Journal of Computing and Information Technology - CIT 14, 2006, 3, 1-16 1

doi:10.2498/cit.2006.03.06

Storing Linked XML Documents
In Object-Relational DBM S

Pensri Amornsinlaphachai*, Nick Rossiter and M. Akhtar Ali

School of Computing, Engineering & Information Sciences, Northumbria University, Newcastle upon Tyne, UK

Currently, several researchers have proposed mapping
both structure and constraints of XML documents to
an object-relational database (ORDB). However, these
researches cannot be conducted because of the lim-
ited range of constraints in available object-relational
DBMSs. We therefore propose mapping rules that are
practicable in available technologies. Normally, an
XML document is treated as a database, so much data
redundancy occurs. To solve this problem, we keep
non-redundant datain several separate XML documents,
link the data dispersed in these documents together by a
mechanism called ‘rlink’ and then map this mechanism
to ORDB. Finally we perform a case study in Oracle9i
to illustrate the mapping of XML to ORDB according to
our rules. Our contribution is that we find that mapping
linked XML documents to traditional databases such as
(O)RDB makes it easier to join severa documents and
to update several documentsin one update command.

Keywords: XML, semi-structured data, constraints,
linked XML documents, ORDB

1. Introduction

When XML (Extensible Markup Language)
became an effective standard for representa
tion of structured and semi-structured data on
the Web, researches were undertaken to store
[10, 23], query [13, 10, 8, 6, 7] and publish
(30, 4, 11) XML documents. A dominating ap-
proach for storing XML documents is apply-
ing traditional databases. relational database
(RDB), object-oriented database (OODB) and
object-relational database (ORDB) to manage
XML documents. Mapping XML documents
to RDB is a most popular research [39, 19].
However, the structure of XML documents is
hierarchical whereas relationa structureisflat;
thus it is not a good fit. To fit the structure

of XML documents to traditional databases, it
seems that OODB [1] is suitable; nevertheless,
some constraintssuch as not null and del ete cas-
cadearenot supported by OODB [5]. InORDB,
constraints are inherited from RDB; neverthe-
less, not every feature in ORDB supports con-
straints. Our motivation comes from three rea-
sons as follows.

e Thereissome research [26, 20| presented to
map XML documentsto ORDB, but it isnot
practicable though researchers [26] claim to
use SQL4. One open problem is that avail-
able DBM Ss have not supported all the fea-
tures of SQL4.

e Usualy, an XML document is treated as a
database keeping all data in one document;
thus data redundancy always occurs. The
problem of data redundancy can lead to data
inconsistency and low performance when
updates are performed. Some work [9, 3]
presented the technique of reducing datare-
dundancy during mapping XML documents
to RDB by using XML functional depen-
dencies. However, with this method, data
in the XML documents differ from the data
in the database; thus it becomes difficult to
maintain different data sets between the two
storages.

e Updating several XML documents or per-
forming joins between XML documents in
one update command is not easy and thus,
presently, no work proposes a methodol ogy
for thistask. Thiswill be discussed in Sec-
tion 7.

In our approach, we will demonstrate how to
map both structure and constraintsof XML doc-

*Thiswork was supported by the Royal Thai Government via Nakhonratchasima Rajabhat University.

Storing Linked XML Documents in Object-Relational DBMS

uments to ORDB with awareness of practica-
bility in available technologies whereby several
object-relational features can be exploited. We
store non-redundant datain separate XML doc-
uments and then propose a mechanism for link-
ing these separate documents together and pro-
pose the rules for mapping these linked XML
documentsto ORDB. Theresult derived from a
case study by mapping XML to ORDB is con-
ducted through Oracle9i.

The rest of this paper is organized as follows.
Related work is discussed in Section 2 and a
mechanism for linking XML documentsis pro-
posed in Section 3. Section 4. describes the
rules for mapping linked XML documents to
ORDB and Section 5. describes the rules for
mapping constraints to ORDB. We present the
preserving of order of XML elements in Sec-
tion 6. and a case study in Section 7. Finally,
conclusion and further work are discussed in
Section 8.

2. Related Work

There are a number of researches concentrat-
ing on mapping XML documents to traditional
databases. These researches can be separated
into two categories. automatic mapping and
non-automatic mapping. The non-automatic
mapping method [14] requires users to spec-
ify how to map the structure of XML to the
schema of a database and this method is pro-
posed by several commercial DBMSs such as
IBM DB2 and Oracle database server [28]. Our
work focuseson the automatic mapping of XML
documentsto traditional databases proposed by
severa previous workers as follows.

For RDB, [31] utilized a DTD graph to repre-
sent aDTD and to find agood mapping strategy.
Theresearchers proposed three approaches. ba-
sicinlining, shared inlining and hybrid inlining
techniques to map DTD to relational schema.
They indicated that the hybrid inlining tech-
nique is superior to basic inlining and shared
inlining techniques. [10] adapted a data min-
ing algorithm to identify supported patterns
for storage in relations and combined semi-
structured and relational techniques to process
semi-structured data by using OEM model and
RDB to store and manage semi-structured data.
[12] evaluated several mapping techniques and

indicated that the best overal approach is the
attribute approach. However, another research
presented by [35] identified that the attribute
approach has a poorer performance than the
DTD approach. [18] use both DTD and XML
documents for mapping. They keep elements
and path of elements in one table and keep at-
tributes and path of attributes in another table.
The reference between elements is represented
by path-IDs kept in the tables. [39] presented
their system called X-Database system which
uses the XML-Schema file to generate a RDB
schema and then decomposes valid XML doc-
uments according to the Schema to store their
information in the database.

From the above researches, only [39] performed
mapping constraints to database. However,
mapping XML to RDB can produce many un-
necessary tables |eading to unnecessary joinsin
querying sinceusually XML documentscontain
multi-val ue attributes while mapping these data
to RDB is performed by putting the data into
separate tables.

For OODB, [1] proposed an approach to map
semi-structured data(SGML) to an object model.
Inthisapproach, each SGML element definition

in DTD is interpreted as a class, choice con-

nector (|) is modeled by a union type, element

components marked by “+" or “*” occurrence
indicator are represented by lists, attributes are
represented by private property of the class.

Nonetheless, mapping semantics (constraints)

of semistructured documents is not proposed

because of the limited constraints of OODB.

In the case of ORDB, [32] proposed the method
that decomposes XML documentsinto thenodes
and stores them in four tables: element, at-

tribute, text and path tables while [27] used
XML datatype to store a fragment of an XML

document. However, these researchers did not
use any object-relational feature. [20] and [23]
exploited set/list and nested tables which are
features of ORDB, but no DBM S supports both
set/list and nested tables in one ORDB (In-

formix [17] supports list/set, Oracle [24] sup-
ports nested tables while PostgreSQL [25] sup-
ports array). In addition, [23] defined foreign
keys in nested tables whereas [20] used sev-
eral constraints such asdomain and default con-

straints in collection type and [26] defined pri-
mary keys in collection type. Defining the full

Storing Linked XML Documents in Object-Relational DBMS

range of constraints in nested tables or col-
lection type is restricted in available object-
relational DBM Ss; thus none can be conducted.
[36] mapped XML to ORDB by using UniSQL,
but the researchers did not employ constraints
and UniSQL /X itself isbased on OODB having
limited constraints [38].

