

Information Systems and the
Physical World

Nick Rossiter
nick.rossiter1@btinternet.com

http://computing.unn.ac.uk/staff/cgnr1
Mike Heather

Dimitris Sisiaridis

CEIS
Northumbria University

ANPA 31 (9-13 August 2010)
Cambridge

mailto:nick.rossiter1@btinternet.com

Outline
 Formal representations of real world

 Based on information systems
 Look at underlying assumptions

− How questionable are they?
 Consider maths in terms of underlying physics

− Increases our confidence
 Review formal structures

 Locally Cartesian closed category (LCCC)
• Underlying data structures

 Cartesian monad
• Unification of categorial structures and manipulation

Formal Representation
 Based very much on

 Cartesian closed category (CCC)
− Connectivity (exponential)
− Product (prerequisite for relationships)
− Initial object (unique starting point)
− Terminal object (unique finishing point)

 Fits in with philosophy
− Everything is connected
− Everything is related
− Everything is limited

LCCC
 In practice we use a variant of Cartesian closed

categories
 Locally Cartesian closed category (LCCC)

− Product is replaced by a relationship
 Product is all possible pairs

− e.g. account number X borrower name (A X B)
 Relationship is those pairs that satisfy a particular

context
− e.g. account number X borrower name in the context of

cash owed (A XC B)
 In category theory this is a pullback (with

adjointness properties)

Pullback

A

B

CA XC B

πl

πr

ιl

ιr

C is A+B+C

Pullback

A

B

CA XC B

πl

πr

ιl

ιr

∃

∃ is an equaliser: ∃ = ιl ° πl = ιr ° πr

Pullback

A

B

CA XC B

πl

πr

ιl

ιr

∃

Adjointness requirements ∃ ┤ Δ and Δ ┤∀

∀
Δ

Working Assumption
 The Pullback has underpinned much of our

work on information systems
 But is this justified?
 Information systems are open ended.
 We cannot prove all our instances of data are

pullbacks.
 But we can try to relate pullbacks to accepted

practice in software engineering.

Software Engineering Principles

 Information system data design
 Normalisation Commonly to 3NF (third normal form)

 Process design
 High coherence
 Low coupling
 Transaction

 How do these concepts relate to LCCC?
 LCCC have been popular in theoretical

computing science
 But little attempt to handle design issues

Normalisation Outline
 A relation comprises a collection of attributes

 e.g. delivered (customer_id, customer_name,
customer_address, item_code, driver_id,
driver_name)

 Decide on those that provide uniqueness and
make these the key

 customer_id, item_code
 The others become non-key

 customer _name, customer_address, driver_id,
driver_name

 Requires knowledge of how things are done
physically

Normalisation Stages
 Then check validity against 3 forms of increasing

severity:
 1NF: for relation R each non-key attribute is functionally

dependent on the key
 2NF: R is in 1NF and each non-key attribute is fully

functionally dependent on the key (not dependent on
any component of key)

 3NF: R is in 2NF and no non-key attribute is
functionally dependent on another non-key attribute

 Maths in set theory is convoluted – students find it
challenging. e.g. Ullman, J D, Principles of Database and Knowledge-base Systems (1988).

 Some category theory work has tried to directly
represent set approach in categories – categorification
e.g. Johnson, M, & Rosebrugh, R, Sketch Data Models, Relational Scheme and Data Specifications,
Electronic Notes in Theoretical Computer Science 61 51-63 (2002).

1NF

 A relation is in 1NF if there is a functional
dependency from the key to each non-key
attribute.

 So expectation is:
customer_id, item_code → customer _name

 customer_address
 driver_id
 driver_name

If add something unrelated such as football_club then not in 1NF: need everything to
be connected

 LCCC view of 1NF - Pullback

A

B

CA XC B

πl

πr

ιl

ιr

∃

key key component

key component

non-key

All attributes must be related;
adding stand-alone attributes means it's not even CCC

functional
dependency

1NF is insufficient

 Everything is connected
 But may not be connected optimally

 May be other arrows
 From key component to non-key as a functional

dependency
 From non-key to non-key as a functional

dependency
 Tests for these arrows are done in 2NF and

3NF respectively
 Potential presence of these unwanted arrows

means that the diagram is not yet a LCCC

Introducing arrow to invalidate 2NF

A

B

D +
CA XC+D B

πl

πr

ιl

ιr

∃

key

fd1 : A → D; ιl : A → A + B + C +D;
adding fd1 means that component of key determines non-key

functional
dependency

fd1

two non-key
attributes

Example of failing 2NF relation

customer_id customer_name
customer_address

Functional dependencies below are from
component of key to non-key

Vast duplication of customer data each time
something is delivered

Not a Valid Category, let alone
LCCC

A

B

D +
CA XC+D B

πl

πr

ιl

ιr

∃

key

Diagram does not commute. D+C obtained by following top path
does not equal that obtained by following bottom path.

functional
dependency

fd1

two non-key
attributes

Solution

 Take A → D arrow out of pullback diagram
 Insert A → D dependency within category A,

giving A more internal structure
 A (or B) can be an object or a pullback category

with identity functor for reference purposes
 Alternative: possibly paste an additional

pullback onto previous structure.

