and adverbs from the requirement specification as original
sentences, parsed sentences, Ns, Vs, ADjs and ADVs. Table 2 defines the
abbreviations used in PUCD generation.

5.4. Object Identification Process

Details of the object identification process are given in Figure 1. After
the extraction of nouns, verbs, adjectives and adverbs from the generated
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Figure 3: Example of the PUCD

PUCD, Class-Gen can then identify classes/entities, attributes and relation-
ships using identification process rules.

5.4.1. Identifying Classes/Entities

Figure 1 shows the process for identifying classes/entity types, attributes,
operations and relationships. Details for each step in the identification pro-
cess are given below.

The first step is to produce a list of candidate classes. This is done by
applying the noun identification rules (see Appendix) to the PUCD. A class
is defined as follows:

C := {< Cn, ATT,B,R >}

where Cn is a class name, ATT is a set of attributes, B is a set of behaviours
or operations and R is a set of relationships.

We identify a list of candidate classes and attributes as follows:

1. Determiners (a, an, the, each, and, with, etc.) do not play a crucial
role at this stage, so they are ignored.

2. Plural noun phrases are converted to their singular form because class
names in UML are given in the singular. For example, customers is
changed to customer, and order items to order item.
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3. Redundant candidates are removed from the list of the output PUCD.
An exact string matching technique can be used to compare the candi-
dates in the list with each other. For example, customer in our example
sentences after the first instance is redundant, appearing many times
in the text. The same is done for all other candidates.

Figure 4 shows an example of the list of candidate classes identified by
the PUCD generator.

Figure 4: Example of the list of Candidate Classes

5.4.2. Identifying Attributes

A class C has a set of attributes ATTs that describe the information for
each object:

ATT := {A|A :=< An, T >}

where each attribute A has an attribute name An and a type T . The first
step in the attribute identification process is to extract ADJ and ADV from
the PUCD and then apply the attribute rules to examine the adjectives and
adverbs in context to determine whether they are attributes of a class.
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5.4.3. Identifying Relationships

There are four basic kinds of relationship: association, aggregation, com-
position and inheritance. Each class C has a set of relationships R. A
relationship is represented by relationship type, related class and cardinality.
A relationship R is defined as follows:

R := {rel|rel :=< RelType, relC, Cr >}

where RelType is a relationship type (i.e., association, aggregation, compo-
sition or inheritance), relC a related class and Cr a cardinality.

Figure 5: Example of the list of Candidate Relationships
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Figure 5 shows an example of the list of candidate relationships identified
from the PUCD generator.

Class-Gen identifies a list of candidate classes and candidate relationships
from a PUCD by applying the rule set listed in the Appendix. Its processing
steps are as follows (fully automated steps are prefixed with [A] whilst steps
requiring some manual intervention have a prefix of [M]):

1. [A] Ignore articles, prepositions, connectives and other insignificant
words (such as a, an, the, each, and, with, etc.) as they do not play a
crucial role at this stage of identification.

2. [A] Convert plural noun phrases to their singular form because class
names in UML are singular. For example, Banks is changed to Bank,
and Students to Student.

3. [A] Identify all nouns in the text and treat each as a candidate class.

4. [M] Remove redundant candidates from the list of the output PUCD
as they are not required. An exact string matching technique can be
used to compare the candidates in the list with each other.

5. [A] Identify all verbs in the text and treat each as a candidate rela-
tionship.

6. [M] Determine the candidate class having the highest frequency of
occurrence in the text (i.e., how many times it occurs).

7. [A] Consider all adjectives and adverbs in the text as candidate at-
tributes.

8. [M] Add new words to the dictionary. Words or abbreviations occur-
ring in the PUCD that are not known to the system are added along
with their definition and part-of-speech type (noun, verb, etc.) to a
dictionary so that they will be recognized next time they appear.

9. [M] Delete from the list all candidate classes having a low frequency
and which do not participate in any relationship.

10. [A] Highlight nouns and verbs in different colours to facilitate the as-
signment of relationships between classes in the same sentence.

11. [M] Find aggregations by looking for clauses in the form “something
contains something”, “something is part of something” and “something
is made up of something”.

12. [M] Identification of roles in associations. Although this is not the main
aim of the work the approach identifies three types of UML multiplic-
ities [11]. e.g., “1 for exactly one”, “* for many” and “N for specific
numbers”.
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Applying the above steps leads to the production of an initial class model
comprising the classes themselves, their attributes and relationships between
classes.

