A Natural Basis for Interoperability

Nick Rossiter!, Michael Heather?, and David Nelson®

! Computing, Engineering and Information Sciences, Northumbria University, NE2
1XE, UK, nick.rossiter@unn.ac.uk
2 Sutherland Building, Northumbria University, NE1 85T, UK,
michael.heather@btiniternet.com
3 Computing and Technology, University of Sunderland, SR6 0DD, UK,
d.a.nelson@sunderland.ac.uk
WWW home page: http://computing.unn.ac.uk/staff/CGNR1/

Abstract. Successful interoperability of systems requires a sound basis
for activity across levels and up to the highest global level. The interop-
erability is non-local and subject to the conditions of naturality found in
reality. The axiomatic models over the last two centuries can guarantee
no reliability at higher levels. Category theory is free from these twin
problems and can therefore offer a theoretical basis on which to base
standards for interoperability. Four levels are used to give closure for
policy, organisation, instantiation, naming, classification and meta and
metameta relationships. Such constructions provide facilities for relating
arrows in general, both descriptive and manipulative, including the spec-
ification of constraints and a calculus. The implications for standards are
discussed.

1 Introduction

Classical information systems employ some suitable model to mediate between
data and hardware. An information system model is a representation of policies
in a structured form according to some perceived view of reality. A model is
usually regarded as needing to satisfy three requirements: for data structuring,
for representing constraints and for data manipulation. Process is perhaps a
more profitable way in which to view data manipulation, being more general
and a more widely used term in systems theory.

Information system models in current use are almost entirely based on ax-
iomatic set theory. Such models can be employed in a local setting satisfactorily
but their use in a global environment, at least without some stronger theoretical
underpinning, is much less certain. As an example the ANSI/SPARC architecture
was a useful way of capturing abstractions of the relational model in the 1970s
and 1980s. It has proved less suitable to facilitate the techniques needed today
for interoperability where systems with different underlying models are required
to work together. ANSI/SPARC can be viewed as pseudo-natural. It was devel-
oped using positivist mathematical techniques and theories like sets. But there
is a gap between classical theory and real-world performance and pragmatics.

Triggers are an example of an attempt to patch the weakness of the system by
providing some local strong anticipation using Event-Conditions-Actions (ECA)
[Date & Darwen 2000].

Interoperability needs natural techniques to deal with levels of types. Current
work for dealing with levels of types includes ontologies and, in the context of
object models, model driven architectures. Such work will be discussed later as
appropriate.

2 Need for Formal Natural Multi-level Type Systems

To handle (non-local) interoperability, formality (for reliability and predictabil-
ity), naturality (for reality) and multi-level types (for types of types) are re-
quired. Categorial methods should replace classical models because models are
local and interoperability is non-local. Categorial methods provide formal de-
finitions of levels (as categories), mappings between levels (functors between
categories) and comparison of one mapping between levels with another (nat-
ural transformation between functors). Categorial techniques are also natural:
an arrow within a category is defined as unique up to natural isomorphism.

In areas such as ontologies an informal approach has been taken to naturality
which can follow the categorial approach in style, if not in complete formality.
Thus in enterprise ontology three levels may be defined: construction model,
process/information model and action model [Dietz 1999]. Such ontologies are
defining the existence of an object in the context of multiple levels, which is close
to the spirit of category theory. In object-based applications MDA (Model-Drive
Architecture) has been developed, which separates business and application logic
from the underlying platform technology. MDA is based on MOF (Meta-Object
Facility) with considerable bias towards UML. An aim of MDA is platform-
independence of object-based applications, rather than interoperability between
general systems.

Category theory has been used before in information system applications.
[Fegaras & Maier 1995] used the monoid calculus in an attempt at standardising
the querying of different collection types. [Johnson, Rosebrugh, & Wood 2002]
applied sketches to entity-relationship and relational modelling and
[Diskin & Cadish 1995] to object databases. None of these approaches though
have been multi-level. Sketches are also strictly outside category theory as they
permit diagrams that do not commute but they may be mapped onto categories
by a model functor.

3 Adjointness

One of the most important features of category theory is adjointness, which
gives a degree of measurement of the extent to which the mappings between two
categories are equivalent [Barr & Wells 1999].

