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Abstract. A definition of types in an information system is given from
real-world abstractions through data constructs, schema and definitions
to physical data values. Category theory suggests that four levels are
sufficient to provide ultimate closure for computational types to con-
struct information systems. The Godement calculus provides rules gov-
erning the composition of the mappings at different levels. Examples of
information systems are reviewed in terms of the four-level architecture
including IRDS, the Grid, the semantic web and MOF/MDA.

1 The four fundamental levels and their formalisation

Interoperability is still a major problem in information systems. Most achieve-
ments have been with systems using a similar model or paradigm. Where hetero-
geneous systems are involved, progress has required much manual adjustment
to mappings. Recently the development of the Grid has exposed the great diffi-
culty of employing data held in formal database systems as opposed to operating
system files [Watson, 2002]. Using higher-order logic we build on existing work
[Rossiter, Nelson and Heather, 2001] to review some examples and their relia-
bility for applications of interoperability and cross-platform software.

The whole subject of relating different systems emerges in federated infor-
mation systems (FIS) as the core issue. The term level is used in FIS in a subtly
different way [Conrad et al, 1997] to that employed in this paper so we start with
a brief description of our architecture. One instance of the fundamental levels in
Fig 1 is a representation of a single platform, paradigm or model. Level 1 would
be real-world type abstractions, level 2 the type constructs available, level 3 the
data types and level 4 the named values.

Constructive mathematics attempts to develop logically what can work in
practice and can therefore provide the necessary universal typing for interop-
erability of heterogeneous data systems with consistency and quality assurance
in the real-world. Category theory [Barr and Wells, 1990] is particularly appro-
priate for modelling multi-level relationships for it is essentially concerned with
links between objects. In categorial terms each of the four levels is defined as a
category (i.e. a type) as shown in Fig 2. Between each level there is a higher-
order function, a functor, which ensures that certain consistency requirements



are met in the mapping between the source and target categories. The four
levels from the top are defined as the categories CONCEPTS (abstractions),
CONSTRUCTS, SCHEMA and DATA with the mappings between them
as shown in the diagram.
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Fig. 1. Interpretation of Fundamental Levels informally

Adjointness [Barr and Wells, 1990] characterises the unique relationship be-
tween a lower-limit functor (F ) that preserves co-limits and an upper-limit func-
tor (G) which preserves limits, written F a G, that is G is right-adjoint to F .
The multi-level application shown in Fig 2 involves the composition of adjoints,
that is an expression is derived in which two or more adjoints are adjacent to
each other. It is part of the power of category theory that adjoints can be com-
posed in the same way as other arrows. For example consider the adjoints shown
in Fig 3 where CC is the category CONCEPTS, CS CONSTRUCTS, SM
SCHEMA and DT DATA.

Then we may have six adjoints (if the conditions are satisfied):
I a C; O a M ; P a A; I ◦ O a M ◦ C; O ◦ P a A ◦ M ;
I ◦O ◦ P a A ◦M ◦ C
where P is the functor Policy, O Org, I Instance, A MetaMeta, M Meta and
C Classify. We can construct the 4-tuple to represent the composed adjunctions
defined in Fig 2: < IOP,AMC,AM ¯̄ηccOP •Aη̄ccP •ηcc, ¯̄εdt•Iε̄dtC•IOεdtMC >.

If the conditions of this adjunction are met, we can represent the composed
adjunction Platform a Sys by the 4-tuple < Platform, Sys, ηcc, εdt >: CC −→



DT where Platform = IOP , Sys = AMC, ηcc is the unit of adjunction, εdt is
the counit of adjunction, cc is an object in CC and dt an object in DT.
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Fig. 2. Four Levels in Functorial Terms

This adjunction can be evaluated for each application giving a collection of
4-tuples. Comparison of these 4-tuples then gives the mechanism for computa-
tional type closure. The ability to compose adjoints naturally means that we can
combine well together such diverse features as policy, organization and data in
a single arrow.
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Fig. 3. Composition of Adjoints

The overall composition gives a simple representation for conceptual pur-
poses; the individual mappings enable the transformations to be followed in
detail at each stage and provide a route for implementation.