6. Automatic Teller Machine Example

The Automatic Teller Machine (ATM) example presented here has been
analysed by Rumbaugh et al. [50] using their OMT methodology. In this
section we take the same problem statement used by Rumbaugh et al. and
show the results of their analysis. After that we present the model produced
by our system and compare it with Rumbaugh et al.’s model.

6.1. Problem Statement

The problem statement of the ATM as given in Rumbaugh et al. [50] is
shown in Figure 6.

Figure 6: The problem statement from Rumbaugh et al. [50, p. 151]

6.2. Rumbaugh et.al.’s Object Model

Rumbaugh et al. [50] used their Object Modelling Technique (OMT)
methodology to build an object model of the ATM example. They started
by building a list of candidate classes extracted from the problem statement

18



by considering all nouns. This list includes 23 candidates: Software, Bank-
ing network, Cashier, ATM, Consortium, Bank, Bank Computer, Account,
Transaction, Cashier station, Account data, Transaction data, Central com-
puter, Cash Card, User, Cash, Receipt, System, Recordkeeping Provision,
Security provision, Access, Cost, and Customer.

After producing this list, they considered all verb phrases in the problem
statement and built an initial object model that shows classes and associa-
tions as given in Figure 7.

Figure 7: ATM initial object model from Rumbaugh et al. [50, p. 161]

6.3. Class-Gen Analysis

Classes and Relationships
From the ATM problem statement Class-Gen initially produced 55 can-

didate classes and attributes and 17 candidate relationships. The phrase
frequency analysis process reduced the number of candidates to 27. The
compound noun and attribute analysis process, further reduced the total
number of candidates to 21. The candidate relationships generated from the
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event nodes in the semantic net are also filtered by discarding any candidate
that does not associate at least two classes. This process reduced the total
number of candidate relationships to 8.

We now have a list of refined candidate classes with their attributes and
a list of refined candidate relationships. After refinement we have produced
a model of 11 classes and 8 associations as shown in Figure 8.

Figure 8: A Class Model of the ATM problem produced by Class-Gen

Comparison with Rumbaugh Model
Nine of the classes in first model produced by Class-Gen (Figure 8),

are also shown on the model produced by Rumbaugh et al. (Figure 7).
These classes are: Account, Bank, Station, Cashier, Transaction, Cash-
Card, Teller-Machine, and Computer. The class Transaction is modelled
by Rumbaugh et al. [50] as two classes: Remote Transaction and Cashier
Transaction. Three of the classes identified by our system (Software, Bank-
ing network, and Access) have been discarded by Rumbaugh et. al. on the
basis of their vagueness, a concept which our system does not handle. The
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associations identified by our system are not the same as those produced by
Rumbaugh et. al., although 8 out of 9 associations are correct. The only
remaining association is owned (as the station owns the computer). As this
relationship has no corresponding action we judge it to be ‘incorrect’ rather
than ‘extra’.

7. Evaluation

In order to test Class-Gen’s performance, evaluation was conducted by
applying Class-Gen to several previously unseen software requirements docu-
ments. Evaluation plays an important role in software development both for
developers and for consumers. Hirschman and Thompson [33] discuss three
kinds of evaluation:

7.1. Adequacy Evaluation

Adequacy Evaluation refers to the determination of system fitness for
some particular task. This kind of evaluation is usually used to answer
questions such as: will the system do what is required? how well will it do
it? what cost will be associated with it?, etc.

7.2. Diagnostic Evaluation

Diagnostic Evaluation is used by system developers to test their system
during its development. A large amount of test data is required for this kind
of evaluation. This data is used to determine the coverage of the system and
to fix any flaws found.

7.3. Performance Evaluation

Performance Evaluation is a measurement of the system performance in
some area of interest. Many concepts from quantitative performance eval-
uation in information retrieval have been imported into the development of
evaluation methodologies in NLP. Hirschman and Thompson [33] address
three important concepts of performance evaluation that must be taken into
account in any evaluation methodology:

Criterion: what we are interested in evaluating (e.g. precision, speed, error
rate, etc.). The criterion applied relates to how closely the models
produced by analysts match those produced by our approach (system
responses versus answers key) [33]. However, a single gold standard
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model for any given software requirement does not exist, as different
human analysts will usually produce different models. These models
cannot be categorised as strictly correct or incorrect, but nonetheless
they are usually categorised as good or bad, depending on the objects
and the relationships represented within them. It was assumed in this
work that the models available in object-oriented text books are good
models and so we have used them as usable answer keys.

