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Abstract. Techniques based on sets have proved useful in many types
of information systems. In databases the relational model has maintained
wide dominance in business data processing. However, interoperability
between different databases, even when based on the relational model, is
proving a major problem. Sets satisfy first-order predicate logic which as
consistent and complete has many advantages in practical application.
Interoperability requires higher order logic as the arguments themselves
are relations and functions. Higher order logic in the context of set the-
ory behaves less satisfactorily according to Gödel’s theorems as such
logic cannot satisfy all three of soundness, completeness and effective-
ness. This may be a fundamental reason why interoperability is proving
to be so difficult. This paper looks at underlying problems and suggests
that they may be avoided by the use of categorial higher order logic.
Cartesian categories are complete, consistent and decidable. They can
be employed as an engineering technique to construct a general architec-
ture of interoperability.

1 Introduction

Information systems are basic building materials for the knowledge-based econ-
omy of the 2000 Lisbon strategy. The Lisbon agenda of March 2000 set out
a strategy resulting in the eEurope 2005 Action Plan to build the knowledge-
based economy of the single market [Rodrigues 2003]. The fundamental basis of
knowledge is information which has to be handled appropriately by both the
technology and by the law. What was appropriate for the physical media of the
last millennium cannot be just carried over to the new digital media.

Modern information systems operate at every level: from data held in a single
purpose fixed device, through common PCs at home or mobile computing with
business systems of an SME, to databases, intra-acting locally and at national
level, inter-acting between nation states and even then open to wider global
systems outside of Europe. This interoperability requires global coherence which
in synecdoche correlates with the interoperation of the EU itself. The reported



slow progress with the Lisbon agenda is reflected in a similar tardy development
of interoperable information systems. The latter is perhaps one of the causes of
the former. The report of Wim Kok, quoted in [Euractiv 2005], recommended
that the agenda be re-focused on growth and employment to remedy the small
progress over the first five years in member states. Like national employment
the focus needs to be on the details of operation on local information systems.

Particular attention needs to be paid to the delivery of the Lisbon
agenda. In order to achieve these objectives, the Union must do more to
mobilise all the resources at national and Community levels so that their
synergies ... can be put to more effective use ([European Commission 2005]
at p.9)

There is a problem with logic. Successful local systems are first order but they
need to participate in higher-order activity. The quest for synergy between levels
runs into problems arising from semantic interoperability. There are two main
types of data: images and text. Images can be structured, as in graphs, or un-
structured, as in photographs. Text can be structured, as in relational databases,
or ‘unstructured’, as in natural language [Probst, Raub & Romhardt, 2000]. There
is also process data, represented as transactions in many current systems.

Syntactical interoperability is already achieved for digital and analogue data,
either where the data is unstructured or where the data has a natural structure
representable in a form that holds the informational content, for instance as
ordered pixels or natural language text. These may be universally recognisable
as in pictures or other interpretable materials where a common understanding
readily exists. For instance an English text is interoperable throughout the world
only in its native state or by translation into some other natural language.

Consequently there are not too many problems with interoperability of the
natural data. We simply need operations at the syntactical level, which Google
does well for text and for well-established image formats like jpeg, tiff and gif.
However, these forms of information are essentially raw data. When value is
added to the data through the application of analytical methods, we obtain struc-
tured data, for which inter-communication is problematical. In the past these
problems were minimised because the data was used mainly in a local setting,
that is intra-communication was needed where any standard was common to the
locality. Interoperability itself is concerned with the inter-communication of data
at different and therefore usually heterogeneous localities. Figure 1 summarises
those definitions in the form of a table. The importance of exactitude in trans-
mission of data around the single market and commercial inter-communication
with the rest of the globe needs to be emphasised.