2 Comparing one System with Another

Adjunctions give the relationships between one level and another. We can also
approach the problem by considering a direct mapping between one instance
of the four-level architecture and another as in Fig 4. Here for simplicity the
mappings are viewed in one direction only. Two systems are compared, one
involving categories CC, CS, SM and DT, the other CC, CS′, SM′ and DT′.
CC is the same in both systems as there is one universal type for concepts. As
in Fig 3, the functors relate the categories. We have now though added natural
transformations to relate the mapping between one functor and another.
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Fig. 4. Comparison of Mappings in two Systems

If we follow the constructive principles of category theory, then the com-
position of these arrows is natural. The Godement calculus ([Godement, 1958];
[Barr and Wells, 1990], pp 94-97) gives a number of rules governing the com-
positions. Rules G2 and G3 say that the composition of functors and natural
transformations is associative so that for instance:
(I ′O′)α = I ′(O′α); γ(OP ) = (γO)P
Rule G3 says that natural transformations may be composed with each other:
γβ = (γO) ◦ (I ′β); βα = (βP ) ◦ (O′α)

The consequence of this for interoperability is that a categorical approach
ensures that the various arrows of different types can be composed with each
other, irrespective of their level in the system. Equations can be derived, repre-
senting an equality of paths, with unknown components that can be determined
from an evaluation of the known properties. For instance with the path IOP
from CC −→ CS −→ SM −→ DT defining an object-oriented system, then
the path I ′O′α from CC −→ CS′ −→ SM′ −→ DT′ would define a relational
representation if P ′ maps onto relational constructs in the category CS′.
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Fig. 5. Commuting Target Square for Natural Transformations: (a) α : P −→ P ′,
comparing policies; (b) β : O −→ O′, comparing use of constructs

In category theory four levels are required to define an arrow as unique up
to natural isomorphism. The four levels are: 1) object or identity arrow (within
a category), 2) category (comparing objects), 3) functor (comparing categories)
and 4) natural transformation (comparing functors). No more levels are required.
An arrow comparing natural transformations is a natural transformation. Two
squares, derived from Fig 4, are shown above. Fig 5(a) must commute for each
arrow f : cc −→ cs if α is to be a natural transformation. Similarly Fig 5(b) must
commute for each arrow g : cs −→ sm if β is to be a natural transformation.
Viewed in this way a natural transformation is not a layer above functors and
functions. The levels are interwoven with natural transformations considering
how every arrow defined at the lowest level is mapped.



If we write the arrow: δ : α −→ β then δ is a composition β ◦ α. An arrow
from one natural transformation to another gives a composition of the natural
transformations, not a new level ([Barr and Wells, 1990], at p.85). The four levels
of concepts, constructs, schema and data are viewed in Fig 2 as four categories
connected by a composition of three functors. An alternative view, shown in Fig
6, is closer to the four levels inherent in category theory. The fundamental levels
are considered to be data values, named values, classified values and contrasted
representation corresponding in category theory to object, category, functor and
natural transformation respectively. The natural transformations are now the
duals of those shown earlier in Fig 4 as indicated by the * superscript.
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Fig. 6. Alternative Interpretation of Levels in the Architecture

This view does not supersede the earlier one which is more useful for sys-
tem design with its similarity to the ANSI/SPARC three-level architecture. The
alternative view though may have some potential for interoperability where com-
parisons are an inherent part of the methodology with natural transformations
as ultimate closure. It can be seen that the addition of further levels is possible
but nothing is gained by it type-wise. Thus addition of an extra level to the
top of Fig 1 simply results in the top level being a composition of three arrows
rather than two. The practical consequence is that a fifth level is equivalent to
an alternative fourth level. The meta-meta level gives ultimate closure of types.

3 Levels in applications

Four existing approaches to interoperability were examined to see how they
compare in giving a genuine four-level strategy for tackling the problem of in-
teroperability [Rossiter, Nelson and Heather, 2003]:

1. Information Resource Dictionary System [Gradwell, 1990]
2. Grid Construction [Watson, 2002]
3. Data Exchange Languages [Berners-Lee et al, 2001]
4. Metaobjects in the Model-driven Architecture [Bezivin, 2001]



The Information Resource Dictionary Standard (IRDS) did provide four lev-
els but ANSI downgraded this standard and its influence has been less than
anticipated. More recently ISO has begun again to value a four-level architec-
ture with the consideration of a meta-meta model in work on comparing models.
Systems developed recently, claiming to provide interoperability, such as MOF
are able to provide considerable assistance within a paradigm but appear to
lack the top level, mapping abstractions to constructions, necessary to achieve
interoperability across paradigms. Moreover, recent work has suggested that fu-
ture effort with MOF [Habela, Roantree and Subieta, 2002] should flatten the
metamodel to reduce complexity and to support extendibility. Both IRDS and
MOF are data-driven approaches in a general sense. The semantic web takes a
different approach, being partially data-driven through RDF but also relying on
agent-based technology for resolving mismatches. The semantic web therefore
appears to lack the two top levels of concepts and constructs but the use of
ontologies and agents may compensate to some extent at least for some of this
loss. The Grid also lacks the top two levels for data addressing and its potential
will not be realised until this deficiency is tackled.

To conclude the generality of current techniques for interoperability is in
doubt. The definition of the four levels necessary for providing interoperability,
the availability of the Godement calculus for composing mappings formed at
different levels and the specifications of the adjointness between the levels and
of pullback categories representing relationships, all add coherence through a
categorical approach to interoperability.
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