Measure: relates to the system performance obtained given the chosen cri-
terion (e.g., ratio of hits to hits and misses, seconds to process, percent
incorrect, etc.). We have used two metrics for evaluating our system,
recall and precision, which were originally developed for evaluating
information retrieval systems and are the basic measures used in evalu-
ating search strategies. In any system, both precision and recall should
ideally be as close to 100% as possible.

Recall: Recall reflects the completeness of the results produced by an
information extraction (IE) system [29]. The correct and relevant
information returned by the system is compared with that found
in the answer key. Recall is defined as:

Recall =
Ncorrect

Ncorrect +Nmissing

where Ncorrect refers to the number of correct responses made by
the system, and Nmissing is the number of information elements
extracted by human expert and missed by the system.

Precision: Precision reflects how much of the extracted information
was correct. The following formula is used to calculate precision:

Precision =
Ncorrect

Ncorrect +Nincorrect

where Ncorrect is as above, and Nincorrect refers to the incorrect
responses made by the system [29].

Method: to determine the appropriate value for a given measure and a
given system. A manual method has been used where the results pro-
duced by the system are compared with the answer key. The Class-Gen
system determines the classes, attributes, associations, generalizations
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and inheritances. Each of the correct answers that matches an element
in the answer key is considered correct. If the result does not match an
element in the key it is set as incorrect. It is set to extra if the answer is
valid information from the text but it does not exist in the key answer.

Correct: an element in the answer model is said to be correct if it exactly
matches (i.e. exact string match of names) an element in the key model.
If no exact match exists, we use the problem statement and our own
judgment to find any element in the key model which is semantically
identical to the element of the system answer (i.e. both of them refer
to the same entity).

Incorrect: If an element in the answer model is not in the key model it is
said to be incorrect, and both the problem statement and our judgment
confirm that it is wrong (i.e. if an adjective, adverb, or a verb in the
problem statement is wrongly given as a class).

Extra: An element in the answer model is said to be an extra element if it
is correct (again by judgment and using the definition of the element
in UML), but is not in the key model. This should not be confused
with the term ‘spurious’ in message understanding conference (MUC)
conferences which refers to the system extra incorrect responses.

Missing: When an element is in the key model but not in the answer model
it is considered as a missing element.

Over-specification: is an evaluation metric to measure how much extra
information in the system answer is not in the key model generated
by human analysts. The OOA community agreed that in the early
stages of analysis it is recommended to over-specify rather than to
miss important information [41, 35, 42, 43].

Over-specification =
Nextra

Ncorrect +Nmissing

Where Nextra is the number of extra elements retrieved and Ncorrect and
Nmissing are as previously defined.
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8. Comparative Analysis

8.1. Raw performance measurement

A corpus of six case studies, each from a different domain and extracted
from a text book, was used to measure Class-Gen’s performance. This choice
was dictated by the fact that the case studies are well known to software
engineers having intermediate length and with solution available. None of
these case studies was examined in detail prior to the final evaluation, nor
was the system run on any of them before the evaluation. The requirements
definitions in the case studies range from 100 to 550 words in length, with
sentence length ranging between 5 and 39 words. The average sentence length
was 18 words.

Table 3 depicts the scores of the Class-Gen system on the six case stud-
ies. Each row shows the scores for one case study and the last three columns
show the recall, precision and over-specification of the Class-Gen system.
From this it can be seen that the system’s average recall, precision and
over-specification were 90%, 85% and 45% respectively. Whilst recall and
precision should be as high as possible over-specification should be as low
as possible. The initial class list is close to that finally obtained because of
good performance on over-specification.

As formal evaluation of other NL-based CASE tools has not been pub-
lished in the literature we cannot compare our results with them. How-
ever, it is worth noting that other language processing technologies, such as
information retrieval systems, information extraction systems and machine
translation systems, have produced commercial applications with recall and
precision figures well below the levels achieved by Class-Gen. The results
of this initial performance evaluation are very encouraging and demonstrate
the efficacy of the Class-Gen approach.

