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Outline
 Formal representations of real world

 Based on information systems
 Look at underlying assumptions 

− How questionable are they?
 Consider maths in terms of underlying physics

− Increases our confidence
 Review formal structures 

 Locally Cartesian closed category (LCCC)
• Underlying data structures

 Cartesian monad
• Unification of categorial structures and manipulation 



  

Formal Representation
 Based very much on 

 Cartesian closed category (CCC)
− Connectivity (exponential)
− Product (prerequisite for relationships)
− Initial object (unique starting point)
− Terminal object (unique finishing point)

 Fits in with philosophy 
− Everything is connected
− Everything is related
− Everything is limited



  

LCCC
 In practice we use a variant of Cartesian closed 

categories
 Locally Cartesian closed category (LCCC)

− Product is replaced by a relationship
 Product is all possible pairs 

− e.g. account number X borrower name (A X B)
 Relationship is those pairs that satisfy a particular 

context
− e.g.  account number X borrower name in the context of 

cash owed (A XC B)
 In category theory this is a pullback (with 

adjointness properties)



  

Pullback

A

B

CA XC B

πl
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ιr

C is A+B+C



  

Pullback
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CA XC B
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πr

ιl

ιr

∃

∃ is an equaliser: ∃ = ιl ° πl = ιr ° πr  



  

Pullback

A
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CA XC B

πl

πr

ιl

ιr

∃

Adjointness requirements ∃ ┤ Δ and  Δ ┤∀    

∀
Δ



  

Working Assumption
 The Pullback has underpinned much of our 

work on information systems
 But is this justified?
 Information systems are open ended.
 We cannot prove all our instances of data are 

pullbacks.  
 But we can try to relate pullbacks to accepted 

practice in software engineering.



  

Software Engineering Principles

 Information system data design
 Normalisation Commonly to 3NF (third normal form)

 Process design
 High coherence
 Low coupling
 Transaction

 How do these concepts relate to LCCC?
 LCCC have been popular in theoretical 

computing science
 But little attempt to handle design issues



  

Normalisation Outline
  A relation comprises a collection of attributes

 e.g. delivered (customer_id, customer_name, 
customer_address, item_code, driver_id, 
driver_name)

  Decide on those that provide uniqueness and 
make these the key

 customer_id, item_code
  The others become non-key 

 customer _name, customer_address, driver_id, 
driver_name

  Requires knowledge of how things are done 
physically



  

Normalisation Stages
  Then check validity against 3 forms of increasing 

severity:
  1NF: for relation R each non-key attribute is functionally 

dependent on the key
  2NF: R is in 1NF and each non-key attribute is fully 

functionally dependent on the key (not dependent on 
any component of key) 

  3NF: R is in 2NF and no non-key attribute is 
functionally dependent on another non-key attribute

  Maths in set theory is convoluted – students find it 
challenging. e.g. Ullman, J D, Principles of Database and Knowledge-base Systems (1988). 

  Some category theory work has tried to directly 
represent set approach in categories – categorification 
e.g. Johnson, M, & Rosebrugh, R, Sketch Data Models, Relational Scheme and Data Specifications, 
Electronic Notes in Theoretical Computer Science 61 51-63 (2002).



  

1NF

  A relation is in 1NF if there is a functional 
dependency from the key to each non-key 
attribute. 

  So expectation is:
customer_id, item_code → customer _name                 

                                         
                                            customer_address
                                            driver_id
                                            driver_name 

If add something unrelated such as football_club then not in 1NF: need everything to
be connected



  

 LCCC view of 1NF - Pullback

A

B

CA XC B

πl

πr

ιl

ιr

∃

key key component

key component

non-key

All attributes must be related;  
adding stand-alone attributes means it's not even CCC

functional 
dependency 



  

1NF is insufficient

  Everything is connected
  But may not be connected optimally

 May be other arrows
 From key component to non-key as a functional 

dependency
 From non-key to non-key as a functional 

dependency
  Tests for these arrows are done in 2NF and 

3NF respectively
  Potential presence of these unwanted arrows 

means that the diagram is not yet a LCCC 



  

Introducing arrow to invalidate 2NF

A

B

D + 
CA XC+D B

πl

πr

ιl

ιr

∃

key

fd1 : A → D;  ιl  : A → A + B + C +D; 
adding fd1 means that component of key determines non-key

functional 
dependency 

fd1

two non-key
attributes



  

Example of failing 2NF relation

customer_id customer_name
customer_address

Functional dependencies below are from 
component of key to non-key

Vast duplication of customer data each time 
something is delivered



  

Not a Valid Category, let alone 
LCCC

A

B

D + 
CA XC+D B

πl

πr

ιl

ιr

∃

key

Diagram does not commute. D+C obtained by following top path 
does not equal that obtained by following bottom path.

functional 
dependency 

fd1

two non-key
attributes



  

Solution

  Take A → D arrow out of pullback diagram
  Insert A → D dependency within category A, 

giving A more internal structure
 A (or B) can be an object or a pullback category 

with identity functor for reference purposes
  Alternative: possibly paste an additional 

pullback onto previous structure.  