2 Exactness

The concept of exactness is important in commerce. Customers always want what
is ordered, whether it is good for their services or not, and not some approxi-



Type Structure Examples Applications

Images Structured Graphics Business graphics
Natural (’Unstruc-
tured’)

Photographs Publishing

Text Structured Relational data-
bases

Business data

Natural (’Unstruc-
tured’)

The web Google

Intermediate Data Meta-structure
added to unstruc-
tured data

Semi-structured
data (as in XML)
Semantic Web
CAD/CAM Engi-
neering Drawing
with instructions

Fitting spare parts

Process Data Dynamic Banking Transac-
tions

ATM accounting

Biometric identity Iris data

Fig. 1. Natural and Structured Data Types

mation of the order. Of course in the real world there are always experimental
errors but these can normally be controlled in a local environment and in prac-
tical terms can be minimised according to how much the customer wants to pay.
Commerce has always had an international dimension but until very recently it
has tended to be locally based. Communications between local bases have been
point to point, with transportation by land, sea or air and conversations by
mail, telephone or wireless broadcasting. The world consisted of a large number
of mainly autonomous locally-based entities with simple inter-connection where
the main effort is intra-activity at the local level, fit for the purpose with mer-
chantable quality. A satisfactory theory can rely on linear models, linear logic,
etc [Girard 1971]. Local equates with classical and of the same type.

Exceptionally large systems, even if of the same type, may lie outside local
operating conditions. For example the large database cannot be maintained by
one person and a very large database cannot be copied because in the meantime
it is changed. However, distinction is usually qualitative rather than quantitative.

Non-locality on the other hand may still be composed of what approximates
to a set of localities of the same type. It then operates as a classical organisation.
The US legal system is able to operate this way with a federal law coordinating
different local state laws. The early days of the EU imposed the same laws on
the member states which at that time were few in number. But the character of
Europe is diversity and variety, in language, culture, customs and style with quite
different ways of working in manufacturing, commodities and providing services.
When the number of member states of Europe became enlarged, imposing the
same laws became impossible and there was a move to harmonisation. It is a
comparable position with information systems in different states. Co-ordinating



systems of the same type is only a first-order activity but for heterogeneous
systems higher-order operations are needed.

Legal systems are archetypal general information systems. Intensionally the
legal systems of the member states of Europe are identical and feed into the
over-arching European law in the European Court of Justice. But each local
legal system is extensionally different. We shall see here how the theory of inter-
operating business information follows the same practice. The topos in Figure 8
could represent the legal systems of Europe just as easily as information systems.

Exact operations with systems of the same type mean it is easy to assume
that the same conditions will apply for different type systems but in reality the
results can be radically different and unpredictable even leading to dangerous
results and therefore a subject for rigorous risk management. These may be
derived from theory or experimental results, preferably both. The theory in this
respect is shown by the Austrian mathematician Kurt Gödel. Gödel was able to
show in his doctoral thesis of 1929 on the completeness theorem [Gödel 1929]
that first-order predicate logic is complete.

The significance is that consistent logical propositions may be applied as
a model of first-order systems. Thus a digital computer operating with a von
Neumann architecture gives satisfactory results with first-order limits. Most of
the work in applied mathematics in the last two centuries has been gauged on
clever theories to keep within the first-order limits. However, there are appli-
cations which have defied such analytical methods like turbulence where it has
been necessary to resort to more qualitative techniques as found in chaos theory.
These do not provide exact results. This can also be explained by Gödel’s theory
of undecidability which is perhaps even better known [Gödel 1931]. Gödel’s the-
orem shows that both intensional and extensional systems which rely on axiom
and number are undecidable 1.

Traditional mathematical modelling, which relies on set theory cannot there-
fore be applied directly to higher order behaviour. An example of undecidability
in the case of a computational machine relying on the Church-Turing thesis is
the halting problem. A commercial example of this can be found in the imple-
mentation of Codd’s relational model [Codd 1990] as it is utilised in modified
form in much of current data processing. As we shall see in the next section,
in its pure form the relational model works well for atomic data because it is
within Gödel’s principle of first-order predicate logic and is therefore complete.
That is the relational model and its corresponding calculus give exact results
for atomic data. While the commercial version of the relational model SQL is
a vast improvement on earlier data models, it has compromised some of the
relational model features and is neither complete, nor decidable. The relational
model is sometimes trumpeted as an example of the effectiveness of logic in com-

1 There is the question of even how to define completeness, consistency, decidability,
soundness and effectiveness. The literature itself is not consistent and we will there-
fore leave aside what these words mean in a set theoretic context and rely below on
corresponding categorial concepts as definitive.



puter science [Halpern et al 2001]. This is only for theoretical computer science.
Implementations of the model show a divergence between theory and practice.

