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Abstract

Legal computer science requires a theoretical basis which can be
realized in practice because it has to be both good science and good
engineering. Scientific rigour expects the use of mathematics, and
engineering needs that mathematics to be constructive. Theoretical
computer science has recently seen exciting developments in con-
structive mathematics with the application of category theory. A
prime advantage of this new formalism is that it is able to integrate
law, logic and language as needed by legal computer science.

1 Legal Computer Science

What is legal computer science and what are its components? First it is
part of computer science in general and general features apply. For computer
science:

e is a science and needs a rigorous basis.
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e is also a branch of engineering and requires proper engineering prac-
tices.

e is unlike other branches of engineering science which can rely on the
direct involvement of a human engineer in applying theory to practice.

e is achieved computationally from a machine and cannot therefore rely
on a direct application of human experience to bring theory into line
with practice.

e can only use realizable theory as produced in the real-world.

In recognition of these principles, theoretical computer science has in recent
years been turning to the modern presentation of constructive mathematics,
based on the concept of process, as found in category theory. A number of
texts on category theory for computing science has been appearing over the
last few years [Barr & Wells 1990; Pierce 1991; Pitt et al 1986; Rhydeheard
& Burstall 1988]. Category theory has recently been applied to law [Heather
& Rossiter 1994a, 1994b, 1995; Karpf 1995]. Constructive mathematics is
concerned with only what can exist. This means that it is not possible to
use indirect arguments like reductio ad absurdum because the rule of tertium
datur need not apply. Likewise the axiom of choice cannot be relied on.

Legal computer science is concerned with computational theory of norma-
tive statements in the real world. However, it should not be thought that
legal computer science is a narrow branch of computer science, it is quite
extensive as it embraces both language and logic as well as law. Language
and logic are fundamental to the representation of legal knowledge. More-
over the three subjects law, language and logic have to be treated in an
integrated fashion. A statement of a lawyer like

John gives Mary the ring and title passes on delivery

is a natural language expression containing a normative statement of sub-
stantive law as well as normative inferences relying on logic. This prime
characteristic of the internal cohesion within these strands of law, logic and
language is to be explored in this paper with a formal representation for
this statement.

Legal computer science also has to satisfy the same constructive principles
as computer science in general. In terms of formal algebraic language, con-
structivism is to be found in the case of the Heyting algebra. In terms of



logic, constructivism requires conformity with the intuitionistic predicate
calculus [Boileau & Joyal 1981; Lambek & Scott 1986] which provides the

basis of geometric logic.

In the language of category theory we are in the realm of the topos [Barr
& Wells 1990; Bell 1988]. The outcome is that we are restricted to data
and information in a closed cartesian category. We should now outline the
components of formal categories.

2 Formal Categories and Objects

The form of constructive mathematics to be found in category theory is
based not on the set as a fundamental but on the concept of process. This
is generally thought of in terms of the arrow and represented by — [Manes
& Arbib 1986]. The arrow represents any dynamic operation or static condi-
tion and can cope therefore with descriptive/ prescriptive equivalent views.
For A — B may be a descriptive action or a prescriptive one. That is a
norm. Alternatively it may be a probabilistic relationship. There may be
any number of different arrows between the same objects. For the arrow
may be thought of as a generalization of verbs.

The arrow can never be free—standing: it must have some source and target,
often named domain and codomain respectively. A category is a collection
of arrows. The concept of a dual category arises from the view of arrows in
the reverse direction.

The arrow is a more effective representation of real-world phenomena.
A — B can represent an action from a state A to a state B, an inter-
action of A with B, for example a product of A with B, or a type change
from type A to type B.

The arrow can represent a more general relationship than the set-theoretic
function. Language is concerned with representing more general relation-
ships which exist between real world data. For example in considering verbs
as functions, an object is not necessarily a strict mathematical function of
the subject.

Domains may have various levels of complexity, that is the domains may
themselves consist of arrows at lower levels. Domains and codomains need
not have the same level of complexity. Their arrows will then enhance the
structure or will simplify, that is a higher level type conversion. Analog-



ical reasoning using natural logic is an important example of inference as
a higher—level type conversion where there is invariance of intension but
possibly unrecognizable changes in the extension.