Figure 1 shows two categories (L for left, R for right) each containing a
canonical triangle to illustrate typical composable arrows. The composition of

NV Ve

&

Fig. 1. Adjointness between Two Systems

the arrows (drawn as triangles) represents the natural exactness of real-world
interoperability. As we are relying on constructive process not axiomatic sets this
interoperability is free from Russell’s paradox and free of Gédel’s undecidability.
The arrows between the categories are functors F, G, the free and underlying
functor respectively. Each of the arrows in Figure 1 may be resolved into two
component types (technically colimits). These are covariant and contravariant.
For a pair of interoperating systems given by these two categories, that is where
the triangle in the left-hand category maps into the particular triangle in the
right-hand category, then there is a unique contravariant functor G that maps
between those triangles in the opposite way. The reverse logic gate F' - G is con-
ventionally used to represent adjointness. It is the phenomenon of naturalness.
In the vocabulary of axiomatic category theory it is a characteristic of carte-
sian closed category that applies to all process arrows. It was the publication of
[Kan 1958] that led to the recognition that this effect was ubiquitous. F' is left
adjoint to G and G is right-adjoint to F'. The unit of adjunction 1 and counit of
adjunction € measure the extent to which the result from composing the functors
differs from the starting point:

7 is the unit of adjunction 1; — GF(l) and ¢, is the counit of adjunction
FG(r) — 1,

4 Multi-level Data Structures

The four-level architecture in Figure 2 has orthogonal types with the relation-
ships between the levels expressed as categorical adjunctions as already applied
to structures in GRID data processing [Heather & Rossiter 2002]. Categorical
adjunctions relate one level to another. The relationship between levels is measur-
able by the unit of adjunction. For instance the adjunction Policy 4 MetaMeta
indicates that the free functor Policy is left adjoint to the underlying functor
MetaMeta. The unit of adjunction is given by nep: : lepr — MetaMeta o
Policy(cpt).

In Figure 2 the terms used have their normal meaning. Basically in the
downward direction, a collection of data structuring concepts (abstractions) are
mapped through policies to a collection of constructions (for example classes, ta-

Concepts o
Policy 4 MetaMeta mission
b MetaMeta T i Policy
Constructs
Org 4 Meta management
Meta
SYs Pllatform t] O
Schema,)
Instance 4 Classify enterprise
ClassifyT ilnstance
Data information
execution
application

Fig. 2. Interpretation of Levels as Natural Schema in General Terms

bles) which are in turn mapped through organisation to a collection of types (for
example, schema definitions) which are finally mapped through instantiation to
named data values. In the opposite direction, the named data values are mapped
through classification to types, which are in turn mapped through metadata to
constructions which are finally mapped to concepts through metameta data.

5 Basis for Interoperability

As mentioned earlier, there are three areas of interoperability that our architec-
ture must satisfy: data structures, constraints and data manipulation. Each is
covered in turn.

(@] 1
CST/ ,SCH’ DAT’

Fig. 3. Comparison of Mappings in two Systems

5.1 Natural Transformation as Data Structures

In category theory four levels are needed to define an arrow as unique up to
natural isomorphism. The four levels are: 1) object or identity arrow (within

a category), 2) category (comparing objects), 3) functor (comparing categories)
and 4) natural transformation (comparing functors). No more levels are required.
The relationships between one four-level architecture and another can be con-
structed as in Figure 3, the expanded view of Figure 2. Here for simplicity the
mappings are viewed in one direction only. Two systems are compared, one in-
volving categories CPT, CST, SCH and DAT, the other CPT, CST’, SCH’
and DAT’, representing concepts (CPT), constructs (CST), schema (SCH)
and data (DAT) from Figure 2. CPT is the same in both systems as there
is one universal type for concepts. As usual the functors relate the categories.
We have now though added natural transformations to relate the mapping be-
tween one functor and another. It needs to be emphasised that none of these
categories are discrete: all have an internal arrow-based structure so the natural
transformations are non-trivial [Rossiter 2003]. The functors need to be of the
same variance for a meaningful natural transformation to exist between them
and this is the case for «, 0 and ~, all being contravariant as discussed later.
An arrow comparing natural transformations is itself a natural transforma-
tion. Some categorists use an older terminology with degrees of ‘cell’ and describe
the identity arrow as O-cell, an arrow in a category as 1-cell and an arrow be-
tween arrows as a 2-cell [Kelly 1972]. An arrow from one natural transformation
to another gives a composition of the natural transformations, not a new level
(([Barr & Wells 1999], 1st ed., at p.85); [Rossiter & Heather 2003]). This means
that four levels are needed to give the natural closure [Heather & Rossiter 2002].
It may be asked what the levels are going to comprise and what is the nature
of the mapping between the levels. Are these constructions essentially arbitrary
or do they have definitions, which naturally fall into place? Fortunately the latter
seems to apply if we are working in category theory with its property of adjoint-
ness. [Lawvere 1969] in his study of adjointness showed that the relationship
between intension and extension is contravariant, indicating that the mapping
from the category representing the extension, say DAT, to the category repre-
senting the intension, say SCH, is from codomain in DAT to domain in SCH
and domain in DAT to codomain in SCH.
For matching across the levels in a contravariant manner, the intension SCH
should be defined with arrows of the form:

name — type

and the extension DAT with arrows of the form:

value — name

Both these arrows are functions since associated with each value is one name
and associated with each name is one type. Mapping from extension to intension
then maps the codomain name in DAT onto the domain name in SCH and the
domain value in DAT onto the codomain type in SCH. This mapping effectively
embeds values in types in the context of a name.

The alternative covariant mapping would be from domain to domain and
codomain to codomain. The arrow in SCH then needs to be reversed to name —

value for the two levels to be related. However, name — value is not a function
so a covariant functor from DAT to SCH lacks naturality.

The four levels of Figure 3 can now be viewed as the two intension-extension
pairs in Figure 4. The pairs are for CPT/CST (concepts/constructs) and
SCH/DAT (schema/data). For interoperability purposes, it has been shown
by the fundamental nature of category theory that four levels are sufficient for
all purposes [Rossiter & Heather 2005]. Further levels are possible but unneces-
sary. To maintain the coherence of the present approach it would be necessary to
go up to six levels as the next step to maintain the intension- extension pairings.

777

CPT

|

3 name — type L-E
| 4 T L P CPT/CS
:

|

CST

value — name

e - - - -

name — type SCH/DAT
!

I’TLI

DAT

value — name

,,,

Fig. 4. Defining the Four Levels with Contravariant Functors and Intension-Extension
(I-E) Pairs

The table in Figure 5 shows the four levels of concepts, constructs, schema
and data with the functors between them of P’ (metameta), O’ (meta) and I’
(classify). The arrows shown for the functors indicate the contravariant nature
of the mapping with domain to codomain and codomain to domain. The three
examples, from left to right, are for a property, aggregation with relational tables
and encapsulation with an abstract data type (ADT). The latter shows the
mapping from a binary-tree object named aTree through the class BST and the
ADT construction to the encapsulation concept.

5.2 Adjoints for Constraints

In category theory there is a unique solution if adjointness holds between two
functors as in Figure 1. This figure can be readily extended to handle four levels,
shown in Figure 6, as the composition of adjoints is natural. In Figure 6, with cat-
egories and functors as in Figure 4, there are six adjoints

Level Template Property Relational Data-|Abstract Data
base (aggrega-|Type (encapsula-
tion) tion)

CPT name — type |attribute —|table — aggre-|ADT — encap-

property gation sulation

P’ /N /N /N /N

CST value — name [registration.no |birth_type — ta-|BST — ADT

— attribute ble

o’ /N /N /N /N

SCH name — type |car_reg — regis-|birth_.record ——|aTree — BST

tration_no birth_type

I /N /N /N /N

DAT value — name |'x123yng’ —|<’Smith’, 25 mar|instance of tree

car_reg 1980, "Torquay’ >|(nodes/links) —
— birth_record |aTree

Fig. 5. Examples of Levels in the Four-Level Architecture

Fig. 6. Composition of Adjoints is Natural

[Heather & Rossiter 2002], one for each functor and its mapping in the oppo-
site direction (first three below, 1-3), one for each pair of adjacent functors and
its mapping in the opposite direction(4-5 below) and the one for all three func-
tors composed together and its mapping in the opposite direction (6 below).
These adjoints are defined in detail in the following six expressions:

< P, P nept, €cst >: CPT — CST (1)

Nept 18 the unit of adjunction 1., — P'P(cpt) and €qs is the counit of
adjunction PP’ (cst) — 1.g

< 07 0/777(151&7 €sch > CST — SCH (2)

Tlest 18 the unit of adjunction 1.5 — O’O(cst) and Esep is the counit of
adjunction OO’ (sch) — 1gep