  

 LCCC view of 2NF - Pullback

A

B

CA XC B

πl

πr

ιl

ιr

∃

key key component

key component

non-key

Category A contains dependency fd1 : A → D

functional 
dependency 



  

Introducing arrow to invalidate 3NF

A

B

  F 
+
  C

A XC+F B

πl

πr

ιl

ιr

∃

key

fd2 : C → F;  
adding fd2 means that one non-key determines another non-key

functional 
dependency 

two non-key
attributes

fd2



  

Example of failing 3NF relation

driver_id driver_name

Functional dependencies below are from 
non-key to non-key

Vast duplication of driver data each time 
something is delivered



  

Not a Valid LCCC (Pullback)

A

B

  F 
+
  C

A XC+F B

πl

πr

ιl

ιr

∃

key

Terminal object should be A+B+C+F (typed as a disjoint sum);  
May not even be a category (depends on how constructed) 

functional 
dependency 

two non-key
attributes

fd2



  

Solution

  Take C → F arrow out of pullback diagram
  Develop new pullback to represent relationship 

between C and F
  Paste new pullback onto existing structure.  

B C F

AA XF C
(A XF C) XC B



  

3NF and LCCC

  3NF (non-stepping stone via 1NF and 2NF)
 A relation is in 3NF if each non-key attribute is 

dependent on the key, the whole key and 
nothing but the key

  LCCC
 A relation is in 3NF if a valid pullback can be 

constructed from its functional dependencies



  

 LCCC view of 3NF – Single 
Pullback Diagram

A

B

CA XC B

πl

πr

ιl

ιr

∃

key key component

key component

non-key

No other arrows permitted

functional 
dependency 



  

 

B C F

AA XF C
(A XF C) XC B

LCCC view of 3NF – 
Pasted Pullback Diagram

Complex pullback diagrams can be pasted together
as below
Format of squares as below must be respected
No other arrows allowed



  

Higher Normal Forms

  In database theory go up to Boyce-Codd, 4NF 
and 5NF. 

  But 3NF is industry standard
  5NF is Project-Join Normal Form

 Define relations so that projection of attributes 
followed by joining together again returns 
starting point

  Already provided by LCCC in the adjointness 
between the X side and the + side. 



  

LCCC for 5NF

A

B

CA XC B

πl

πr

ιl

ιr

∃

Adjointness ∃ ┤ Δ and  Δ ┤∀ between functors  
mapping between X and + (project-join)

∀
Δ

Existential Pullback functor (f*)

Universal (limit)



  

Interesting Points
  So assumption that LCCC is a satisfactory 

basis for information system representation is 
justified by its close correspondence to data 
normalisation at industry standard (and beyond)

  Data normalisation has a sounder basis in 
LCCC than in set theory

 Conceptual bases conform naturally
• Arrows naturally handled with categories

 All normal forms up to 5NF are handled in a 
single diagram

 LCCC provide a springboard for further data 
semantics 



  

Arrow Epic (surjective) Membership 
class

Monic (injective) Cardinality

π
l

Y A mandatory

N A optional
π

l
*   (* is inverse) Y Each A onto 1 

relation 
instances

N Each A onto N 
relation 
instances

π
r

Y B mandatory

N B optional
π

r
* Y Each B onto 1 

relation 
instances

N Each B onto N 
relation 
instances

Class Model Constraints as LCCC Types



  

Software Engineering – Process

  Principles include
 High cohesion

 Everything is connected
 Cartesian closed category

 Low coupling
 Entrance is always through official interface

 Initial object in Cartesian closed category
 Exit is always through official closure point

 Terminal object in Cartesian closed category
 So less formal than with structures but some 

properties of CCC



  

Software Engineering – Transaction

  Transaction is standard way of defining a 
process

 Principles of ACID
 Atomicity, Consistency, Isolation, Durability

 Logical technique for controlling the physical 
world e.g. banking transaction

  Requires three cycles of adjointness between 
initial and target state

 First two for atomicity, consistency and isolation
 Third for durability

 Process as a World Transaction, same authors as this paper, 36pp ANPA(2006). 



  

Transaction ~ Monad/Comonad

  In category theory transaction is effectively 
represented by a monad/comonad pairing

a) Associative law for monad <T,η,μ >; b) Associative law for comonad <S,ε,δ>



  

Monad/Comonad

 Functionality 
– Monad (looking back over 3 cycles)

• μ : T2 → T (multiplication)
– Comonad (looking forward over 3 cycles)

• δ : S → S2  (comultiplication)
 Objects of monad/comonad

– Adjoint pair of functors between initial and 
target state 

– Initial and target state are LCCC (pullbacks)



  

Cartesian Monad

  If underlying categories are pullbacks
AND T preserves pullbacks
AND μ and η are Cartesian
Then the monad is a Cartesian monad
  That is, the underlying structures and the 

manipulation language are unified into a single 
categorial concept

  The relational model (with sets) elevated to a 
categorial representation much closer to the 
physical world



  

Summary

  LCCC are indeed justified as the choice of 
category for representing information systems

 Data structures as pullback
 Data normalisation 

 to 3NF industry standard and beyond to 5NF
 Typing of class model constraints

 Membership class
 Cardinality

 Manipulation as Cartesian monad/comonad on 
pullback

 Transaction
 Unification with data structures



  

Advantages of LCCC over Sets

  3NF is achieved directly through the pullback 
construction

 Not through an optional design process of 
normalisation, unenforced in relational 
database systems

  Class model constraints are typed in the arrows 
of the pullback

 Not labelled as in the Entity-Relationship model
  Manipulation by transactions is unified

 Not with impedance mismatch of relational 
systems 
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