8.2. Comparison with human experts

Following the raw performance measurement further evaluation was con-
ducted to compare the precision and recall obtained using Class-Gen with the
performance of human analysts constructing a class model manually without
the benefit of Class-Gen to assist them. Nine independent software engineers
with between 5 and 20 years of experience in UML were asked to derive a
class model from the requirements specification given in the UCD for the
ATM case study used above. The subjects’ performance was measured as
above and the results are shown in Table 4.
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Case Study Ncor Ninc Nmis Next Recall % Precision % Over-specification
%

ATM [50] 11 1 1 2 100 91 16

VSSR [49] 6 0 0 1 100 100 16

JRP [21] 5 1 0 2 100 83 40

EFP [20] 7 2 3 5 70 77 50

LHP [21] 4 1 1 3 80 80 60

BAMS [36] 8 2 1 6 88 80 88

Average 7 1 1 3 90 85 45

Table 3: Summary of evaluation results from all case studies
ATM: Automated Teller Machine; VSSR: Video Store;
JRP: Journal Registration Problem; EFP: Electronic Fil-
ing Program; LHP: Local Hospital Problem; BAMS:
Bank Accounts Management System.

The average performance of the nine subjects was 58% for recall and 82%
for precision. From Table 3 we can see that Class-Gen’s average performance
of 90% and 85% respectively compares favourably. Class-Gen’s performance
on the ATM case study was even better than that obtained manually by the
subjects, with recall and precision of 100% and 91% respectively.

Subject Recall % Precision %

1 72 66

2 90 90

3 36 80

4 54 85

5 54 85

6 72 100

7 45 85

8 45 50

9 54 100

Average 58 82

Table 4: Manual results of recall and precision obtained by nine software engineers

9. Conclusion and future work

This paper has proposed an approach to assist with the process of object
identification. By extracting nouns, verbs, adjectives and adverbs from use
case descriptions a new intermediate representation called parsed use case
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descriptions (PUCDs) was introduced as a means of storing the results of
NLP parsing stages.

The PUCDs were then incorporated into a new tool called Class-Gen.
This tool uses natural language processing techniques to analyze software
requirements. Class-Gen is used for the identification of object classes, their
attributes and the relationships between them to produce an initial class
model. This class model can then be refined by a human expert. It was
found that Class-Gen performed very favourably on a number of exemplar
case studies of varying size, and that it enabled an expert to achieve higher
recall and precision values than those obtained by analysts using an entirely
manual approach.

An important aspect of Class-Gen is that it can be used to generate first
cut class models more quickly than could be achieved by hand. It took the
nine software engineers between one to seven hours to produce a class model
manually (these figures were obtained through self reporting). Compare this
to Class-Gen which took between one and thirty minutes to create a class
model. This is because the Class-Gen is highly efficient at analysing the
problem statement text. The analysis is done by differentiating the text into
classes and relationships, through highlighting them with different colours i.e.
the colour red is for classes and the colour green is for relationships. This is
shown in Figure 5, which is a screen shot of the implementation process.

Class-Gen was evaluated in two ways. First its raw performance was mea-
sured by producing class models from six exemplar case studies and calcu-
lating the precision and recall thus obtained. Second, a comparative analysis
was conducted by comparing Class-Gen’s performance against the results
obtained by a number software engineers deriving class models manually.

The results achieved have demonstrated that the approach implemented
in Class-Gen may be of assistance in the early stages of object-oriented anal-
ysis tasks. The results are very encouraging and several follow-up lines of
enquiry are suggested:

• There is no standard format for UCDs. Performance of systems such
as Class-Gen might be improved if UCDs were made more formal by
restricting the style of language used. However, one particularly pleas-
ing aspect of Class-Gen is that is does work very well with UCDs of
varying formality; it is already quite robust against informal natural
language, and this is what helps to set it apart from some previous
systems.
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• It was shown in this work how NL-based CASE tools can be quanti-
tatively evaluated by appropriating the recall and precision measures
from the information retrieval domain. Further studies will be able to
explore in more detail how tools such as Class-Gen can be used to assist
with analysis of the characteristics of attributes and relationships.

• To further investigate the aggregation and inheritance relationships
which are more difficult to analyze automatically than relationships
between classes.
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Appendix A. Rules Used by Class-Gen

This section presents a set of rules that state correspondences between
English sentence structures and ER modelling. These rules apply natural
language processing in extracting knowledge from the requirements specifi-
cations. Below are specific rules for determining entity types, attribute types
and relationship types.