Of course real-world data does not consist of homogeneous independent items
making up atoms. This has resulted in various techniques such as normalisation
with a series of normal forms: first normal form, second, third, etc, which attempt
to squeeze real-world phenomena into a collection of first-order relations, to
behave optimally with regard to update and search operations. Hence data,
lacking any naturally regular atomic form, may be squeezed by normalisation
into such a structure in a consistent manner.

3 Practical Examples of Interoperability Problems

The relational model predominates in much of commerce today as the format for
structured information. Yet there are very significant interoperability problems
between one relational database and another. Some of these can be attributed
to problems with the underlying SQL standard as described below.

3.1 Variants of SQL

Vendors of SQL DBMS support different variants of SQL, all in varying degrees
differing from the versions of the SQL International Standard 2, either having
additional features and/or omitting features.
Features Achievements Problem in interoperabil-

ity

Full facilities Not achieved by MySQL Very difficult between
MySQL and other DBMS

Hierarchies, manipula-
tion

Peculiar to Oracle Difficult between DB2
and Oracle in net-
work/hierarchical struc-
tures

Recursive union, assem-
bling networks

Peculiar to DB2

Implementation of inte-
ger type

Oracle treats as nu-
meric(38)

Difficult between Ora-
cle and other DBMS in
formatting and rounding
numbers

Dates Different logical formats Difficult between all sys-
tems in reliable data for-
mat recognition

Fig. 2. Effects of Variants of SQL on Interoperability

Some features described in the standard are labelled implementation-dependent,
meaning they are independent of the standard. Others are implementation-
defined, meaning the manner in which the feature is achieved is at the discretion
2 Information Technology – Database Languages - SQL, ISO/IEC 9075:2003 (2003).



of the implementer. Therefore it is not always possible to guarantee a semanti-
cally valid transfer of data from one SQL DBMS to another, since the recipient
DBMS may treat the received data in a different way to that which the sending
DBMS would have treated it, had it carried out ostensibly the same operations.
This situation arises because the standards are not based completely on scientific
or mathematical principles. Standards are also influenced by the software ven-
dors, who are looking for pragmatic and strategic ways in which their products
can be promoted. Examples of problems at the data level are shown in Figure 2.

Therefore if two databases are to be interoperable, it is much simpler if they
are both managed by the same DBMS package, because then the only problems
in this context are those arising from the consistent application of one variant of
SQL. For this and other reasons, such as reduced DBMS maintenance and licence
fees, in practice multiple-vendor SQL DBMS are unheard of, except where they
arise due to force of circumstance, for example the merger of two previously
independent companies.

3.2 SQL versus the Relational Model

The relational model is based on two mathematical theories: first-order predicate
calculus and relations ([Codd 1990] at p.v). Interestingly the relations permitted
are not completely general (at p.467-477). In particular a collection of n-ary
relations of assorted degrees is strongly encouraged where n is a positive, finite
number, giving the degree of a particular relation. Both a single universal relation
and a collection of binary relations are strongly discouraged, as the former loses
flexibility in logical navigation and the latter is cumbersome and unnatural.
Further if the collection of n-ary relations is constrained to be in first normal
form with all values atomic, then the predictable regular form greatly simplifies
the query language.

No version of SQL implements the full relational model, either that specified
by Codd or evolved from Codd’s model by others, for example see [Date & Darwen 2006].
Some differences between SQL and the relational model are summarised in Fig-
ure 3. The different default structures of set and bag respectively for the rela-
tional model and SQL are of particular interest. Sets, bags and other container-
types such as sequences of tuples are specifically defined and cannot be used
interchangeably. However, there are means of carrying out conversions from one
kind of container type to either of the other two, in an attempt to make it trivial
to achieve mathematical exactitude in defining and manipulating the different
kinds of tuple containers. Current work at Northumbria in the Open Database
Project shows the need for rigorous definition at the local level in prototyp-
ing languages like Raquel [Livingstone 2007] to produce an open source imple-
mentation of the features developed in the demonstration language Tutorial D
[Date & Darwen 2006]. The aim is to keep as close as possible to the philosophy
of the pure relational database model including object classes as data types or-
thogonal to relations, an open architecture satisfying this philosophy, a design
for the architecture and an implementation of that design. Interoperability is



facilitated by the use of pure relational languages such as Raquel, together with
conversion techniques for mapping between different container types.