The simplest arrow has null domain and null codomain. This is the identity
arrow 1 which, after the category with no arrows at all, forms the next
simplest category. In more concrete terms this arrow can be thought of as
identifying an object. When there is only one object, it is indistinguishable
or what is technically known as unique up to natural isomorphism. It is often
labelled {*}. A category with two such objects is sometimes written as 2 but
with two or more objects it is possible to distinguish them by arrows between
the objects and the identifying arrows may be labelled 14,15,1¢,1p, etc or
more simply A, B,C, D, ... from the viewpoint of the object as a concrete
entity.

This amounts to an object—oriented approach. For historical reasons mainly
from the influence of set theory, the emphasis is more often on the objects
rather than the arrow. It is important to bear in mind that objects can
always be abstractly defined in terms of the arrow.

Conventionally then a category in this context consists of the collection of
arrows between objects as shown in Figure 1:

C D

Figure 1: Simple Categories

If arrows are like verbs or prepositions, objects are nouns and adjectives
represented by categories themselves. Adverbs are natural transformations
(below). As with language there is a whole range of possibilities on offer.
Arrows may be treated as objects in the same way as verbs can be employed
as nouns or in the way noun-phrases can be constructed with the use of
prepositions.



2.1 Initial and Final Objects Representation of Truth

An object in a category C where there is one and only one arrow from every
other object to it is known as the final or terminal object of C. This may
be denoted by 1 for the whole category, more precisely with the subscript
1¢c where C now represents the whole category C. In the logic context the
symbol top T carries over from elementary theories of logic. The statement
that A is true may be represented by A — T.

Dually to the final object there may exist a corresponding initial object
where there is one and only one arrow from it to every other object in the
category. In the category of sets, for example, the empty set () performs
this role. The initial object in the context of logic is the symbol bottom L.
That A is false is therefore representable as A — L.

A B e p D
i K i
- L P
A——— B D!

___________________________________________

Figure 2: Functors compare Categories

2.2 Functors

An arrow between categories is termed a functor. Figure 2 shows functor
arrows K, L between categories A and C containing objects A, B,C ...
interrelated by arrows f,g,.... In Figure 2, K assigns from the source
object A the target object K(A) to C' and from a source arrow f the target
arrow K(f) to g. These are covariant arrows. The direction of K and L may
be reversed to give the dual contravariant arrow.



An arrow between any two categories or subcategories will be a functor. So
the inclusion of a subcategory within its category is a functorial concept.
An important functor for language is the free functor on an alphabet:

F(X): X — X*

The free functor F' generates language by its arrangements and organization
of words, that is finite strings over the alphabet. A double powerset functor
is therefore needed to carry a character x to a string X, z—< X >.

2.3 Typing

The classical limitation to set theory is that it is by nature typeless. From
this arises most of the paradoxes with sets [Russell 1900]. Russell himself
showed that the paradoxes could be resolved by introducing above sets
a higher—level concept of class. He and Whitehead developed a theory
of logical types [Whitehead & Russell 1910] which has proved unwieldy
for everyday mathematical use. Category theory starts afresh at a higher
abstract level and has a naturally inherent concept of the type.

Discrete items are identified by the single category {*} or 1. Therefore
elements in a set @ € A is represented categorically by @ : 1 — A. Typing
is added by indicating the category (i.e. some pool of values in set theory
extensions) from where the item is taken. For examplea : ¢ — A or more
simply C -2 A makes the element a in set A of type C. Furthermore
A need not be an object in the category of sets but may belong to a more
general category.

In each of these examples, the arrow is relating categories and is strictly a
functor. This emphasizes the need for multi—level capabilities for typing.
A fundamental type of arrow is the isomorphism which can be rigorously
defined in category theory. An arrow f : A — B is an isomorphism if
there is an arrow ¢ : B — A such that

gf =14, fg =15

[somorphism is a simple example of an idempotent (e) where the composi-
tion of an arrow with itself is itself: e o e = e. The category of idempotents
may be split with the effect that an isomorphism is a composition of a



section followed by a retraction: s : A — B and r : B — A. That
is a section can be created out of an arrow; the retraction of this section
collapses it back onto the identical arrow. This is important for language
because the verb to be is idempotent (a thing is itself is itself). A section is
a grammatical complement of the verb to be.