To summarize, none of the previous work map-
ping both structure and constraints of XML to
ORDB can be conducted in existing technolo-
gies; furthermore, none of the previous work
mapped several types of linked XML docu-
mentsto traditional databases; thusall XML up-
date languages such as Extended XQL [42] and
XML update extension [33] including update
languages [43, 2, 29| for native XML database
were designed to update an XML document
without joins between documents.

3. A Mechanism for Linking XML
Documents

In the case of (O)RDB, foreign keys and refer-
ence type are employed to represent inter-table
references; thus to model linked XML docu-
ments, the mechanism for linking XML docu-
ments can be translated into foreign keys. For
XML documents, XLinks (XML Linking Lan-
guage) [41] and XInclude [40] are mechanisms
for linking the documents together. However,
XLink and XInclude are not designed from a
database viewpoint; thus they do not provide
enough information for linking XML docu-
mentsfrom adatabase point of view. Moreover,

XInclude [15] does not allow circular reference
(recursion). The major purpose of XLink isto
link XML documentsin the Web whilethemain
purpose of XlInclude is to build a large XML
document out of smaller XML documents. In
our research, we propose a mechanism called
rlink whose purpose isto associate the relation-
ships between elements from different XML
documents so that this provides more conve-
nience for updating data across XML docu-
ments. The rlink provides information to iden-
tify the document and/or element to which a
link is made. Although thismay be extended to
XLink, the main purposes of XLink and rlink
are different from each other and currently only
Mozilla and its derivatives such as Netscape
support XLink, but the support is incomplete
[16]; moreover, no XML query language sup-
ports XLink so we do not wish to make any
extension to it.

To associate the rel ationshi ps between elements
from different documents, we proposetwo addi-

tional attributes, rlink:relationshipandrlink:href.
The rlink:relationship indicates which docu-

ment and/or which element are involved in the
rlink mechanism whereas the rlink:href links
to the document and the element specified by

rlink:relationship. The ‘rlink’ is used as a
namespace.

The rlink mechanism will only serve the func-
tion of linking XML documents; thus elements
containing rlink mechanism must be EMPTY
and have no other attributes except rlink:rela-
tionship and rlink:href. In DTDs, the format of

<IELEMENT Publications(Publication*)>
<IELEMENT Publication(Title, Year, Author+)>
<!ATTLIST Publication PubID ID #REQUIRED >
<!ELEMENT Title(#PCDATA)>

<IELEMENT Year(#PCDATA)>

<!ELEMENT Author EMPTY >

<Publication PubID = “P111”>
</Author>
< /Publication>

< /Publications>

<!ATTLIST Author rlink:href CDATA #REQUIRED
rlink:relationship #FIXED “Authors.xml::Author” >

<Publications xmlns:rlink = “http://www.unn.ac.uk/rlink” >

<Author rlink:href = “//Author[@AuthorID=‘A222]" >

<!ELEMENT Authors(Author*)>
<!ELEMENT Authors(Name, Email?)>
<!ATTLIST Author AuthorID ID>
<!ELEMENT Name(FName, LName)>
<IELEMENT FName(#PCDATA)>
<!ELEMENT LName(#PCDATA)>
<!ELEMENT Email(#PCDATA)>

<Authors>

<Author AuthorID = “A222” >
<Email>... </Email>
</Author>

</Authors >

Fig. 1. Publications.xml and Authors.xml.

Storing Linked XML Documents in Object-Relational DBMS

value assigned to rlink:relationship is Linked-
Document::LinkedElement and its property is
FIXED while the value type of rlink:href is
CDATA. In XML documents, the format of the
value assigned to rlink:href is an XPath clause
linking to the document and the element speci-
fied by rlink:relationshipinthe DTD.

To illustrate this, we will give an example of
using rlink:relationship and rlink:href in DTDs
and XML documents as follows:

Example 1: Suppose that there are two XML
documents: Publications.xml and Authors.xml
linked together by rlink as shown in Figure 1.

From the XML documentsin Figure 1, the Au-
thor e ement in Publications.xml usesrlink:href
as an attribute to link information of Author
having AuthorlD = A222 from Authors.xml
whereas rlink:relationship in part of DTD is
used to indicate which document and which €l-
ement rlink:href will link to.

The recommendation for separating XML doc-
uments is as follows. C; and C, are complex
elements (elements consisting of sub-elements
or atributes) and value(E) is the value of ele-
ment where E is an element. If several C; can
refer to the same value C,, the C, should be
separated into another document.

For example, Publication and Author are com-
plex elements where severa publications can
have the same author. Therefore Author is sep-
arated into another document. Another exam-
pleis that Author and Address (of author) are
complex elements as each author has adifferent
address; but here there is no need to separate
Address into another document. This principle
is only a recommendation. Users may or may
not separate a XML document into several doc-
uments. However, our mapping-rules support
both forms of documents.

Note: The attribute rlink:relationship used in
the DTD is applied to IDREF(s) to indicate the
involved el ements.

4. Mapping Linked XML Documents
to ORDB

In this section, firstly we discuss the type of
recursion that can occur in DTD, secondly we
propose rules for mapping an XML document

to ORDB and finally we present additional rules
for mapping the rlink mechanism to ORDB. A
diagram for mapping XML structure and rlink
to ORDB is shown in Figure 2.

4.1. Forms of Recursion in DTD

In our research, mapping XML documents to
ORDB is based on DTD since DTD is more
compact than XML Schema; nonethel ess, map-
ping XML documents based on XML Schema
will beour futurework. Normally, therearetwo
formsof recursionin DTD. Thefirst form of re-
cursion comes from a recursive structure: an
element contains its ancestor €lements as child
elements. The second form of recursion stems
from IDREF(s). Aswe propose therlink mech-
anism, the third form of recursion resultsin the
case that two elementsin two XML documents
refer to each other.

4.2. Rules for Mapping Structure of an XML
Document to ORDB

In our mapping rules, three features of object-
relational technology: abstract data type, ob-
ject table and nested tables, will be used. In
the rules, elements having type #PCDATA and
without attributes are caled smple elements
whereas elements consisting of child-elements
or attributes are called complex elements.

1. Complex elementswhich do not correspond
to the rules 2-5 are converted to object ta-
bles.

2. Complex elements having only one com-
plex child-element are converted to object
tables and their complex child-elements are
converted to abstract datatype fields.

3. Complex elementswhich have occurrence ?
or 1 (athough thereis no single symbol for
occurrence meaning one, from now on we
will use the symbol ‘1" as canonical short
label), have sibling and all children as sim-
ple elements are converted to abstract data
typefields.