< L,I'%p,€dar > SCH — DAT (3)

Nsep, 18 the unit of adjunction 1z, — I'I(sch) and €44¢ is the counit of
adjunction II'(dat) — 144t

< OP,P'O’, P'flosP ® Njopt, Esch ® Oy O' >: CPT — SCH (4)

P’fjest P ® 1oy is the unit of adjunction 1., — P'O’OP(cpt) and €gcp, ®
Oé€cstO’ is the counit of adjunction OPP'O’(sch) — 1sen

The unit of adjunction is a composition of:
Nept * Lept — P'P(ept) with P'ijese P : P'P(cpt) — P'O’OP(cpt)

The counit of adjunction is a composition of:
Oé€cstO' : OPP'O’(sch) — OO'(sch) with &sep, : OO’ (sch) — 1gen

We have retained the symbol e indicating vertical composition [Kelly 1972] as
distinct from horizontal composition indicated by the symbol o which is normally
as here omitted altogether.

< 10,0'T,0'7,,,0 ® fiest, Edat ® [€sen I’ >: CST — DAT (5)

O’ O @75t is the unit of adjunction 1,54 — O'I'IO(cst) and €444 @ [€scp 1’
is the counit of adjunction TOO'I' (dat) — 14as

The unit of adjunction is a composition of:
Test © Lest — O'O(est) with O'7j,, O : O'O(est) — O'T'TO(cst)

The counit of adjunction is a composition of:
I€sep, I’ : IOO' I (dat) — IT'(dat) with €gqt : 11’ (dat) — 1gae.

< IOP,P'O'T',P'O'1,,,0P ® P'o5; P ® N)cypt,

Zdat ® [escnI’ @ I0€,5,0'T >: CPT — DAT (6)

P'O’'1,,,OP ® P'fj.5; P ® 1) is the unit of adjunction
lept — O'I'IO(cpt) and €gqr ® I€sch I’ ® I0€.5,0'I" is the counit of adjunction
I00'I' (dat) — 1444

The unit of adjunction is a composition of:
Nept © Lept — P P(ept) with P'fjeq P+ P'P(cpt) — P'O’OP(cpt) with
POy OP : PPO'OP(cpt) — P'O'I'IOP(cpt)

The counit of adjunction is a composition of:
10¢.;O'I' : IOPP'O'I' (dat) — I0O'I'(dat) with
Iesen I’ : IOO'I' (dat) — II'(dat) with €gqs : 11 (dat) — 1gat

The expressions above specify the conditions to be satisfied if adjointness oc-
curs in all possible cases in Figure 6. From these constraints we derive values for
the various units of adjunction 77 and counits of adjunction e. If a unit of adjunc-
tion is 1, that is for example 1., = P'P(cpt), then the application of functors
P and P’ in turn returns the starting point (1,). If a counit of adjunction is 0,
that is for example PP’(cst) = 1.5 then the application of functors P’ and P in
turn returns the starting point (1.s:). These are special cases. In other cases of
adjointness n measures the difference between the starting and finishing points
after applying in turn the free and underlying functors. ¢ measures the difference

between the starting and finishing points after applying in turn the underlying
and free functors.

5.3 Natural Calculus for Data Manipulation

Looking at Figure 3, we have three types of mapping to consider: within a
category (for instance from a name to a value), from one category to another
(for instance the functor P’ from CPT to CST’) and from one functor to another
(for instance the natural transformation « from P to P’).

Following the constructive principles of category theory, the composition of
these arrows is natural. This consequently gives rise to a natural calculus first
expounded by [Godement 1958] and ([Barr & Wells 1999], 1st ed., pp 94-97) in
the form of rules governing composition. The composition of functors and natural
transformations is associative.

The consequence of natural closure is that a categorical approach ensures
that the various arrows of different types can be composed with each other,
irrespective of their level in the system. Equations representing an equality of
paths, can be solved for unknown components that can be determined from an
evaluation of the known properties. For instance in comparing methods with the
path JTOP from CPT — CST — SCH — DAT defining one approach,
then the path I'O’« from CPT — CST' — SCH’ — DAT’ might define
an alternative approach if P’ maps onto constructs in the category CST’.

The diagram in Figure 7 shows the application of the Godement calculus
to handle semantic interoperability, defined as the interoperation of one system
with another at the level of meaning of the data, that is at the metadata level.