Legal concepts are instantiated in this way. For instance a transaction that
can be reciprocated between persons is an isomorphism

where ¢f = fg = 1p. If this arrow defines delivery, it creates the class
(a section) of deliverables in law. In an isomorphism the property can be
returned as it was. This can define a class of personal property, namely
personalty, represented by the diagram:

A
section retraction
g
1p 1p

Figure 3: Personal Property as a section of Persons

3 Preorders

The concept of direction in the arrow also gives rise to ordering. It is a
weak sense of ordering only defined locally in the context of the domain or
codomain of the arrow and those composed with it. From the nature of
the arrow, a fundamental ordered structure is generated and known as the
preorder where any two objects are related by at the most one arrow A —
A’. For the preorder the conventional symbol for this arrow is <: A — A’



From the axiomatic construct of composition, there is transitivity. A —
A" — A” means that A — A”. This does not mean that A” cannot
precede A globally. For a preorder where A precedes A’ and A’ precedes
A, A is equivalent to A’. The preorder arrow written < therefore has the
meaning ‘less than or equivalent’.

3.1 Examples of preorders

Information systems are preordered, that is there is a potential connection
between any two items of information. The fundamental ordering of parallel
processing and distributed computing is the preorder. Hypermedia is pre-
ordered [Heather & Rossiter 1995]. Again there is the potential connection
between any two items and until there is a specific information query, every
item is equivalent to every other.

Because of the importance of preorders in information systems, various mod-
els are being advanced to handle the preorder relationship, such as Petri nets
and databases. The universal relation is a universal preorder. The under-
lying organization in a neural net is a preorder. Some operating systems
provide facilities for representing preorders. The Unix file system is an ex-
ample. It is possible to have cycles and files with the same name. They are
equivalent for the purpose of name, not equal. The fundamental nature of
the law before it is applied to any particular situation is a preorder.

3.2 Partial Orders

A stronger form of ordering is the partial order. In this instance the partial
order arrow <: A — A’ has the meaning that A precedes or is the same as
A’. This is in effect to add an anti-symmetric condition that if A precedes
A" and A’ precedes A then A is the same as A’. Examples of partial orders
are lattices, trees, acyclic graphs. The finite strings, which compose the
free functor X*, form a partial order represented as a lattice ordered by
inclusion.

It should be stressed that as the diagrams are formal, the labels applied
to them are formal algebraic representations. This is the nature of the for-
mal language of mathematics. However, it is also the essence of natural
language: labelling is equivalent to applying a language. Sequences of char-
acters forming words, sentences, paragraphs, etc, are not arbitrary but are



formally constrained. As explained earlier, a language is given by X*. A
statement describing the state or an action is an insertion into the language.
Figure 4 shows a diagram (geometry) expressed by mapping it onto a string
(algebra).

X*

; N
t \/

Figure 4: Diagram mapped onto a Language String X*

Different languages X*, Y*, Z*, ... give different lattices varying the choice
of finite string at any point in the respective lattice. When the alphabet is a
set, the string representing the diagram is a subset of the possible sequences
in the language, that is the double powerset over the alphabet. European
languages use alphabets which are sets but even in their written form tend
to go beyond linear orderings. Further dimensions are often layered onto
the sequence of characters by the use of different fonts, etc. For instance
the printed page of an Act of Parliament is not just a linear sequence of
characters but a partial ordering with information carried in the format of
the printed text [Heather & Rossiter 1987].

X* need not be over an alphabet but may be a free functor on a phonetic
category for speech or over a category of syllabaries for languages with
graphic writing. Set theory is not easily extendible to deal with partial
orders of subobjects beyond subsets and this shows the need for the use of
category theory or a formalism of equivalent power to cope with natural
language. The law applying to a particular case is a partial order and this
is the basis of legal hypermedia [Heather & Rossiter 1995].



4 Natural Transformations

A B ! o D!
| f — g |
| I (O |
s b s
| L |
| f : : 7 |
A B - D"

__________________________________________

Figure 5: Natural Transformations compare Functors

An arrow between functors is termed a natural morphism (or transforma-
tion) as shown in Figure 5 where there is a natural transformation « from
K to L, written:

a: K — L

This natural transformation assigns to each source object A a target arrow

as: K(A) — L(A)

There are tight inter-relationships between the levels in category theory:
morphisms and objects of categories at the lowest level are part of the
expressions at the highest level of natural morphisms. A special case of
natural transformation is the concept of natural isomorphism where, in the
example given, the composites o o 3 and 3 o a are the identity natural
transformations of L and K respectively. This links to another mathemati-
cal approach where « is regarded as an isomorphism of a model of categories
giving connections to model theory.