4. Complex elements being the root element
and having only several complex child-ele-
ments with occurrence * or + are converted
tonothingin ORDB andtheir child elements
are converted to object tables.

Storing Linked XML Documents in Object-Relational DBMS

Rule of mapping XML structure

1. Complex elements which do not
correspond to the rules 2-5

2. Elements having only one Element
complex child-element E Child-element

3. Elements with occurence 7 or 1,
have sibling and
have all children as simple elements

4. Element being the root element E Child-element

and having only several complex Element
child-elements with occurence * or +

5. Elements with occurence * or +
having sibling, all children are simple elements,
all attributes have no type IDREF(s)
no reference to other elements
no reference from other elements to them
and no recursive structure

6. Multi-valued simple elements
7. Simple elements, simple attributes,
ID attribute, optional simple elements,

and choice of simple elements

10. Elements with type ANY

11. Parent-child relationship and
recursive structure with occurence 7 or 1

12. Recursive structure with occurence + or *

14. An element referenced by IDREFs

13. An element referenced by IDREF

Rule of mapping rlink

1. Occurence of elements containing rlink is 1 or ?

Object table

Abstract data type

Nothing

Nested table

Field

A table is created with three fields:
referencing fields which refer to
where they are, name of elements
and value

PK of table od parent-element is

copied to table of child-element

A separate table is created to keep PKs

of parent-element and child-element or
to keep PKs of referencing element and
referenced element

PK of table of referenced element is
copied to table of referencing element

2. Occurence of elements containing rlink is + or *

Fig. 2. Mapping XML structure and rlink to ORDB.

5. Complex elements having occurrence * or do not have any reference since the refer-

+, have siblings and comply with the fol-
lowing conditions:

¢ All children are simple elements and all
attributes have no type IDREF(s).

e There is reference to other e ements and
no reference from other e ements to them.

e Thereisrecursive structure: they must not
refer back to their ancestors.

are converted to nested-tables.
This rule is to make sure that nested tables

ential integrity constraint cannot be defined
in nested tables, nevertheless, other con-
straints such as domain constraint and de-
fault constraint can be defined in nested ta-
bles.

Multi-valued simple elements are converted
to nested tables having one field.

Simple elements, simple attributes, 1D at-
tribute, optional simpleelementsand choice
of smple elements are converted to fields.

Storing Linked XML Documents in Object-Relational DBMS

8. Optional complex elements and choice of
complex elements are converted to tables or
fields according to the rules 1-5.

9. For the choice of groups of e ements where
some of elements in each group are the
same, duplicateelementsare eliminated and
then rules 1-7 are applied.

10. For elements with type ANY, a separate ta-
bleis created with three fields: referencing
fields which refer to their position, name of
elements and value.

11. For parent-child relationship and recursive
structure with occurrence ? or 1, the pri-
mary key of the table of parent-element is
copied to the table of the child-element.

12. For recursive structure with occurrence + or
* aseparatetablewill be created to hold the
relationship of recursive structure by stor-
ing the primary keys of tables of a parent-
element and a child-element.

13. For an element referenced by IDREF, the
primary key of the table of areferenced el-
ement is copied to the table of areferencing
element.

14. For an element referenced by IDREFs, a
separate table will be created to keep the
primary keys of tables of areferencing ele-
ment and a referenced element.

4.3. Additional Rules for Mapping the Rlink
Mechanism to ORDB

The relationship between XML documents is
similar to therel ationship specified by IDREF(S)
in the same document; thus their mapping rules
are similar too.

1. If the occurrence of elements containing
rlink is 1 or ?, the primary key of the ta-
ble of a referenced-element is added to the
table of areferencing el ement.

2. If the occurrence of elements containing
rlinkis+ or*, aseparatetablewill becreated
to keep relationship between XML docu-
ments; thus the separate table consists of the
primary keys of the table of a referencing-
element and a referenced-element.

3. For recursive structure: rlink of elementsin
areferenced document refers to elementsin
a referencing document, it is considered in
the same way asrules 1-2.

5. Mapping XML Constraints to ORDB
Constraints

In this part, we firstly describe the types of
congtraints in (O)RDB. Secondly, we present
the rules for mapping constraints in an XML
document to constraints in ORDB. Thirdly, we
propose supplementary rules for mapping con-
straints which stem from the rlink mechanism
to constraints in ORDB. Finally, we determine
how to preserve cardinality constraints when
update operationsare performed. A diagramfor
mapping XML constraints and rlink constraints
to ORDB constraintsis shownin Figure 3.

5.1. Type of Constraints in (O)RDB

Theconstraintsin (O)RDB from adata-oriented
viewpoint can be categorized into three types
[37] asfollows:

1. Row congtraints: these constraints are re-
lated to exactly one table and can be evalu-
ated independently for each row inthat table.
Constraints in this type include check (null
value) constraint, domain constraint and de-
fault value constraint.

2. Tableconstraints: evaluating theseconstraints
is associated with at least two rows in the
same table. Examples of these constraints
include primary key constraint, unique con-
straint and cardinality constraint.

3. Inter-table constraints: these constraints in-
volve rows from at least two tables. An ex-
ample of this constraint type is foreign key
constraint (referential integrity constraint)
including cascade rules.

Note: We have not found that the cardinality
constraint isavailablein any (object-)relationa
products.

5.2. Rules for Mapping Constraints of an
XML Document to ORDB

Since certain constraintsin DTD are easily rec-
ognized, some of proposed rules are the same
as some of the rules proposed in other work
[22, 39, 21|. However, our work can extract
more constraintsin DTD than in previous work
and someof our rulesaredifferent fromtherules
proposed in the previous work; in particular, no

Storing Linked XML Documents in Object-Relational DBMS 7

Row constraints

1. #REQUIRED attributes and simple element
with occurence 1 or +

2. #IMPLIED attributes and simple element
with occurence ? or *

Not null

Default null constraint

3. Default value Default value constraint

4. Choice of attribute values Domain constraint

Table constraints

1. ID of an element in the case that the

. PK i
element is converted to table constraint

2. ID of an element in the case that the
element is not converted to table

Unique constraint

I i .
nter table constraints PK of parent-element table copied to

child-element table is set as FK
with delete cascade

1-2. Parent-child relationship
3. Referencing from descendants to ancestors
by recursive structure with occurence 7 or 1

Fields of separate table derived from PKs of
tables of referencing element and referenced
element are set as PKs and FKs with

delete cascade

4. Referencing from descendants to ancestors
by recursive structure with occurence * or +

5. Referencing from descendants to
ancestors by IDREFs

6. Referencing from ancestors
to descendants by IDREF's

7. Elements (siblings or relatives)
refer to each other by IDREFs

Fields of separate table derived from PKs of

tables of referencing element and referenced
element are set as combine key and FKs.
FK derived from referencing element is

defined with delete cascade
5. Referencing from descendants to

ancestors by IDREF

6. Referencing from ancestors
to descendants by IDREF

7. Elements (siblings or relatives)
refer to each other by IDREF

/ A referencing field (PK of referenced element)
is added to table of referencing element as FK

Constraints derived from rlink

1. Occurence of elements containing rlink
is + or *

2. Occurence of elements containing rlink
islor?

Fig. 3. Mapping XML constraints and rlink constraintsto ORDB constraints.

work has proposed preserving the cardinality
constraint when updates are performed. In this with occurrence ? or * have default null
section, we will organize constraints in DTD constraint

accfo“ji ng to constraint typesfound in (O)RDB 3 pefault valueis trangated into default value
asTOlOWS. constraint.