Feature in SQL Feature in relational
model

Consequence for SQL

Default structure is bag Default structure is set Duplicate rows permit-
ted, inconsistency in up-
dates

Row identifier No identifiers Physical bias to exten-
sion

Rows may be sequenced No sequencing of rows Data is apparently or-
dered

Set operations such as
union based on column
position

Set operations such as
union based on column
name

Set operations are based
on physical, not logical,
ordering of columns

Duplicate column names
allowed in output

No duplicates allowed Confusing output

Fig. 3. Differences between SQL and the Relational Model

3.3 Closed World Assumption

The definition of a relation should be a logical predicate such that each tuple in
a relation corresponds to a logical proposition that is true for that predicate. By
the Closed World Assumption (that is the CWA) any tuple not in the relation
represents a false proposition. This is an attempt to satisfy Gödel’s decidability
principle: that tuples in the relation are true and tuples outisde the relation are
false [Date 2006]. However it is not possible for a relational DBMS to guarantee
that all the tuples in a database represent true propositions, only that they
all consistently meet a set of integrity constraints that partially represent the
real-world logical predicate. This is because the typing system is based on set
inclusion principles rather than constructive ones. Therefore decidability may be
a problem with all relational systems.

Suppose there are two relations in a database, ProdCust(ProdNo, CustNo)
and ProdEmp(ProdNo, EmpNo), such that CustNo and EmpNo have the same
data type, and ProdCust signifies that a product was bought by a customer and
ProdEmp that a product was made by an employee. While the union of both of
the relations is valid, there is a question over whether it should be and on the
nature of the resulting product. The answer to this question depends on whether
employees can also be customers. If they can be customers, and a single tuple
exists for both relations in the result of the union, what does that tuple mean
in the result, and how is the fact that an employee both made and bought a
certain kind of product represented?

If the data types of CustNo and EmpNo are different, then the relations
cannot be subject to union, intersect and difference operations. So to intersect
them to see if any employees buy products that they have made, it would be



necessary to do some type casting, perhaps faciliiated by storing predicates of a
relation in the database metadata.

Nulls are another example of where database approaches based on CWA run
into difficulties. ([Codd 1990] at p.383-387) suggests that the relational model
should permit nulls as markers, with two interpretations: missing-but-applicable
and missing-and-inapplicable. Nulls are not data values. A four-valued logic is
then employed to manipulate such data with the outcome of true, false or two
types of maybe.

SQL claims to have a three-valued logic since logical variables may take the
values true, false or null. However, it is not clear that null can be safely equated
with maybe and a number of problems arise as shown in Figure 4.
Case Result Problem

Creation of nulls whether value is
missing-but-applicable or missing-
and- inapplicable

No distinction Semantic simplification

Use of null to represent maybe in the
Boolean type

Three values for
Boolean logic

Contrary to normal view of
Boolean logic as binary valued

Comparing a null value with a null
value

maybe with
join/restrict, true
in set operations

Difference in outcome between
set operations and other oper-
ations such as join

Split table into a set of sub-tables
using restrict; union resulting sub-
Tables

No guarantee that
this will be the orig-
inal table

Restrict only returns rows
where the comparison returns
true; hence those returning
null are ignored and lost

Aggregation operators applied to
columns containing some nulls

Count includes
them; others ignore
them

Arbitrary application

Aggregation operators applied to
columns containing all nulls

Count returns zero;
others return null

Arbitrary application

Second order distributivity (e.g.
fuzzy sets)

Logical equiv-
alences are not
true

Inconsistent treatment of nulls

Fig. 4. Problems with Handling of Nulls by SQL

From the Gödel perspective, nulls make a system undecidable. It is therefore
not surprising that practical implementations such as SQL have many problems
in handling nulls. Some more recent versions of the relational model do not
permit nulls, for example [Date & Darwen 2006]. It is likely that the handling
of nulls will be facilitated by the use of metadata to describe the reason for the
null. The questionable CWA assumption also raises problems in proving that the
result of a query is logically valid. This gives rise to undecidability and a lack of
completeness. Compounding the problem is that many users look for plausible
results, often on small volumes of data.