Natural transformations operate at the level of the message. This will in-
clude philosophy, policy, discretion and meaning. For language, which is
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derived from the free functor as described above, there is a natural transfor-
mation between the characters and what the sequence of characters means:

n: X — F(X)

The Greek alphabet is conventionally used to represent natural transforma-
tions. In Figure 4, it should be noted that the arrow mapping the insertion
of the left—-hand diagram onto the partial order is labelled with the greek
character iota ¢ (not ¢) because it is a natural transformation.

For applications the essential effect of natural transformations is that they
relate one order to another and control reordering. The effect is that any
form of interpretation, cognition or of perception by the senses in general
requires a natural transformation.

European languages that use Latin characters form subcategories of X*. For
two such languages U*, V* we have ¢ : U* — X* and ¢: V* — X*. This
insertion is monic but the two languages do not partition X* because (even
taking all languages together), there are some strings which do not exist in
any language and some strings that occur in more than one language (often
with different meanings). Translation is a natural transformation between
strings in the respective languages «, :< u >—~< v >. « is a natural
transformation indicating that it operates at the pragmatic level. In the
language of category theory « is a generalized string.

4.1 Products and Pullbacks

Two operations common in relational algebra, product and projection, are
represented directly in category theory within the concept of the limit and
diagrammatically represented through the construction of a cone. A cone
consists of an open triangle comprising three objects, for example, P, A
and P x A where the product P x A is the vertex of the cone as shown in
Figure 6 below. The projection (natural transformation) arrow # operates
in either a left () or a right (7,) context, depending on which part of the
product is being selected.
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Px A

T Ty

P A

Figure 6: Product Cone for Objects P and A

In strict category terms, the cone as presented above does not appear to
commute but it may alternatively be presented as in Figure 7 where for any
object V and arrows ¢; : V — P and ¢, : V — A, there is a product U
with projections P and A such that the diagram commutes, that is the two
equations hold:

Toqg=4q

T 0= (2

U is the universal product of P x A. It is the limit (meet) of any conjunc-
tion of P and A from multiplication in arithmetic, AND in logic to real
world phenomena like chemical compounds and in legal language [Heather
& Rossiter 1994b] like joint liability and ownership as joint tenants and
marriage. It is an abstraction of the concept of combined togetherness.
The dual concept of separate togetherness is the coproduct which involves
the colimit (join) corresponding to the arithmetical sum, the logical OR
(the exclusive XOR), a chemical mixture or in legal language several liabil-
ity, tenancy in common ownership, divorce, etc. Projected onto sets these
would be examples of disjoint unions. The features of real-world colimits
need to be represented in more general categories.
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q1 q \gq2

P U—5— A
Figure 7: Commuting Product Cone for Objects P and A

An important product in practice is the pullback or fibred product where
a product is restricted over some object or category. If P and A both have
arrows to some common C' as P — C and A —& (', then the subproduct
of P and A over (' written as P X ¢ A may be represented by the diagram
shown in Figure 8.

Figure 8: Diagram of Pullback of P and A over ('

where g(P) ~ t(A) and g(P),t(A) are both objects of C'. This diagram

commutes in that

gogr(t)=toelt)

g*(t) can be described as the pullback of ¢ along g. In terms of Figure 7,
for any pair of arrows ¢; : V — P and ¢ : V — A with go ¢y = t 0 ¢2,
there is a unique morphism ¢ : V.— P x ¢ A satisfying ¢*(¢) o ¢ = ¢1 and
(1) 0 q = qa.

If ¢ = {*}, P x ¢Ais the whole product P x A shown in Figure 9.
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PxA \{*}
/

A

Figure 9: Pullback of P and A over {x}

The pushout is the dual of the pullback and corresponding diagrams deal
with coproducts.

4.2 Adjointness

Adjointness between two categories

FA4G:Y —1Z

has left and right components which specify how an arrow in category Y
is related to an arrow in category Z. This is the fundamental concept
of implication to be found in geometric logic. The left component is the
free functor F':' Y — Z and the right component the underlying functor
G:7Z — Y. Fisleft adjoint and G is right adjoint to F'. This is a natural
bijection between arrows which holds subject to the condition for all objects

Y belonging to Y and all Z belonging to Z such that:

F(Y) — Z implies and is implied by Y — G/(7)

I’ is a generalization of intransitive verbs and G of transitive ones.

With this condition there are two natural transformations or unit of ad-
junction:

n:ly — GF,e: FG — 1g

Adjointness is therefore an important concept whose universal properties
have only really been appreciated since the advent of category theory [Freyd
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& Scedrov 1990]. The importance of equivalent classes has been long rec-
ognized but adjointness provides a formal specification for equivalent struc-
tures which include dynamic systems.