Row constraints: 4. Choiceof attributevaluesisconverted to do-
1. #REQUIRED attributes and simple element main constraints.

with occurrence 1 or + are converted tothe 5. For a choice of elements such as <!ELE-
not null constraint. MENT e (s1 | s2)>, meaning can have either

2. #IMPLIED attributes and simple element

Storing Linked XML Documents in Object-Relational DBMS

S1 0r Sp but not both simultaneously, then the
constraint will be:

Check ((s1 isnot null AND s, is null) OR
(s1isnull AND s isnot null))

In translating <!IELEMENT e (sq |...| sn)>,
the constraint will become:

Check((spisnot null AND syisnull AND ...
AND snisnull) OR ... OR (s; isnull AND
spisnull AND ... AND snisnot null))

6. For achoiceof groupsof elements, that some
the of elements in each group are the same
but their constraints may be different, are
converted with the following rules.

Firstly, every element+ or element in each
group is converted to “AND element is not
null". Secondly, every element* or ele
ment? in each group is converted to nothing.
Thirdly, the OR operation is performed on
every group. Finaly, if there are some ele-
ments in one group which do not appear in
other groups, the “AND these elements are
null" is added to the groups for which these
elements do not appear. For example:

(name, telephone+)|(name, telephone*,
email)
Constraints will be:

Check ((nameisnot null AND telephoneis
not null AND email isnull) OR (nameisnot
null AND email isnot null))

Table constraints:

1. ID of an element is converted to primary
key constraint in the case that the element
is converted to an object table or a nested
table; otherwise ID is defined with unique
constraint.

2. Occurrence for complex elements converted
to tables should be converted to the cardinal -
ity constraint; however no (object-)relational
technology provides this constraint; hence
this constraint will be checked with rulesfor
preserving the cardinality constraint in Sec-
tion 5.4.

Inter-table constraints:

1. Parent-child relationship (1 to many rela
tionship)

2. Parent-child relationship (1 to 1 relation-
ship)

3. Referencing from descendants to ancestors
by recursive structure with occurrence ? or
1

4. Referencing from descendants to ancestors
by recursive structure with occurrence * or
+

5. Referencing from descendants to ancestors
by IDREFs or IDREF (Recursive)

6. Referencing from ancestors to descendants
by IDREFs or IDREF

7. Elements (siblingsor relatives) refer to each
other by IDREFs or IDREF

From parent-child relationship and recursive
structure with occurrence ? or 1 (1-3), the pri-
mary key of parent-element table is copied to
the child-element table as a foreign key con-
straint and a delete cascade is defined on this
constraint.

Fromreferencing by IDREFsand recursivestruc-
ture with occurrence * or + (4-7), a new sep-
arate table will be created to hold relationships
of references. This separate table consists of
fields derived from the primary keys of tables
of areferencing element and a referenced ele-
ment. These fields are set as a combined key
and foreign keysfor thistable. Theforeign key
derived from a referencing element is defined
with the delete cascade. In the case of referenc-
ing by IDREFs (5-7), the foreign key derived
from a referenced element is defined without
a delete cascade whereas in the case of recur-
sive structure (4), the foreign key derived from
a referenced element is defined with a delete
cascade.

From referencing (5-7) by IDREF, a referenc-
ing field (same as primary key of the table of
referenced element) is added to the table of a
referencing element as a foreign key without a
delete cascade to point to the primary key of a
referenced element.

Not null is defined on aforeign key in the case
that occurrence is 1 or IDREF is declared with
#REQUIRED.

Note: For a table without a primary key, the
RowlID automatically created in an object table
will be used as the primary key.

Storing Linked XML Documents in Object-Relational DBMS

5.3. Additional Rules for Mapping Constraints

Derived from Rlink Mechanism

The supplementary constraint rulesfor mapping
rlink mechanism are similar to the constraint
rules of IDREF(s). Therulesare asfollows.

1. In the case that the occurrence of elements
containing rlink is 1 or ?, the primary key
of the table of areferenced element will be
held in the table of areferencing element as
aforeign key without a delete cascade.

2. In the case that the occurrence of elements
containing rlink is * or +, a separate table
is created consisting of two fields derived
from keys of tables of referencing element
and referenced elements. These two fields
are set as a combined key and foreign keys
but only the foreign key derived from the ta-
ble of areferencing element is defined with
adelete cascade whereas theforeign key de-
rived from the table of areferenced element
is defined without a del ete cascade.

3. Forarecursivestructure, constraintsare con-
sidered in the sameway asrules 1, 2 and 4.

4. Not null is defined on a foreign key in the
casethat the occurrence of € ementscontain-
ing rlink is 1.

5.4. Rules for Preserving Cardinality
Constraints when Updates are
Performed

In this section, we will describe how the car-
dinality constraint is preserved when updates
are performed since, nowadays, no (object-)re-
lational DBMS can handle the cardinality con-
straint; hence a particular method is needed to
manageit. Updating affectsthe relationship be-
tween elements; thuswe preservethisconstraint
accordingtothetypeof relationshipinthe XML
documents as follows:

1. Parent-childrelationship (1tomany relation-
ship)
In the case that the child is a complex ele-
ment converted to a nested table or the child
isacomplex element and hasno sibling; then
thechildisconverted to an abstract datatype
field and the parent element is converted to
an object table containing only one abstract
datatypefield.

Delete child elements converted to abstract
data type fields in case of occurrence +

Cardinality constraint will be checked asfol-

lows:

Select count (*) as countl

From parent-element table;
Select count (*) as count2

From parent-element table
Where del ete-conditions;

If (count2 — countl) >= 0 then

Do not allow deletion

End If

Delete child e ements converted to a nested
tablesin case of occurrence +

Cardinality constraint will be checked as
follows:
Select count (*) as countl

From child-element table
Where PK (of parent-element table) = $PK;;

Select count (*) as count2

From child-element table

Where PK (of parent-element table) = $PK
And delete-conditions,

If (count2- countl) >= O then

Do not allow deletion

End If

Ddlete child elements in the case of occur-
rence *

No need to be checked.
Insert children in case of occurrence + or *
Cardinality constraint is not needed to be

checked since any number of childrenisal-
lowed when inserting

. Parent-childrelationship (1to 1 relationship)

In the case that the child is a complex ele-
ment and has no sibling; then the child is
converted to an abstract data type field (and
the parent element is converted to an object
table containing only one abstract data type
field).

