
fther, M A,

ich keys as
for display
18 can pro-
al as users'
rowledge of
ned by the
ion.

mer. There
:onstructed
bo facilitate
' to bui ld a

systems in
normalized
figure 2(b)
rovide data
me features
iting.text.id
efined as in
ponent of a
rll values as
reded in the
ct paths to
hown is the
quest.

ng them by
y by taking
B if relation
in the same

lst [word]

Database Models for Textual Documents 135

and in the same schedule by:

lJord.E4 [year, chapter, schedule#, word] divideby Requestlword]

A clear disadvantage of the approach of flattening the data is that no stan-

dard set operators exist for constructing the word indexes and it is not
realistic to expect users to input such structures manually. Operators to
perform the flattening of normal text could be user-written but this would
involve additional effort a^nd would be likely to result in inefficient code.

The manipulation of biblical text in relational databases has also been
considered in detail [Heather and Rossiter (in press)]. It was found feasible
to normalize this data to the word level and employ SQL or relational algebra

for searching the data against different unit sizes and for aggregating the

data as necessary. The biblical data are represented by a complex object
with the single path:

testament -> book -> chapter -> verse -) word.placement

Although this path is much simpler to manage than the rmrltiple paths of law
shown above, the approach of 'flattening'the data was found to be cumber-
some for data manipulation, to hide the natural structure of the data from
the user and to have adverse performance implications when reconstituting
aggregations for documents in large textbases. Only with extensive media-
tion, between the system and the user, is a natural interface provided with
a high level of data abstraction.

5 Ob jec t Or ien ted Sys tems

In advanced languages such as Ada, C** and Sirnula, the concept of class
structure and variable unit size is well established through the extensible

type system with the ability to declare abstract data types. Some of these

languages allow subobjects to inherit properties from higher-level objects

and inter-object communication. These object-oriented systems readily al-

low iterative searching of complex objects, multiple levels of abstraction and
a natural ability to handle dynamic aspects with function fully integrated
with data [Bloom and Zdonik 1987], all important issues for textbases.

The use of object-oriented programs for database management is in its

early stages. Advances depend on programrning systems being developed

to handle persistent data such as in the ea,rly work by Atkinson with PS-

Algol [Atkinson et al 1981]. One of the first developments was GemStone