OT‘ IT‘

’ 1"

«

CE]L, CSM: SCHLL, DAT
0n 17 1, [

Fig. 7. Semantic Interoperability in terms of Godement

The composition of the top line of functors I,.0O,.o P gives the mapping from
concepts to data for say a relational system r. The composition of the middle
line of functors I, o O, o P gives the mapping from concepts to data for say
an object-relational system or. The composition of the bottom line of functors
Ioo 0O, 0 P gives the mapping from concepts to data for say an object-oriented
system oo. Comparing these compositions gives a framework for interoperabil-
ity. For instance the natural transformation o/ compares how the mapping is

performed from constructions to types in a relational system r with that from
constructions to types in an object-relational system or. The natural transfor-
mation 3" compares how the mapping is performed from types to data in an
object-relational system or with that from types to data in an object-oriented
system oo. The advantage of the Godement approach is that arrows of any type
can be composed with each other so that any route can be taken.

To extend the categorical framework to handle organisational interoperabil-
ity, defined as the interoperation of systems at the business process level, we
need to vary the functor P for each environment so that the metameta level is
variable. The required diagram is shown in Figure 8.

P, Or I

P ia o la/ I la//
CPT_ 'Y, CST > Y, SCH ' DAT

A L

Fig. 8. Organisational Interoperability in terms of Godement

The following canonical rules hold according to the Godement calculus:

(8 0a')(Boa)=(B6) o (oa) (7)

(Lor 0 Or)ar = Loy (0 01) (8)

o/(0, 0 Poy) = (/O,) Py (9)

1,(8' 0 ') Poy = (I, Por) o (10 Poy) (10)
oo = (" Our) 0 (I,0") = (Ira') o (0" O,) (11)

A number of general principles in composition are shown by the equations.
Equation 7 indicates that of commutativity (the interchange law); equations
8... 9 indicate that of associativity; equation 10 indicates that of permutation
of paths. The last equation, 11, shows the production of simultaneous equations
representing different paths through the diagram. This is an important feature
as it facilitates the solution for an unknown mapping. For example, in equation
11 above, if the values o/, a’ and I,, are known, then O, is the only unknown
and a solution can be found for it. That is if it is known how the mapping from
constructions to types and from types to data varies between a relational system

r and an object-relational system or and what the mapping is between types and
data in an object relational system or, then the mapping between constructions
and types in the relational system r can be derived.

6 Discussion

One of the purposes of developing a formalism for a problem area is to pro-
vide a rationale in which standards can be planned and discussed. It is perhaps
only in the ideal world that standards are based entirely on a theoretical ba-
sis. Nevertheless some of the idiosyncrasies and inconsistencies of SQL have
been attributed to not rigorously applying axiomatic set theory to the standard
[Date & Darwen 2000].

Category theory is a promising candidate as a formalism to assist in the
preparation of an interoperability standard because of its pedigree as a workspace
for relating different mathematics. The work here has shown that it can indeed
perform this role with information systems and cover three critical areas of data
structuring, constraints and manipulation (process) in an integrated manner.
Recent advances in category theory are likely to improve its match with reality:
2-categories enable some of the strict criteria for composition and associativity
to be relaxed to some extent [Baez & Dolan 1998].

The approach developed here is close in a number of respects to the IRDS
standard for a reference model !. IRDS was based too on a multi-level approach
with intension-extension pairs. However, IRDS has had limited success and we
would attribute this to its reliance on set theory. This has made it difficult
to handle multiple levels and has given an emphasis on data structure over
important aspects such as process. Implementation has therefore been difficult.

Another standards approach which appears to have been used more is OSI
2. O8I has a reference model containing seven layers: Application, Presentation,
Session, Transport, Network, Data and Physical. OSI clearly covers more aspects
of information systems than IRDS and is expressed at a lower level conceptually
so it is easier to implement a complete system. It would be interesting to attempt
to represent the OSI standard in terms of our four-level architecture. Seven layers
could be equivalent to four categories interconnected by three functors as in our
approach. OSI has omissions in security and business processes which are very
important in current distributed web-based applications. Of direct interest is a
final draft proposal for enterprise modelling ? which attempts to standardise con-
structs for enterprise modelling including business process modelling. Without
a formal basis, such a standard will be difficult to apply non-locally.