A.1. Rules to determine entity types

Rules for determining entity types are mainly based on the studies of
Chen [15] and Tjoa and Berger [52].

Case 1 : All nouns (both common and proper) are converted to entity
types [52]. This includes all types of nouns such as collective nouns, common
nouns, count nouns, mass nouns. ‘London’ is an example of a proper noun,
‘school’ is an example of a common noun. For example:

“A school has a principal and many teachers”.

“Mr. Tom Lewis works in the Human Resources department”.

In the first example we notice that “school”, “principal” and “teacher”
are common nouns and therefore are considered as entity types/classes.

In the second example “Mr. Tom Lewis” and “Human Resources” are
proper nouns denoting a specific person and place and therefore instances of
two entity classes.

Case 2 : An English gerund “corresponding to a relationship-converted
entity type gerund may indicate an entity type which is relationship converted
entity type” in an entity-relationship diagram [15, rule 9]. A gerund is a noun
derived from a verb (also known as a verbal noun) and has the form: noun
+ ing.

“Students may borrow many books and borrowing is processed
by a member of the library staff”.
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The verb “to borrow” in this example appears as the gerund “borrowing”
as the subject of the second clause. The verb “to borrow” corresponds to a
relationship type and this has been changed into an entity type “borrowing”.
In this case an entity type may inherit attributes of the relationship type.
Hence in this example, the gerund “borrowing” may have attributes of the
relationship type such as “copy number” and “borrow date”.

Case 3 : A clause may indicate a high-level entity type which encompasses
or includes lower-level entity and relationship types [15, rule 10]. In English
the clause is regarded as the main construction which consists of a subject
and a predicate. A clause or subject clause can be built upon another clause.
For example:

“The doctor decides which medicine to be given to each patient”.

The clause “which medicine to be given to each patient” is a sub clause
of the verb “decides”. Both “medicine” and “patient” are entity types while
“to be given” corresponds to a relationship type. The entire clause implies
a high entity type called “Prescription”.

A.2. Rules to determine attributes

The rules for determining attributes are as follows.

Case 1 : A noun which takes the general form of TERM SUFFIX such as
noun id, noun no, noun type or noun number may indicate an attribute type
[51]; the TERM SUFFIX representation is often used in database problem
specifications. For example:

“Each textbook has a book id and a title”.

The noun “book id” in the above example may indicate that it is an at-
tribute type.

Case 2 : A noun phrase which follows the phrase “identified by” may
indicate the presence of attribute type [27].

“A person identified by person-id and surname, can own any num-
ber of vehicles”.

35



“Suppliers are identified by supplier-id”.

Case 3 : An intransitive verb may denote an attribute type [15, rule 2]. An
intransitive verb is a verb which does not need any element to complete its
meaning. For example:

“The train arrives every morning at approximately 8.15 am”.

In this example the verb “arrives” is intransitive as it does not take an
object. The attribute lies in the “arrival time” of “8.15am”. In other words,
by mentioning the arrival time of a train an attribute is deduced.

Case 4 : An adjective corresponds to an attribute of an entity type [15,
52]. An adjective is a word that describes a noun or a pronoun. An adjective
adds some attributes to a noun or pronoun to make it specific. For example:

“The large photo album has extra charges on delivery”.

The adjective “large” may indicate an attribute “size” of the photo.

Case 5 : The genitive case is used when referring to a relationship of
possessor or source by using the “of” construction (or using the possessive
apostrophe). This case suggests an attribute function. This is clearly shown
in the following example:

“The employee’s name is stored”.

The noun “name” may be an attribute of the entity type “employee”.

A.3. Rules to determine relationship types

Relationship types can be determined using the following rules.
Case 1 : An adverb can indicate an attribute of a relationship type [15,

rule 4]. An adverb is a word or a phrase that describes or modifies any parts
of language apart from nouns (which are modified by adjectives). It may
refer to time, place, degree, manner, cause and circumstances. For example:

“The employee visits the site a maximum of twice a week”.
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The verb “visits” corresponds to the relationship type, nouns such as
“employee” and “site” are considered as entity types. The adverbial phrase
“twice a week” describes the frequency of visits. So an attribute called “fre-
quency of visits” is linked to the relationship “visits”.

Case 2 : A transitive verb can be a candidate for a relationship type [15,
rule 2]. A transitive verb is a verb which needs an object to complete the
meaning of the sentence. For example:

“A borrower may borrow many books”.