Delete child elements in the case of occur-
rence 1

Do not allow deletion.

Ddlete child elements in the case of occur-
rence ?

Insert children in case of occurrence 1 or ?
Cardinality constraint is checked asfollows:

Select count(*) as countl
From parent-element table;

IF countl > O then
Do not allow insertion
End If

10

Storing Linked XML Documents in Object-Relational DBMS

3.

Parent-child relationship (1 to many rela-
tionship) including recursive structure with
occurrence * or +

In the case that the parent and child are com-
plex elements, the child is converted to an
object table. In the case of recursive struc-
ture, aseparatetableiscreated to hold there-
lationship between the referencing (parent-
element) and referenced elements (child-
element).

Delete child elementsin case of parent-child
relationship with occurrence +

Cardinality constraint will be checked as
follows:

Select count (*) as countl

From child-element table
Where FK (PK of parent-element table) = $FK;

Select count (*) as count2
From child-element table
Where FK = $FK

And delete-conditions;

If (count2- countl) >= O then
Do not allow deletion
End If

Delete child elements in case of recursive
structure with occurrence +

Cardinality constraint will be checked as
follows:

Select count (*) as countl

From separate table
Where PK1 (PK of parent-element table) = $PK;

Select count (*) as count2

From separate table S, child-element table C
Where SPK1 = $PK And S.PK2 = C.PK
And delete-conditions;

If (count2- countl) >= O then

Do not allow deletion

End If

Deletechild el ementsin case of occurrence*
No need to be checked.

Insert children in the case of occurrence +
or*

No need to be checked.
Parent-childrelationship (1to 1 relationship)

In the case that the parent and child are com-
plex elements, the child is converted to an
object table.

Deletechild elementsin caseof occurrence 1
Do not alow deletion
Deletechild e ementsin case of occurrence ?
No need to be checked.

Insert children in case of occurrence 1 or ?
Cardinality constraint is checked asfollows:

Select count(*) as countl
From child-element table
Where FK (PK of parent-element table) = $FK;

IF count1 > O then
Do not allow insertion
End If

. Referencing from descendants to ancestors

by IDREFs (Recursive)

. Referencing from ancestors to descendants

by IDREFs

. Elements (siblings or relatives) referring to

each other by IDREFs

. Referencing between XML documents by

using rlink mechanismwherethe occurrence
of an element containing rlink is + or *

For cases 5-8 above, in the case of referenc-
ing by IDREFs or by the rlink mechanism
where the occurrence of an element contain-
ingrlink is+ or *, aseparate tableis created
to hold the relationship between the refer-
encing and referenced elements.

Delete values in #REQUIRED IDREFs or
delete elements containing rlink where oc-
currence of the elementsis +

Cardinality constraint will be checked as
follows:

Select count (*) as countl
From separate table

Where PK1 = $PK1;
Select count (*) as count2
From separate table

Where PK1 = $PK1
And PK2 = ($PK derived from delete-conditions);

If (count2-countl) >= 0 then

Do not allow deletion

End If

Deletevaluesin# MPLIED IDREFsor delete
elements containing rlink where occurrence
of the elementsis*

No need to be checked.

Insert valuesto IDREFs or insert rlink

No need to be checked.

6. Preserving Order of XML Elements

When ordered XML documents are shredded
into tables, ordering in tables has two dimen-

Storing Linked XML Documents in Object-Relational DBMS

11

o
AN
Ol

1

Bﬁ\
/12\

.

Node that requires

New node renumbering
Fig. 4. Local Order Method.
RowlID | Author | RowOrder 01 -~ 02 -~ 03
02 03
01 Peter 02 Peter Ken Joey
02 Ken 03
03 Joey null 01 02— 02 03— 03
Peter ~_ | Ken Joey
~
RowID | Author | RowOrder 647 -
01 Peter 04 ! . John | New row
—_ =
02 Ken 03
03 Joey null
01 02 F— 04 02— 02 03 — 03
04 John 02 Peter John Ken Joey

Fig. 5. Linked List Order Method.

sions. column ordering and row ordering. For
columns, they are automatically ordered when
tables are created and this order will never be
changed. For row ordering, at the first time of
loading data into tables, data can be loaded in
sequence but when delete or insert operation is
performed, it is necessary to reorder the data.

There is a proposal [34] for reordering XML
dataheldinrelational database. Theresearchers
of this proposal demonstrated that Local Order
method performsbest on updatessince only sib-
lingsfollowing the new node need to be renum-
bered as shown in Figure 4.

However, this method can yield low perfor-
mance if the new node has numerous siblings
as many siblings must be renumbered. For our
method, rows are considered as a linked list.
This means that each row will hold the RowID
(automatically generated) of the next row in
sequence; thus this method can guarantee that
whentheinsert or delete operationisperformed,
no more than two rows are affected, as shown

in Figure 5. From the figure, when we insert a
new author ‘John’ after author ‘ Peter’, this can
be performed by copying RowOrder of ‘ Peter’
to RowOrder of ‘John’ and copying RowID of
‘John’ to RowOrder of ‘ Peter’.

7. A Case Study for Mapping Linked XML
Documents

To elucidate, we will demonstrate how to map
linked XML documentsto ORDB. We suppose
that three XML documents, Publications.xml,
Authors.xml and References.xml, are linked to-
gether by two attributes: rlink:relationship and
rlink:href, as shown in Figure 6. To gain more
understanding, Schema Graph of DTDsin Fig-
ure 7 and the result tables in Figure 8 should be
considered aong with the description below.

Firstly, Publications has only one complex child
element: Publication; thus Publicationsis con-
verted to an object tableand Publicationiscon-

12

Storing Linked XML Documents in Object-Relational DBMS

<!ELEMENT Publications(Publication*®)>

<!ELEMENT Publication(Title, Author+, Year, Reference?)>

<!ATTLIST Publication PubID ID #REQUIRED >

<!ATTLIST Publication PubType (book]|article|journal) “book” >

<!ELEMENT Title (#PCDATA)>

<!ELEMENT Author EMPTY >

<!ATTLIST Author rlink:href CDATA #REQUIRED
rlink:relationship CDATA #FIXED “Authors.xml::Author” >

<IELEMENT Year (#PCDATA)>

<!ELEMENT Reference EMPTY >

<!ATTLIST Reference rlink:href CDATA #REQUIRED
rlink:relationship CDATA #FIXED “References.xml::Reference” >

<Publications xmlns:rlink=“http://www.unn.ac.uk/rlink” >
<Publication PubID = “P111” >

<Author rlink:href = “//Author[@AuthorID = ‘A111’]” >
</Author>
<Reference rlink:href = “//Reference[@QRefID = ‘R111°]” >
< /Reference>

< /Publication>

< /Publications>

<!ELEMENT Authors(Author*)>

<!ELEMENT Author(Name, Email?,Telephone*)>
<!ATTLIST Author AuthorID ID #REQUIRED>
<!ELEMENT Name (FName, MName?, LName) >
<!ELEMENT FName (#PCDATA)>
<IELEMENT MName (#PCDATA)>
<IELEMENT LName (#PCDATA)>
<!ELEMENT Email (#PCDATA)>