It is perhaps worth raising the question as to whether object-oriented data-
bases would overcome some of the disadvantages above. The answer is no, as
objects will suffer from all the problems of sets and methods are implemented



through an enriched type system, similar to sketches or perhaps 3-categories.
The object-oriented approach needs to be founded in category theory to be com-
plete and decidable. Intuitionistic logic offers a more convincing way forward.
Compared to predicate logic it is more naturally applicable to open systems, is
constructive and avoids the problem of impredication.
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Fig. 5. Commuting Diagrams for a) Composition, b) Punctured Composition: (g◦f) 6=
(g ◦ f)′

4 Interoperability and Categories

In category theory [Mac Lane 1998] alternative meanings of decidability, com-
pleteness, satisfiability, soundness and consistency, all used by Gödel, converge.
They come together in the composition diagram in Figure 5(a). The negation of
these terms or where they fail wholly or in part are all subsumed in the diagram
of punctured composition [Freyd 1990] in Figure 5(b). At one level the compo-
sition diagram of Figure 5(a) is a formal categorial representation of Gödel’s
result that first-order predicate logic is complete. This diagram therefore sat-
isfies a local intra-operability of a single system and first-order interoperability
between simple systems. The difference is that moving to higher orders such
as axiomatic number systems is undecidable. However, that limitation does not
apply to a process view of the arrow. Composition is still satisfied by the dia-
gram but where the arrows can be a different type or from different levels. We
have shown in [Rossiter, Heather & Nelson 2006] that free interchange between
four levels can satisfy any realisable system. The conditions for interoperability
come from adjointness [Rossiter & Heather 2005] between the two composition
triangles in Figure 6.

Critical details of these two triangles are the values η, ε, respectively the unit
and counit of adjunction [Lawvere 1969] in Figure 7. F is the functor that carries
the data across from the left system to the right system. G is the underlying
functor giving the rules for that transmission. f, g respectively represent dynamic
data in the left and right systems. L is an object in category L and R an object
in category R. Note that this only defines information in one direction. For
two-way communication there has to be a self-adjointness of both left and right



Fig. 6. Adjointness between two Composition Triangles

systems. As explained above in the example of legal systems this is a process of
harmonisation. The systems do not need to be identical, that is η is other than
⊥ and > other than ε.

4.1 Architecture for Interoperability
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Fig. 7. Roles in Adjointness of a) η, b) ε

The architecture for full interoperability between more than two systems is
then a composition diagram of the form shown in Figure 8. Fundamental category
theory shows that for physical existence the real world operates as a cartesian
closed category. All the categories drawn above are therefore cartesian closed.
The theory also shows that any such operation involves only two categories
(L,R) and a context category C, that is a left system communicates with a
right system in the context of all other systems. All other systems are therefore a
single context category. More precisely this is a topos T as in Figure 8. Remember
that interoperability is really a global character where everything is connected to
everything else. We are not dealing with discrete systems. The context category



described above is only a view and is really the limit of the topos. So C −→ T.
And of course L and R are themselves subobjects of T. This is the essence
of interoperability where category theory, or nothing less than category theory,
can give the required insight to construct exact and decidable interoperating
information systems.

Fig. 8. Architecture for Interoperability: Topos T involving categories L,R and Con-
text Category C

5 Conclusions

From the work of Gödel, first-order predicate systems are complete, consistent
and decidable. Much of the attention in defining a relational data model has
focused on keeping to a strict first-order system. The treatment of issues such
as normalisation, nulls and recursion by workers developing a pure relational
model [Date & Darwen 2006,Codd 1990] is designed to avoid the need to handle
higher-order logic in set theory. Indeed the relational model in its proper form
is classified as one of the outstanding successes of logic in computer science
[Halpern et al 2001]. The more casual treatment of such factors in SQL has led
to systems which are no longer consistent and decidable, giving many problems
in interoperability.

Interoperability is essentially a higher-order problem, For higher order sys-
tems we need composability to achieve the same rigour as found in first-order
predicate systems. Composability is a cornerstone of category theory and an ar-
chitecture has been proposed, based on the topos, for achieving interoperability
while meeting Gödel’s requirements.
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