 LCCC view of 2NF - Pullback

A

B

CA XC B

πl

πr

ιl

ιr

∃

key key component

key component

non-key

Category A contains dependency fd1 : A → D

functional
dependency

Introducing arrow to invalidate 3NF

A

B

 F
+
 C

A XC+F B

πl

πr

ιl

ιr

∃

key

fd2 : C → F;
adding fd2 means that one non-key determines another non-key

functional
dependency

two non-key
attributes

fd2

Example of failing 3NF relation

driver_id driver_name

Functional dependencies below are from
non-key to non-key

Vast duplication of driver data each time
something is delivered

Not a Valid LCCC (Pullback)

A

B

 F
+
 C

A XC+F B

πl

πr

ιl

ιr

∃

key

Terminal object should be A+B+C+F (typed as a disjoint sum);
May not even be a category (depends on how constructed)

functional
dependency

two non-key
attributes

fd2

Solution

 Take C → F arrow out of pullback diagram
 Develop new pullback to represent relationship

between C and F
 Paste new pullback onto existing structure.

B C F

AA XF C
(A XF C) XC B

3NF and LCCC

 3NF (non-stepping stone via 1NF and 2NF)
 A relation is in 3NF if each non-key attribute is

dependent on the key, the whole key and
nothing but the key

 LCCC
 A relation is in 3NF if a valid pullback can be

constructed from its functional dependencies

 LCCC view of 3NF – Single
Pullback Diagram

A

B

CA XC B

πl

πr

ιl

ιr

∃

key key component

key component

non-key

No other arrows permitted

functional
dependency

B C F

AA XF C
(A XF C) XC B

LCCC view of 3NF –
Pasted Pullback Diagram

Complex pullback diagrams can be pasted together
as below
Format of squares as below must be respected
No other arrows allowed

Higher Normal Forms

 In database theory go up to Boyce-Codd, 4NF
and 5NF.

 But 3NF is industry standard
 5NF is Project-Join Normal Form

 Define relations so that projection of attributes
followed by joining together again returns
starting point

 Already provided by LCCC in the adjointness
between the X side and the + side.

LCCC for 5NF

A

B

CA XC B

πl

πr

ιl

ιr

∃

Adjointness ∃ ┤ Δ and Δ ┤∀ between functors
mapping between X and + (project-join)

∀
Δ

Existential Pullback functor (f*)

Universal (limit)

Interesting Points
 So assumption that LCCC is a satisfactory

basis for information system representation is
justified by its close correspondence to data
normalisation at industry standard (and beyond)

 Data normalisation has a sounder basis in
LCCC than in set theory

 Conceptual bases conform naturally
• Arrows naturally handled with categories

 All normal forms up to 5NF are handled in a
single diagram

 LCCC provide a springboard for further data
semantics

Arrow Epic (surjective) Membership
class

Monic (injective) Cardinality

π
l

Y A mandatory

N A optional
π

l
* (* is inverse) Y Each A onto 1

relation
instances

N Each A onto N
relation
instances

π
r

Y B mandatory

N B optional
π

r
* Y Each B onto 1

relation
instances

N Each B onto N
relation
instances

Class Model Constraints as LCCC Types

Software Engineering – Process

 Principles include
 High cohesion

 Everything is connected
 Cartesian closed category

 Low coupling
 Entrance is always through official interface

 Initial object in Cartesian closed category
 Exit is always through official closure point

 Terminal object in Cartesian closed category
 So less formal than with structures but some

properties of CCC

Software Engineering – Transaction

 Transaction is standard way of defining a
process

 Principles of ACID
 Atomicity, Consistency, Isolation, Durability

 Logical technique for controlling the physical
world e.g. banking transaction

 Requires three cycles of adjointness between
initial and target state

 First two for atomicity, consistency and isolation
 Third for durability

 Process as a World Transaction, same authors as this paper, 36pp ANPA(2006).

Transaction ~ Monad/Comonad

 In category theory transaction is effectively
represented by a monad/comonad pairing

a) Associative law for monad <T,η,μ >; b) Associative law for comonad <S,ε,δ>

Monad/Comonad

 Functionality
– Monad (looking back over 3 cycles)

• μ : T2 → T (multiplication)
– Comonad (looking forward over 3 cycles)

• δ : S → S2 (comultiplication)
 Objects of monad/comonad

– Adjoint pair of functors between initial and
target state

– Initial and target state are LCCC (pullbacks)

Cartesian Monad

 If underlying categories are pullbacks
AND T preserves pullbacks
AND μ and η are Cartesian
Then the monad is a Cartesian monad
 That is, the underlying structures and the

manipulation language are unified into a single
categorial concept

 The relational model (with sets) elevated to a
categorial representation much closer to the
physical world

Summary

 LCCC are indeed justified as the choice of
category for representing information systems

 Data structures as pullback
 Data normalisation

 to 3NF industry standard and beyond to 5NF
 Typing of class model constraints

 Membership class
 Cardinality

 Manipulation as Cartesian monad/comonad on
pullback

 Transaction
 Unification with data structures

Advantages of LCCC over Sets

 3NF is achieved directly through the pullback
construction

 Not through an optional design process of
normalisation, unenforced in relational
database systems

 Class model constraints are typed in the arrows
of the pullback

 Not labelled as in the Entity-Relationship model
 Manipulation by transactions is unified

 Not with impedance mismatch of relational
systems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