1 ISO/IEC 10027:1990, Information technology — Information Resource Dictionary
System (IRDS) framework through to ISO/IEC 13238-3:1998 Information technology
— Data Management — Part 3: IRDS export/import facility.

2 ISO/IEC 7498-1:1994, Information technology - Open Systems Interconnection
through to ISO/IEC 10026-2:1998, Information technology - Open Systems Inter-
connection - Distributed Transaction Processing .

3 ISO/FDIS 19439. Final Draft International Standard Enterprise integration — Frame-
work for enterprise modelling.

There are two basic tensions that arise with the use of standards: variety
and naturality, manageable when local, but irreducible in the non-locality of
globalisation. In simple examples uniformity arising from a fixed and narrow
standard can result in a loss of variety on account of stringent reductionism.
By Ashby’s law of requisite variety [Ashby 1947] a system is driven down if it
lacks the necessary variety to provide a source for development, originality and
creativity. Two or more interoperable systems require a sufficient interacting
variety to operate, otherwise they will be driven down, that is seize up. The use
of naturality in a formal context, as in the work presented here, is seen as a step
forward in raising the quality of interoperability in the real world.

References

[Ashby 1947] William Ross Ashby, Principles of the Self-Organizing Dynamic System,
Journal of General Psychology 37 125-128 (1947).

[Baez & Dolan 1998] Baez, J, & Dolan, J, Higher-dimensional algebra I11: n-Categories
and the algebra of opetopes Adv Math 135 145-206 (1998).

[Barr & Wells 1999] Barr, M, & Wells, C, Category Theory for Computing Science,
Prentice-Hall (1990, 1995), Centre de Recherches Mathématiques, Montréal (1999).

[Date & Darwen 2000] Date, C J, & Darwen, Hugh, Foundation for Future Database
Systems: The Third Manifesto 2nd Ed, Addison Wesley (2000).

[Dietz 1999] Dietz, Jan L G, DEMO Modelling Handbook version 2.0 (1999).

[Diskin & Cadish 1995] Diskin, Z, & Cadish, B, Algebraic Graph-Based Approach to
Management of Multidatabase Systems, NGITS 95 69-79 (1995).

[Fegaras & Maier 1995] Fegaras, L, & Maier, D, Towards an Effective Calculus for
Object Query Languages Proc 1995 ACM SIGMOD 47-58 (1995).

[Godement 1958] Godement, R, Théorie des faisceauz, Hermann, Appendix I (1958).

[Heather & Rossiter 2002] Heather, M A, & Rossiter, B N, The Anticipatory and Sys-
temic Adjointness of E-Science Computation on the Grid, Computing Anticipatory
Systems Liege, Dubois, D M, (ed.), AIP Conf Proc 627 565-574 (2002).

[Johnson, Rosebrugh, & Wood 2002] Johnson, M, Rosebrugh, R, & Wood, R J, Entity-
Relationship-Attribute Designs and Sketches, TAC 10 94-111 (2002).

[Kan 1958] Kan, D M, Adjoint Functors Trans Am Math Soc 87 294-329 (1958).

[Kelly 1972] Kelly, G M, & Street, R, Review on the Elements of 2-categories, Pro-
ceedings Sydney Category Theory Seminar 1972-73, ed. G M Kelly, Lecture Notes
in Mathematics, Springer-Verlag 420 75- 103 (1974).

[Lawvere 1969] Lawvere, F W, Adjointness in Foundations, Dialectica 23 281-296
(1969).

[OMG 2005] OMG, Model Driven Architecture http://www.omg.org/mda/ (consulted
December 2005).

[Rossiter 2003] Rossiter, N, From Classical to Quantum Databases with Applied
Pullbacks, 78th Meeting Peripatetic Seminar on Sheaves and Logic Institut de
Recherche Mathématique Avancée, Strasbourg University 15-16 February (2003).

[Rossiter & Heather 2003] Rossiter, N, & Heather, M, Four-level Architecture for Clo-
sure in Interoperability, EFIS2003, Fifth International Workshop on Engineering
Federated Information Systems, Coventry, UK, 17-18 July 83-88 (2003).

[Rossiter & Heather 2005] Rossiter, Nick, & Heather, Michael, Conditions for Interop-
erability, 7th International Conference on Enterprise Information Systems (ICEIS)
Florida, USA, 25-28 May 2005, 92-99 (2005).