This discovery of adjoints by Kan [1958] is of far-reaching importance in
that it describes the behaviour at the centre of all systems. It is fundamental
to information systems. The law itself is always right adjoint to the free
functor that describes the society in which it operates [Heather & Rossiter
1994a]. By the adjoint functor theorem [Freyd & Scedrov 1990], left adjoints
preserve colimits and right adjoints preserve limits.

Translation is an example of adjointness. A text in the language category
U is mapped onto the language category V. This is a free functor mapping
from a string in the partial order U* onto a particular string in the partial
order V*. The translator has a freedom in the selection of the string (for
example, in style as determined by some natural transformation). The
underlying functor o* relates the meaning of the string < v > to the string <
u >. The unit of adjunction ¢ : aa™ — 1v is a measure of the completeness
of the translation. If the translation is ideal, ¢ equals 1 i.e. aa™ = 1y. In
practice it is likely that ca™ is less than 1v/. In effect this is performing a
translation back from the category V to the category U, retranslating the
result, and then comparing the result with the original. That is for a given
string < v >

€cos =afa" <v>)—<v>

5 Application

We are now in a position to explore this integrated formalism of category
theory for law, language and logic as it would apply to the sentence quoted
in the introduction:

John gives Mary the ring and title passes on delivery

to see how category theory deals with language, logic and law.
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5.1 Language

A starting point in the language might be the statement: John gives the
ring to Mary. This is represented by the formal diagram in Figure 10:.

J g R
tog t
M

Figure 10: Formal Diagram for John gives the Ring to Mary

The composition arrow (compare Figure 4) would be labelled in conventional
mathematics as ¢ o g but the full version, remembering that the objects are
identity arrows, would be MtRgJ as shown in Figure 11.

J g R
MtRg t
M

Figure 11: John gives the Ring to Mary
with the full label for the composite arrow

This composite label is only one of a number of possible strings and other
strings are possible to represent the diagram as a whole. These are analagous
to the alternative ways in which the basic statement can be represented
in language. The English language is fairly flexible and can deal with a
number of (but not all) the possible representable strings for the diagram.
It is possible to start on any arrow and go in either direction. Possibilities
are:
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MtRgJ Mary, the ring, gives, the mathematical convention, im-
John possible in English, but might
just be acceptable in poetic form

JgRIM John gives the ring to natural English order but oppo-

Mary site to the mathematical conven-
tion
RtM Jg the ring to Mary (by) the passive voice with a con-
John is given travariant composition arrow
MJgRt Mary by John is given another passive with contravari-
the ring to ant ¢ and contravariant composi-
tion
RgJ Mt The ring is given by passive with contravariant ¢ but
John, Mary to covariant composition
JgMR John gives Mary the an alternative representation of
ring the composite arrow but re-
ordered

The reordering in the last example with the admission of the ¢ indicates a
natural transformation at work, which is a matter of style and at the level
of the senses, allowing this reordering in English. Because it is a natural
transformation, it can be bound up with the meaning and indeed it is the
semantics that determines there is no ambiguity in this order.

Despite the flexibility of English, some of these possible strings are not well—
founded forms but may sometimes be used by small children or non-native
speakers of English. However, these alternatives might be acceptable in
other languages and might be quite appropriate forms in an inflected lan-
guage like Latin or German. A Latin version could be

Mariae aulum dat Johannes

where the inflected dative ending ae picks up the arrow ¢; also the accusative
ending of aulum indicates the codomain and the nominative Johannes the
domain of the arrow ¢g. With an inflected language the order of words is
not critical and combinations might make good Latin which would not be
acceptable in English. This demonstrates the categorial significance of the
endings and at the same time indicates there is no difference in principle
in the mapping onto the strings of an inflected language. It is for this
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reason that there no particular problems in translating between inflected
and non—inflected languages.

X*

J g R /\/}
MtRg e \/ tRgJ

Figure 12: The Expression MtRg.J as a string in the free word functor X*

A more general form of John gives the Ring to Mary could be given with
the identity functor 1p on the category of persons P replacing John and
Mary and the identity functor 15 on the category of articles replacing the
ring, as shown in Figure 13:

]-Pt]-Ag]-P

lp g 1a /\
NS
/ \/

Figure 13: Diagram for a Person gives an article to a Person

This diagram should be compared with diagram 3 to see that the abstract
concept of giving is related to the legal concept of personalty.