In this example the nouns “borrower” and “books” are entity types. “Bor-
rower” is the subject and “books” is the direct object. The verb “borrow” is
a transitive verb and it corresponds to a relationship type.

Case 3 : If a sentence has the form “The X of Y is Z” we may treat X as
a relationship between Y and Z. In this case, both Y and Z represent entity
types [15, rule 6]. For example:

“The father of Ali Hasin is Nory Hasin”.

Both “Ali Hasin” and “Nory Hasin” are proper nouns so we can say
that they are both instances of particular entity types and that “father”
is a relationship between them. If we assume that both “Ali Hasin” and
Nory Hasin” refer to instances of the “person” entity type, we may say that
“father” is a recursive relationship from “person” to “person”.

A.4. Rule for determining cardinality types

Tjoa and Berger [52] presented a rule for determining cardinality types.
Cardinality may be determined as follows.

Case 1 : A noun or a prepositional phrase whose occurrence is singular
gets a minimal and maximum cardinality of 1 [52]. For example:

“The single room is meant for only one guest”.

In this example, “room” and “guest” are singular nouns and these may
suggest that the cardinality is of type one-to-one.
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A.5. Rule to determine Enhanced Entity Relationships (EER/UML)

The basic concepts of ER modeling are not sufficient to represent the
requirements of the newer, more complex applications. The enhanced entity
relationship (EER) model is a conceptual data model capable of describing
the data requirements for a new information system in a direct and easy to
understand graphical notion [24, ch. 4, 7][17, ch. 12]. Data requirements
for a database and conceptual schema using EER schema are comparable to
UML.

The EER model includes all concepts of the original ER model together
with concepts of specialization/generalization and categorization associated
with the related concepts of entity types described as superclasses and sub-
classes and the process of attribute inheritance. This section presents rules
for the EER/UML concepts, association and aggregation, composition, and
inheritance.

a) Associations

Associations usually represent bi-directional relationships between in-
stances of classes. Bi-directional means objects of the associated classes
are aware of each other. If an association is uni-directional a solid triangle
can be shown next to the association name to show in which direction the
association can be read [10].

In a requirements document associations are usually denoted by verb
phrases. For example, the clause “students borrow books” denotes a borrow
association between objects of the two classes Student and Book. Figure A.9
shows this association.

Figure A.9: Association

In the same way that there are instance of classes, there are also instances
of associations. A link relates a pair of objects. For example, an instance
of the association Borrow, in figure A.9, relates two objects of type Student
and Book.

Multiplicity
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A multiplicity specifies the range of allowable cardinalities that a set may
assume. Multiplicity specifications may be given to roles within associations
or parts within compositions. A multiplicity is a subset of the non-negative
open integers and can be a single value (e.g. 1 for only one) or an integer
range (e.g. 1..7). A single star (*) is also used to denote an unlimited non-
negative integer range.

Figure A.9 shows a one-to-many association between a student and a
book. It means one student can borrow many books, and a book (copy of)
can be borrowed by one student at a time.

Roles
The roles played by classes involved in an association can be connected

to that association. Role names are shown at each end of the association
where the association connects to the participating class. Figure A.10 shows
husband and wife roles played by members of the Person class in a married
to association.

Figure A.10: UML Association Roles

Case 1 : Association can be indicated when a clause has the meaning
“B is associated-with A”. This type of interpretation commonly shows an
association between two entity types or an entity with its attributes. For
example:

“The library has many book suppliers”.

In this relationship, “book suppliers” may be regarded as an entity asso-
ciated to “library”.

“The book has a publisher”.

In this case, “publisher” may become an attribute of “book” or another
entity type linked to it. This depends on whether the existence of “publisher”
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is highly significant in the business environment that is being analyzed in
which other attributes of “publisher” (e.g. publisher’s address, id and tele-
phone number, etc.) are kept. It may also exist simply as an attribute of
“book” (e.g. publisher’s name).

Case 2 : A verb showing possession (e.g. “to have”) may also imply an
aggregation or association relationship [19]. For example:

“The car hire company has many branches”.

In this type of “has/have” phrase, the noun that occurs after the phrase
does not usually denote an attribute. The possession would normally show an
association relationship between two entity types (classes). In the example
above “car hire company” and “branches” are two distinct classes which are
involved in an association relationship.

b) Aggregation

Aggregation is an important relationship between classes. Aggregation
can be found by considering some clause patterns such as “A is made up of
B”, “C is part of D”, “E contains F” [19].

