
155

Updating XML
Using Object-Relational Database

Pensri Amornsinlaphachai, M. Akhtar Ali, and Nick Rossiter

University of Northumbria at Newcastle, UK
{pensri.amornsinlaphachai,akhtar.ali,nick.rossiter}@unn.ac.uk

Abstract. Presently, the area of updating XML is immature since
XQuery has not provided update features. Thus this area has not been
investigated as fully as it should have been. Moreover existing researches
focus on updating native XML database so that everything must be cre-
ated from scratch. Furthermore, an XML document is often treated as
a database by keeping all data in one document, leading invariably to
data redundancy. Such redundancy in XML documents can lead to data
inconsistency and low performance when updates are performed. There-
fore, we exploit the power of traditional database systems, which are
fully developed to update XML documents. We present a mechanism to
link non-redundant data kept in multiple XML documents. The data is
held in an object-relational database (ORDB) and an update language
is proposed, an extension to XQuery, which is translated into SQL for
updating XML data stored in an ORDB. Finally, we present a technique
to propagate the changes in an ORDB to XML documents.

1 Introduction

The emergence of XML as an effective standard for representation of (semi-)
structured data on the Web has motivated a host of researches in the area re-
lated to XML such as storing [6], publishing [5], querying [1], and updating [9]
XML documents. In the area of querying XML documents, several query lan-
guages, such as Lorel, XQL, and XQuery have been proposed and implemented
while in the area of updating XML documents, several researchers pay attention
to designing update languages such as XUpdate [11], SiXDML [8], and XML Up-
date Extension [9] of which only a few have been implemented such as XUpdate.
However, these update languages can perform only simple updates. For exam-
ple, they may update an XML document without checking constraints and they
cannot perform joins between documents in update commands. This indicates
that at present the research in this area is underdeveloped.

Our research concentrates on developing a methodology to update linked
XML documents. Our motivation comes from three reasons as follows. Firstly,
research in the area of updating XML is not fully developed since XQuery,
a standard from W3C, has not provided update features. However, there is a
suggestion from W3C [3] for the imminent arrival of an update version in XQuery.
Secondly, when updates are made directly on XML documents in the form of

M. Jackson et al. (Eds.): BNCOD 2005, LNCS 3567, pp. 155–160, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: No
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [600 600] dpi
 Paper Size: [439.37 666.142] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Warn and Continue
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo false
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles false
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [600 600]
>> setpagedevice

156 Pensri Amornsinlaphachai, M. Akhtar Ali, and Nick Rossiter

native XML database, many other tasks need to be performed such as preserving
constraints. However, developing the mechanism for handling this work from
the current starting point may take a long time. Thirdly, an XML document
is usually treated as a database keeping all data in one document; thus data
redundancy can occur. This redundancy may lead to data inconsistency and poor
performance when updates are performed. To reduce data redundancy, data is
sometimes kept separately in several documents. However, presently, this means
that joins between XML documents in update commands cannot be performed.

In our methodology, we update XML documents via ORDB and let the
database engine handle the preservation of constraints; thus structure and con-
straints of XML are mapped to an ORDB. To solve the problem of data redun-
dancy, data is kept in several separated documents. These documents will be
linked together by a mechanism called ‘rlink’. This mechanism is then mapped
to an ORDB. We propose an XML update language, which is an extension to
XQuery. The proposed update language is translated into SQL to update XML
data stored in an ORDB. Finally, the change in an ORDB is propagated to XML
documents.

For the rest of the paper, we investigate issues relating to the design of
our methodology. Section 2 describes how XML documents are mapped onto
an ORDB. Section 3 presents our XML update language and its translation
into SQL. Section 4 describes how changes are propagated into original XML
documents. Preliminary conclusions and future work are discussed in section 5.

2 Mapping XML Documents

To update XML documents via traditional databases, XML must be mapped
onto a database. We map XML onto an ORDB by using a shredding approach
since hierarchical structures as well as constraints of XML can be represented
in an ORDB. Presently, according to published work [6, 7], full mapping of
XML structures and constraints onto ORDBs cannot be fully achieved due to
limited constraints-handling capabilities in existing object-relational database
management systems (ORDBMSs). Therefore, we propose new mapping rules
and apply some existing rules [6] that are practicable using available ORDB
technologies.

We use three features of ORDBs in our mapping rules: abstract data type,
object table and nested table. Some of our rules are as follows. Firstly, elements
having only one complex child-element are mapped to object tables, and their
complex child-elements are mapped to abstract data type fields. Secondly, com-
plex elements which have * or + occurrence and have siblings are mapped to
nested tables if they comply with the following conditions: (a) all of their chil-
dren are simple elements and all attributes have no type IDREF(s), (b) they
have no references to other elements and no references from other elements to
them, and (c) they have no recursive structure. Thirdly, complex elements which
have ? or 1 occurrence, have a sibling and have children all of which are simple
elements are mapped to abstract data type fields. Fourthly, complex elements
which do not correspond to the above rules are mapped to object tables. Fifthly,

Updating XML Using Object-Relational Database 157

for parent-child relationship and recursive structure with ? or 1 occurrence, the
primary key of the table of parent-element is mapped to a table of child-element.
Finally, for recursive structure with + or * occurrence, a separate table is created
to store the primary keys of tables of a parent-element and a child-element. For
attributes and simple elements, rules are similar to the work of [6].