<!ELEMENT Telephone (Location, TelNo)>
<!ELEMENT Location (#PCDATA)>
<IELEMENT TelNo (#PCDATA)>

<Authors>

<Author AuthorID = “A111”>
<Name>
<FName>John</FNAme>
<LName>Smith</LName>
</Name>

</Author>

</Authors>

<!ELEMENT References (Reference*)>
<!ELEMENT Reference(Publication+)>
<!ATTLIST Reference RefID ID #REQUIRED >

<!ATTLIST Reference RefType (References |Bibliography |Miscelleneuos) “References” >

<!ELEMENT Publication EMPTY >
<!ATTLIST Publication rlink:href CDATA #REQUIRED

rlink:relationship CDATA #FIXED “Publicastions.xml::Publication” >

<References xmlns:rlink=*“http://www.unn.ac.uk/rlink” >
<Reference RefID = “R111” RefType = “Miscelleneous” >

<Publication rlink:href = “//Publication[@PubID = ‘P222’]” >< /Publication>
<Publication rlink:href = “//Publication[@PubID = ‘P333’]” >< /Publication>

< /Reference>
2/References>
Fig. 6. Threelinked XML documents.
Publications

‘ ~- - -"-" - - - - - - - - - - - - - -~ .

Publication* \

I

@QPubID Title Year |

\

QPubType Author+ Reference? |

(book|article|journal) |

“book” ‘

Authors Reference :

| |

Author* Reference* ‘

\

// \\ |
@AuthorID Name Email? Telephone* @RefID @QRefType Publication+
// \ / \ (References|Bibliography|Miscelleneous)

“References”
FName MName? LName Location TelNo

Fig. 7. Schema Graph of DTDs.

Storing Linked XML Documents in Object-Relational DBMS

13

Authors
Author
Name . Telephone
AuthorID Email
uthor FName | MName| LName mal Location | TelNo
Publications
Publication
PubID PubType Title Year RefID
References
PublicationAuthor . ReferencePublication
Reference
PubID| AuthorlD RefID |RefType RefID | PubID

Fig. 8. Tables derived from mapping rules.

verted to an abstract data type field (Structure
mapping Rule 1). Publication has attributes:
PublD, PubType and simple elements. Title,
Year; these four are converted to smple fileds
(Structuremapping Rule5). For theconstraints,
Titleand Year have occurrence 1; thus not null
is applied (row constraint mapping rule 1) and
table constraint mapping rule 1 isapplied to Pu-
bID as aprimary key. PubType has a choice of
attribute values and a default value; so domain
and default value constraints are applied (row
constraint mapping rules 3-4). For Publica-
tion*, rulesfor preserving cardinality constraint
are applied when updates are performed.

Secondly, the complex child elements of Publi-
cation: Author and Reference whose attributes
arerlink are handled as follow:

e Since the occurrence of Author is+, a sep-
arate table is created. This table consists of
the primary keys of Publication and Author
set as a combined key and foreign keys. Pu-
bID is defined with a delete cascade (struc-
ture mapping rule 2 and constraint mapping
rule 2 of rlink are applied).

e Since the occurrence of Reference is ?, the
primary key of Reference is added to Publi-
cation and is set as a foreign key (structure

mapping rule 1 and constraint mapping rule
1 of rlink are applied).

Thirdly, Authors has only one complex child
element: Author; thus Authors is converted to
an object tableand Author isconverted to an ab-
stract data type field (Structure mapping Rule
1). Author consists of attribute: AuthorlD and
simple element: Email; so these two are con-
verted to simplefields (Structure mapping Rule
5). Name has a sibling, occurrence 1, and all
children are simple el ements; thusNameis con-
verted to an abstract data type field (Structure
mapping Rule 3). Telephone has a sibling, oc-
currence*, and all children are ssmple elements
and there is no reference; hence Telephone is
converted to a nested table (Structure mapping
Rule 2).

For the constraints, AuthorlD is set as a pri-
mary key (table constraint mapping rule 1),
Name, FName, LName, Location and TelNo
have occurrence 1; thus not null isapplied (row
constraint mapping rule 1). For Author* and
Telephone*, rulesfor preserving the cardinality
constraints are applied.

Finally, References has only one complex child
element: Reference; so Referencesisconverted
to an object table and Reference is converted

14

Storing Linked XML Documents in Object-Relational DBMS

to an abstract data type field (Structure map-
ping Rule 1). Reference has attributes: RefID,
RefType and an element: Publication with oc-
currence + whose attribute is rlink referencing
back to the Publication e ement in the document
which citesit; thus ReflD and Ref Type are con-
verted to simplefields (Structure mapping Rule
5) and not null is applied (row constraint map-
ping rule 1). RefType has adefault value and a
choice of attribute values; so the row constraint
mapping rules 3-4 are applied and RefID is set
asaprimary key (table constraint mapping rule
1). Publication containsarecursiverlink; hence
aseparatetableis created and this separate table
consists of the primary keys of Reference and
Publication set as a combined key and foreign
keys. The foreign key derived from Reference
is defined with a del ete cascade (structure map-

ping rule 3 and constraint mapping rule 3 of
rlink are applied). For Reference*, rules for
preserving cardinality constraint are applied.

We create a schema derived from our rules in
Oraclegi [24] and assumethat thelength of fields
which are primary keys and foreign keysis 15
characters whereas the length of other fieldsis
30 characters. The schema generated in Ora
cle9i by using our rulesis shownin Figure 9.

Mapping linked XML documents makesit eas-
ier to perform joins between XML documents
and to update several linked XML documentsin
an update command; for example, from Figure
6, if wewant to updatetitle and author’semail of
publication having PublD = ‘P111’ and author
having FName = ‘John’, an update command
may be

Create Type TPublication as object
(PubID varchar2(15),

PubType varchar2(30),

Title varchar2(30),

Year varchar2(30),

RefID varchar2(15)

)s

Create Type TPublications as object(
Publication TPublication

)s

Create Table Publications of TPublications(
Primary key (Publication.PubID),
Publication DEFAULT

TPublication(null, ‘book’, null, null, null),
CHECK (Publication.PubType IN

(‘book’, ‘article’, ‘journal’)),

CHECK (Publication.Title is not null and
Publication.Year is not null),

Foreign Key(Publication.RefID) references
References(Reference.RefID)

)

Create Type TName as object(
FName varchar2(30),

MName varchar2(30),

LName varchar2(30)

)

Create Type TTelephone as object(
Location varchar2(30),

TelNo varchar2 (30)

);

Create Type NTTelephone as table of TTelephone;

Create Type TAuthor as object(
AuthorID varchar2(15),

Name TName,

Email varchar2(30),

Telephone NTTelephone

Create Type TAuthors as object (
Author TAuthor

)