Figure A.11: UML Aggregation Relationship

Figure A.11 shows that a football team consists of 11 or more players.
The aggregation relationship does not suggest a strong association between
the parts and the whole. For example, a player can be a member of more
than one team. In this case we can express the aggregation relationship as:

Aggregation = (Player is-part-of Football team).

c) Composition
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Composition is a special kind of aggregation representing the existence
of a strong relationship between the whole and its parts: a part cannot be a
member of more than one whole. The multiplicity at the whole end is always
one.

This means that, in a composite aggregation an object may be a part of
only one composition at a time. For example, in a BrickWall system, a Brick
belongs to exactly one BrickWall. This is in contrast to simple aggregation,
in which a part may be shared by several wholes. For example, in the model
of a house, a Wall may be a part of one or more Room objects. Figure A.12
shows that a brick wall is composed of one or more bricks.

Figure A.12: Composition Relationship

d) Inheritance

Although it is not a new concept, having its roots in Artificial Intelligence
(AI) knowledge representation paradigms, inheritance is a powerful concept
in object orientation. The most important link in a semantic network is the
‘is a’ relationship (is a type of) and such links support inheritance [10]. Thus,
if X is a Y then X inherits all of Y ’s properties.

Suppose that a class, C is made up of set of attributes A and set of
operations O.

C =< A,O >

Assume λ is a class. Let x, y and z also be the names of classes. Then:

∀x∀y[λ(x) ⊂ λ(y)]

and
∀x∀z[λ(x) ⊂ λ(z)]
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Therefore,
< ∀y∀z[λ(y) ∩ λ(z)] > = < ∀x[λ(x)] >

is the property of inheritance where x is a superclass, and y and z are sub-
classes which inherit from x.

For example, consider the following class descriptions. The class Student
has an attribute name and an operation borrowbooks ; the PGStudent class
has attributes name and area of study and operations borrow books and
borrow journals ; and the class UGStudent has attributes name and stream
and an operation borrow books. We can represent these classes thus:

Student = < A : {name}, O : {borrowbooks} >
PGStudent = < A : {name, areaofstudy}, O : {borrowbooks, borrowjournals} >
UGStudent = < A : {name, stream}, O : {borrowbooks} >

Figure A.13: Inheritance

Figure A.13 shows the relationships between these classes. The general,
or superclass, Student is extended (inherited from) by the two specialized
classes PGStudent and UGStudent (also called subclasses) representing post-
graduate and undergraduate students respectively. The superclass Student
defines both data and operations that are common to its subclasses. The
subclasses inherit (reuse or share) the information defined in the superclass
and add the information that makes them special.
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Inheritance is considered an important concept in the object-oriented
community for at least two reasons. First, it provides a very natural mech-
anism for organizing the information captured in OO models. Second it
enables code and structure sharing, and hence assists software re-usability
which is considered an important software engineering goal [23, 24]. Inheri-
tance is evident in sentences that have ‘is-a-kind-of ’ relationships. For exam-
ple, doctors, nurses and administrative personnel are all kinds of employees
and those employees and patients are kinds of persons.

A.6. Rules to determine behaviour (Operation)

Operations define the way in which objects interact with other objects.
They are used to model the services an object can perform. A behaviour
model shows responses to events in the outside world and to the passage of
time [7]. Behaviour is considerably more detailed when there is interaction
between collaborating classes and when every message is defined as an event
or an operation of a class; behaviour is identified by explicitly stating what
the object does [10].

Operations are listed in the bottom compartment of a UML class. Figure
A.14 shows that the Student class has two operations, borrowBook (b:Book)
and addCourse(c:Course).

Figure A.14: Operation

Case 1: “A verb implies an operation” [19]. A verb is a word that shows
action or state of being. For example:

“The author wrote many stories”.
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In this example, “wrote” is a verb indicating an operation.

Case 2: “A transitive verb implies an operation” [19]. A transitive is a
verb that needs a direct object to complete its meaning. For example:

“Tom was crossing a bridge when the earthquake hit”.

In this example the transitive verb “crossing” indicates a possible operation.

Case 3: “A predicate or descriptive verb phrase implies an operation”.
For example:

“Select the books on software engineering”.

In this example the predicate “select” indicates a retrieval operation.
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