For associating the relationship between elements from different XML docu-
ments, an rlink mechanism is used to provide information to identify which doc-
uments and/or elements are linked to others. Although this may be extended
to XLink the main purposes of XLink and rlink are different. Mapping rlink
mechanism to ORDB is the same as mapping IDREF(s). If an element referred
by IDREF or occurrence of elements containing rlink is 1 or ?, the primary key
of the table of a referred element is mapped to a table of a referring element.
If an element is referred by IDREFs or occurrence of elements containing rlink is
+ or *, a separate table is created to keep primary keys of tables of a referring
element and a referred element.

Most of XML constraints can be mapped onto ORDB constraints; however,
a cardinality constraint is unavailable in any (O)RDBMSs. Therefore, we add a
method for preserving this constraint when updates are performed.

3 XML Update Language and Its Translation

Our XML update language is adapted from the update language proposed, but
not yet implemented, by Tatarinov et al. [9], and is based on the syntax of
XQuery [10]. The syntax of our language is shown in Fig. 1.

When compared with existing XML query languages, XQuery is the most
powerful, providing many features [4, 10]. Moreover, since XQuery is a func-
tional language and SQL is a declarative language, this translation cannot be
performed in a straightforward manner. In our research, five important con-
structs of the update language are inherited from XQuery: FLW(R—I—D), con-
ditional expression, quantifier, aggregate functions and user-defined functions.
These constructs are translated into SQL using four techniques: update/delete
join commands, rewriting rules, graph mapping and optimisation. At here, only
the first three techniques are presented while optimisation is presented in [2].

Update/delete join commands: In the SQL standard, joins in update/delete
commands cannot be performed; however, translating XML update commands
can produce a join of several tables. Thus we will translate XML update com-
mands into update/delete join commands and then rewrite these commands in
SQL. Syntax of the commands is shown in Fig. 2.

Rewriting rules: There are six categories of rewriting rules: For-Let-Where-
Replace-Insert-Delete (FLWRID) expression, aggregate function, quantifier, con-
ditional expression, (non-recursive) user-defined function and SQL rewriting
rules. The first five categories are classified according to features of the update
language. These rules will rewrite update commands as SQL functions. Such

158 Pensri Amornsinlaphachai, M. Akhtar Ali, and Nick Rossiter

(ForClause | LetClause)+

WhereUpdateClause|IfUpdateClause

where each clause is:

ForClause ::= For $var in XPathExp(,$var in XPathExp)*
LetClause ::= Let $var := XPathExp(,$var := XPathExp)*
WhereUpdateClause ::= WhereClause? UpdateClause
WhereClause ::= Where Condition
UpdateClause ::= DeleteClause|ReplaceClause|InsertClause
DeleteClause ::= Delete node WhereClause? (,Delete node WhereClause?)*
ReplaceClause ::= Replace node with content WhereClause?

(, Replace node with content WhereClause?)*
InsertClause ::= Insert content Into node (Before|After condition basedon XP ath)?

(,Insert content Into node (Before|After condition basedon XP ath)?)*
IfUpdateClause ::= If Condition Then UpdateClause

(ElseIf Condition Then UpdateClause)*
(Else UpdateClause)?

Fig. 1. Syntax of XML Update Language

Syntax of joins in update command Syntax of joins in delete command

Update table whose fields will be updated Delete table whose data will be deleted
From all related tables From all related tables
Set field1 =value1, field2 = value2, Where Condition;
Where Condition;

Fig. 2. Syntax for Update/Delete Join Commands

functions are sometimes conceptual, i.e., the function serves a purpose not cur-
rently existing in SQL. The last category is SQL rewriting rules, which rewrite
update/delete join commands to SQL commands.

In translating XML update commands by using the rewriting rules, all clauses
of the commands must be rewritten as SQL functions, which are used to group
update clauses and their conditions together since one update command can
consist of several update clauses, and each update clause can have its own con-
ditions. These update clauses are grouped together using funcNo, a parameter
of every SQL function. A funcNo of 0 for ForClause, LetClause, and WhereClause
of the update command means that these clauses will be shared clauses of an
UpdateClause. Each update clause will have its own funcNo, being a sequential
number starting from 1. The update clause and its own condition(s) will have
the same funcNo. Some of the SQL functions used are shown in Fig. 3.

Some functions have the parameter value|:funcNo (literal or variable) since
the value in the predicate or in an insert or update command is sometimes not a

1. select(node, funcNo) 2. insert (node, value | :funcNo, funcNo)

3. delete(node, funcNo) 4. update(node, value | :funcNo, funcNo)

5. where | logical-operator (node, comparison-operator, value|:funcNo, funcNo)

Fig. 3. Examples of some SQL Functions

Updating XML Using Object-Relational Database 159

constant value but may come from selecting a value in other nodes. Hence in this
case, :funcNo has the same value as the funcNo of select() function. Details
of rewriting rules including additional rules for translating recursive functions
into SQL can be found in [2].