A person could be a corporate body like a company and this would prob-
ably affect the meaning of the arrow ¢ so it has the meaning of a general
presentation. Alternatively the functor 1p could be a pullback of more than
one person in a joint presentation.
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5.2 Logic

We have seen that limits and colimits are generalizations of logical operators
AND, OR and the intersection and unions of set theory. These are wrapped
up in the form of language expressions we have just discussed. These lead
to logical inferences. Any composition is a logical inference in geometric
logic. It is this equivalence for composition in language that we have been
considering that makes language logical [Heather & Rossiter 1994b]:

g:J — Rt:R— M
tRg:J — M

This is the general (higher—order) predicate logic expression which subsumes
the various possible forms of language discussed above.

The possible initial legal and physical states for the example of John giving
the ring are:

JxR RxM

/\/\
\A/

J+R R+M

Figure 14: Preorder of possible initial states

This preorder of possible states combines both pullbacks and pushouts.
FEach pullback limit P x A or A x P indicates potential ownership (do-
minium) and the pushout colimit P + A or A + P provides the possibility
that a person has the article (possessio). The natural state is that both
ownership and possession continue in time if no action affects them. This
is the arrow of time which is right adjoint to possessing and left adjoint to
owning, that is the adjointness:
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possess 1 time 4 own

holds in the following diagram:

AN AN
NS NS

Figure 15: Preorder of the time arrow between various states

This is a consequence of the adjoint functor theorem referred to in the
discussion of adjoints above, namely right adjoints preserve limits and left
adjoints preserve colimits. Time is both left and right adjoint to the laws
of physics. The continuation of possession is an effect of the laws of physics
particularly Newton’s first law that things continue where they are put if
nothing is done to them. However, time also preserves ownership. To own
is right adjoint to time. These are examples where ownership (a limit) is
preserved by right adjoints and ownership (a colimit) by left adjoints.

The action of giving is a composition of the time arrow with a change in
the physical and/or legal states of the article.

These preorders describe states that are possible in the real world. The ex-
istence of left and right adjoints determines respectively whether possession
and/or ownership passes. The preorder provides possible situations but not
all are mutually possible. The quotient equivalent partial orders give the
possibilities that can exist together. The legal action is a functor onto one
of the following logical states depending on the legal position in the Figure
15.

That diagram is a preset giving the possible orderings available represented
by the quotient posets. Various poset possibilities are given in the following
figures:
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J xR RxM

AN RN
NS N

Figure 16: John gives Mary the ring she already possesses
Mary already has possession, John passes title.
Left adjoint but no right adjoint.

J xR J xR

7N\ RN
AV AV

Figure 17: John lends Mary the ring
John has both title and possession and parts with possession but not title.
Right adjoint but no left adjoint.
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J xR RxM

AN RN
N N

J+ R R+ M

M

Figure 18: John gives Mary the ring
John having both title and possession passes both to Mary.
No right or left adjoint.

Rx M Rx M

7N\ RN
AV AV

J+ R R+ M

M

Figure 19: John gives Mary her ring (back)
John has possession. Mary has title and John returns possession.
Right adjoint, no left adjoint.
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5.3 Law

The pullback diagram in Figure 8 can be applied to the situation for own-
ership:

Figure 20: Legal ownership as a pullback of giving along to.

Category C is any context and here the context is the action of giving. The
arrows ¢, 1 are insertions in that context and represent respectively the same
arrows ¢ and t as in all the Figures above. The diagram is a pullback of
g along t. ¢*(1) is then the projection of ownership onto the category of
persons. ¢* picks out the owner P, of the particular article A, that is to be
the domain of the preposition arrow fto.

The natural transformation ¢,y is the projection of ownership onto the
article. This epsilon ¢,(), as a natural transformation at the message level,
provides the legal position such as the statement that title passes on delivery.
A corresponding diagram can be given for the pushout (the dual of the
pullback) to deal with the law of co-ownership.

It is interesting to note that both ¢* and e represent legal norms. The con-
travariant functor ¢* is a prescriptive expression while the natural transfor-
mation € represents the law descriptively.

Possession is left adjoint and ownership right adjoint to the rule of law. This
means that, by the adjoint functor theorem, right adjoints preserve limits.
In this context this means that ownership goes with the article. The whole
diagram gives the legal effect. This shows the integration of law, language
and logic in constructive theory needed for legal computer science.

For diagram 20 taken with any of the figures 16 to 19 formally represents
in geometric logic the statement:
John gives Mary the ring and title passes on delivery
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