Create Table Authors of TAuthors(
Primary key (Author.AuthorID),

Check (Author.Name is not null),
Check (Author.Name.FName is not null
and Author.Name.LName is not null)

)

nested table Author.Telephone STORE AS
Telephone_TAB(

(CHECK (Location is not null),

CHECK (TelNo is not null))

)

Create Table PublicationAuthor(

PubID varchar2(15) references
Publications(Publication.PubID) on delete cascade,
AuthorID varchar2(15) references
Authors(Author.AuthorID),

Primary key(PubID, AuthorID)

)

Create Type TReference as object(
RefID varchar2(15),

RefType varchar2(30)

);

Create Type TReferences as object(
Reference TReference

)

Create Table References of TReferences (
Primary key(Reference.RefID),
Check(Reference.RefType is not null),
Reference DEFAULT TReference

(null, ‘References’),

CHECK (Reference.RefType IN
(‘References’,‘Bibliography’,‘Miscelleneous’))

)

/*To keep relationship of rlink recursion*/
Create Table ReferencePublication (
RefID varchar2(15) references References
(Reference.RefID) on delete cascade,
PubID varchar2(15) references
Publications (Publication.PubID),
Primary key (RefID, PubID)

)

Fig. 9. Schemagenerated in Oracle 9i.

Storing Linked XML Documents in Object-Relational DBMS

15

For $p in doc(“Publications.xml")/ /Publication,

$ain $p/Author — doc(*Authors.xml")//Author
Where $p@PublD = “P111"

Replace $p/Title with <Title>Java2</Title>,

Replace $a/Email with <Email>au@Hill.com </Email>
Where $a/Name/FName="John"

The above update language can be trandlated

into SQL asfollows:

Update Authors A

Set A.Author.Email = ‘au@Hill.com’
Where A.Author.AuthorID in

(Select A.Author.AuthorlD

From Authors A, PublicationAuthor PA
Where PA.PubID = ‘P111’

And PA.AuthorID = A.Author.Authorl D
And A.Author.Name.FName = ‘John’);

Update Publications P
Set PPublication.Title = ‘ Java2’
Where P.Publication.PublD = ‘P111’;

8. Conclusion and Further Work

For the time being, work converting both struc-
ture and constraints of XML to ORDB cannot
be conducted readily because of limited con-
straints in available object-relational DBM Ss.
Oracle supports nested tables but the referentia
integrity constraint cannot be defined on them.
Informix supports Set, List and Row types but
some constraints such as default constraint and
domain constraint cannot be defined on Set, List
and fields of Row type while PostgreSQL only
supports arrays and constraints cannot be de-
fined on individual elements of an array.

In our work, we map both structure and con-
straints of XML to ORDB with awareness of
practicability in available technologies. How-
ever weusenested tablesinstead of set/list since
most constraints can be defined on nested-tables
except the referential integrity constraint. Usu-
aly, datain XML documents are stored redun-
dantly. Wetherefore propose an alternative way
for keeping non-redundant data in several sep-
arate documents. This involves a mechanism
called ‘rlink’ to link data in the separate doc-
uments together and additional rules for map-
ping the ‘rlink’ mechanism to ORDB. Finadly,
we create the object-rel ational schemawith con-
straints derived from our mapping rulesin Or-
acle9i. Our contribution is that we find that
mapping linked XML documents makes it eas-
ier to perform joins between XML documents

and to update several linked XML documentsin
one update command as discussed in Section 7.

In further work, we will make an extension to
XQuery for updating (linked) XML documents
andthenwewill trandateit into SQL. Thetrans-
lation will include linear and non-linear recur-
sive update commands and a mechanismwill be
proposed for propagating the change in ORDB
to the XML documents. We will also conduct
a performance comparison between updating
one XML document containing redundant data
and updating linked XML documents contain-
ing non-redundant data. Thiswork is currently
under devel opment.

References

[1] S. ABITEBOUL, Querying Semi-Structured Data
The International Conference on Database Theory,
Delphi, Greece, (1997), pp. 1-18.

[2] S. ABITEBOUL, D. QUASS, J. MCHUGE, J. WIDOM

AND JL. WINER, The Lorel query language for

semistructured data. Proceedings of International

Journal on Digital Libraries, (1997), pp. 68-88.

M. Arenasand L. Libkin, A Normal Form for XML
Documents. Proceedings of the 21th Symposium on
Principles of Database Systems (PODS), (2002),
pp. 85-96.

[4] M. CAREY, D. FLORESCU, Z. IVES, Y. LU, J. SHAN-
MUGASUNDARAM, E. SHEKITA AND S. SUBRAMA-
NIAN, XPERANTO: Publishing Object-relational
DataasXML. WebDB, Dallas, Texas, USA, (2000),
pp. 105-110.

R.G.G. CATTELL AND D.K. BARRY, The Object Data
Standard: ODMG 3.0. Morgan Kaufmann Publish-
ers, (2000).

[5]

S. CERI, S. ComAl, E. DAMIANI, P. FRATERNALI, S.
PARABOSCHI AND L. TANCA, XML-GL: aGraphical
Language for Querying and Restructuring WWW
Data. Computer Networks: The International Jour-
nal of Computer and Telecommunications Network-
ing, 31 (1999), pp. 1171-1187.

D. CHAMBERLIN, XQuery: An XML query lan-
guage. IBM SYSTEMS JOURNAL, 41 (2002), pp.
597-615.

D. CHAMBERLIN, J. ROBIE AND D. FLORESCU, Quiilt:
An XML Query Language for Heterogeneous Data
Sources. Int’'| Workshop on the Web and Databases
(WebDB), Dallas, TX, (2000).

Y. CHEN, S. DAVIDSON, C. HARA AND Y. ZHENG,
RRXS: Redundancy reducing XML storage in re-
lations. Proceedings of the 29th VLDB Conference,
Berlin, Germany, (2003).

16

Storing Linked XML Documents in Object-Relational DBMS

[10] A. DEUTSCH, M. FERNANDEZ AND D. Suciu, Stor-
ing Semistructured Data with STORED. SIGMOD
Conference, Pennsylvania, United States, (1999),
pp. 431-442.

[11] M. FERNANDEZ, Y. KADIYSKA, D. Suciu, A. MOR-
ISHIMA AND W. TAN, SilkRoute: A Framework for
Publishing Relational Datain XML. ACM Transac-
tions on Database Systems (2002), pp. 1-55.

[12] D. FLORESCU AND D. KOSSMANN, (1999) A Perfor-
mance Evaluation of Alternative Mapping Schemes
for Storing XML Data in a Relational Database.
Rapport de Recherche No. 3684.

[13] D. FLORESCU AND D. KOSSMANN, Storing and
Querying XML Datausing an RDBMS. |EEE Data
Engineering Bullentin, 22 (1999), pp. 27-34.

[14] W. HAN, K. LEE AND B.S. LEE, An XML Stor-
age System for Object-Oriented/ Object-Relational
DBMSs. Journal of Object Technology, 2 (2003),
pp. 113-126.