Graph mapping: Graph mapping is used to determine the type of a node and
hence which SQL functions can be performed on the structure of the ORDB,
obtained as a result of mapping XML documents.

The process of graph mapping starts from creating a graph whose nodes cor-
respond to nodes in SQL functions. The graph is then mapped into the database
schema graph (a graph representing database schema) to identify which node is
table, nested table, abstract data type field or simple field. Foreign keys for joins
between tables are added to the graph. The SQL functions are then mapped to
the graph. Then the graph may be split into several sub-graphs. The number
of sub-graphs corresponds to the number of update operations performed on
different tables. Finally, the (sub-)graphs are optimised and SQL commands or
update/delete join commands are generated from the (sub-)graphs.

4 Propagating the Change in ORDB to XML Documents

The purpose of propagating the change in ORDB to XML documents is to
reflect the change of data. Usually updating affects only some small parts of the
documents; thus propagating the change is performed on only the affected parts.
We use values of primary keys (PKs) or RowIDs of updated data in ORDB to
indicate which elements should be updated. The PKs in ORDB originate from
ID attributes. For elements which do not provide ID attributes, the values of
RowIDs, which are automatically generated by the database system, are recorded
to appropriately typed elements at the stage of populating data into the tables.
Hence the values of these RowIDs can be indicated by the values of the RowIDs
kept in ORDB.

When data in the ORDB is updated, the table name, PKs and values of
PKs of the updated data will be returned and then the paths in the XML
update command are converted to XPath expressions. The conditions in XPath
expressions are based on the returned objects to indicate the positions in XML
documents which will be updated. Since XPath has no capability for updating,
we propose functions which serve as operators for updating XML documents.

5 Preliminary Conclusion and Future Work

As stated earlier, research in the area of updating XML is not fully developed.
Thus we propose a potential way for updating XML via traditional databases.
However, the mapping of XML onto simple RDB structures loses structural clar-
ity, while object-oriented databases (OODBs) have limitations in representing
constraints. Hence we map from XML to an ORDB. To eliminate redundancy,
non-redundant data are kept in multiple documents and are linked by an rlink
mechanism, mapping to an ORDB. We proposed an XML update language and

160 Pensri Amornsinlaphachai, M. Akhtar Ali, and Nick Rossiter

techniques to translate XML update language into SQL. Finally, the change in
ORDB is propagated to XML documents. A major benefit of updating XML
through (O)RDB is that the task of preserving constraints can be pushed to the
database engine.

In further work, we will first investigate how to handle the order of elements
in XML documents when elements are inserted or deleted. Then we implement
the translation of the update language and propagate the change in an ORDB to
XML documents. Finally, we will conduct a performance comparison of updating
one XML document containing redundant data via an ORDB in the manner of
native XML database with that of updating linked XML documents containing
non-redundant data via an ORDB. For the future work, we will propose mapping
XML to an ORDB based upon XML Schema and focus on updating the structure
of XML via ORDB and handling concurrency aspects such as lock levels.

References

1. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Winer, J.: The Lorel query lan-
guage for semistructured data. In Proceedings of Int. Journal on Digital Libraries.
(1997) 68–88

2. Amornsinlaphachai, P. and Rossiter, N. and Ali, A.: Translating XML update
language into SQL. http://computing.unn.ac.uk/pgrs/cgpa2/. (2004)

3. Chamberlin, D.: Influences on the Design of XQuery. XQuery from experts: A
Guide to the W3C XML Query Language. Addison-Wesley. (2003) 143

4. Chamberlin, D.: XQuery from experts: A guide to the W3C XML query language.
Addison-Wesley. (2003)

5. Fernandez, M., Kadiyska, Y., Suciu, D., Morishima, A., Tan, W.: SilkRoute: A
framework for publishing relational data in XML. ACM Transactions on Database
Systems. (2002) 1–55

6. Klettke, M., Meyer, H.: Managing XML Documents in object-relational databases.
Computer Science Department. University of Rostock, Germany. (1999)

7. Rahayu, J.W., Pardede, E., Taniar, D.: On using collection for aggregation and
association relationships in XML object-relational storage. ACM Symposium on
Applied Computing. Nicosia, Cyprus. (2004)

8. Shamkante, B., Navathe, S.: A proposal for an XML data definition and manipu-
lation language. VLDB Conference. Hongkong.(2002)

9. Tatarinov, I., Ives, Z., Halevy, A.Y., Weld, D.S.: Updating XML. SIGMOD Con-
ference. Santa Barbara. (2001) 413–424

10. W3C: XQuery: An XML Query Language. http://www.w3c.org/TR/xquery.
(2003)

11. XMLDB: XUpdate. http://www.xmldb.org/xupdate/xupdate-wd.html (2002)

	Updating XML Using Object-Relational Database
	1 Introduction
	2 Mapping XML Documents
	3 XML Update Language and Its Translation
	4 Propagating the Change in ORDB to XML Documents
	5 Preliminary Conclusion and Future Work
	References