[15] E.R. HAROLD, Xlnclude. XML 1.1 Bible. Wiley
Publishing, Inc., (2004), pp. 657.

[16] E.R. HAROLD, XLinks. XML 1.1 Bible. Wey Pub-
lishing, Inc., (2004), pp. 580.

[17] IBM. and Informix.: http://www-306.1ibm.com/
software/data/informix/pubs/ //library/
datablade/dbdk/start.htm. 2004.

[18] L. KHAN, Q. CHEN AND Y. RAO, A Comparative
Study of Storing XML Data in Relational and
Object-Relational Database Management Systems.
Proc. of International Conference on Internet Com-
puting, Las Vegas, Nevada, (2002), pp. 277-282.

[19] L. KHAN AND Y. Rao, A Performance Evaluation
of Soring XML Data in Relational Database Man-
agement Systems. ACM (2001).

[20] M. KLETTKE AND H. MEYER, Managing XML Doc-
uments in object-relational databases. Computer
Science Department, University of Rostock, Ros-
tock, Germany, (1999).

[21] D. Lee AND W.W. CHu, Constraints-Preserving
Transformation from XML Document Type Def-
inition to Relational Schema. 19th International
Conference on Conceptual Modeling, Salt Lake
City, Utah, USA., (2000), pp. 323-338.

[22] D.LEEAND W.W. CHU, CPI: Constraints-Preserving
Inlining Algorithm for Mapping XML DTD to Re-
lational Schema. Data & Knowledge Engineering,
39 (2001), pp. 3-25.

[23] Y. Mo and L.T. Wang, Storing and Maintain-
ing Semistructured Data Efficiently in an Object-
Relational Database. The Third International Con-
ference on Web Information Systems Engineering,
Singapore, (2002), pp. 247-256.

[24] Oracle: http://otn.oracle.com/
documentation/index.html. 2004.

[25] PostgreSQL: http://www.postgresql.org.
2005.

[26] JW. RAHAYU, E. PARDEDE AND D. TANIAR, On
Using Collection for Aggregation and Association
Relationships in XML Object-Relational Storage.
ACM Symposium on Applied Computing, Nicosia,
Cyprus, (2004).

[27] K. RUNAPONGSA AND JM. PaTEL, Storing and
Querying XML Datain Object-Relational DBM Ss.
EDBT Workshops. Publisher: Springer-Verlag Hei-
delberg, 2490 / 2002 (2002), pp. 266-285.

[28] J. SENG, Y. LIN, J. WANG AND J. Yu, An analytic
study of XML database techniques. Industrial Man-
agement & Data Systems, 103 (2003), pp. 111-120.

[29] B. SHAMKANTE AND S. NAVATHE, A Proposal for an
XML Data Definition and Manipulation Language.
VLDB Conference, Hongkong, (2002).

[30] J. SHANMUGASUNDARAM, E. SCHEKITA, R. BARR,
M. CAREY, B.G. LINDSAY, H. PIRAHESH AND B.
REINWALD, Efficiently publishing relational dataas
XML documents. Proceedingsof the Conferenceon
Very Large Data Bases, (2000).

[31] J. SHANMUGASUNDARAM, K. TUFTE, G. HE, C.
ZHANG, D. DEWITT AND J. NAUGHTON, Relationa
Databases for Querying XML Documents. Limi-
tations and Opportunities. Proceedings of the 25th
VLDB Conference, Edinburgh, Scotland, (1999),
pp. 302-314.

[32] T.SHIMURA, M. YOSHIKAWA AND S. UEMURA, Stor-
age and Retrieval of XML Documents Using
Object-Relational Databases. 1PS] Transactions on
Databases Abstract, 40 (2001).

[33] I. TATARINOV, Z. IVES, A.Y. HALEVY AND D.S.
WELD, Updating XML. Proceedings of 2001 S G-
MOD Conference, Santa Barbara, CA, USA.,
(2001), p. 413-424.

I. TATARINOV, S.D. VIGLAS, K. BEYER, J. SHANMU-
GASUNDARAM, E. SHEKITA AND C. ZHANG, Storing
and Querying Ordered XML Using a Relationa
Database System. Proceedings of the 2002 ACM
S GMOD international conference on Management
of data, Madison, Wisconsin, (2002), pp. 204-215.

[34

[35] F TIAN, D. DEWITT, J. CHEN AND C. ZHANG, The
Design and Performance Evaluation of Alterna-
tive XML Sorage Strategies. SIGMOD Record, 31
(2002).

[36] F.S.C. TSENG AND W. HWUNG, An automatic
load/extract scheme for XML documents through
object-relational ropositories. The Journal of Sys-
tems and Software, 64 (2002), pp. 207-218.

[37] C. TURKER AND M. GERTZ, Semantic integrity sup-
port in SQL:1999 and commercial (object-)re-
lational management systems. The VLDB Journal,
10 (2001), pp. 241-269.

(38

UniSQL /X: UniSQL /X User'sManual Vol I.
2004: http://dev.unisql.com/dev/manuals/
manuals.htm.

Storing Linked XML Documents in Object-Relational DBMS

[39] I. VARLAMIS AND M. VAZIRGIANNIS, Bridging
XML-Schema and relational databases. A system
for generating and manipul ating rel ational databases
using valid documents. ACM Symposium on Docu-
ment Engineering (2001), pp. 105-114.

[40] W3C: XML Inclusions (XInclude) Version 1.0.
Candidate Recommendation. 2004: http://www.
w3.org/TR/2004/CR-xinclude-20040413/.

[41] W3C: XML Linking Language (XLink) Version
1.0. Recommendation. 2001: http://www.w3.
org/TR/xlink.

[42] R.K. WONG, The Extended XQL for Querying and
Updating Large XML Databases. ACM Symposium
on Document Engineering, (2001), pp. 95-104.

XMLDB: XUpdate. 2002: http://www.xmldb.
org/xupdate/xupdate-wd.html.

[43

Received: October, 2004
Revised: August, 2005
Accepted: September, 2005

Contact address:

Pensri Amornsinlaphachai

School of Computing, Engineering & Information Sciences
Northumbria University

Pandon Building (Room 113), Camden Street,

Newcastle upon tyne, NE2 1XE, UK.

email: pensri.amornsinlaphachai@unn.ac.uk

PENSRI AMORNSINLAPHACHAI is a Ph.D. student a School of Com-
puting, Engineering & Information Sciences, Northumbria University,
Newcastle, UK. Shereceived her M Sc. with Distinction in 2001 and the
reward Sun Certified Programmer For THE JAVA 2 in 2002.

DR. Nick ROSSITER is a reader at School of Computing, Engineering
and Information Sciences, Northumbria University, Newcastle, UK. He
isinterested in interoperability of information systems.

DR. M. AKHTAR ALl isasenior lecturer at School of Computing, Engi-
neering and Information Sciences, Northumbria University, Newcastle,
UK. In 2003 he received his Ph.D. from Manchester University.

