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Abstract

The work described here builds on recent work presented at ANPA on structure
and process in the universe. The internal structure of the topos is explored fur-
ther with particular emphasis on the nature of the pasted pullback, including the
conditions for a pasting to be valid and the inherent recursive nature of pullback
structures. A banking example is explored, leading to the nature of the external pro-
cesses acting upon the topos such as transactions. These processes are represented
by monads, giving a three-level closure on the activity. The nature of monads is
explored. The T-algebra enables changes to be made in the monad structure, giving
the potential for adaptability. Monads, that have been strengthened by the Kleisli
lift to the Cartesian form, can be composed naturally, facilitating the construction
of large-scale information systems with reliability, as required for transactions in
the banking world.

1 Introduction

The fundamental categorical facilities identified for the Universe include the Topos as a
structural data-type and the Monad for process. The application of the monad to a topos
gives the operation of a process on data at the highest level, defined as a unique solution
up to natural isomorphism. We will demonstrate such an application, explore how its
performance relates to alternative techniques and discuss further work required.

The topos is based on the Cartesian Closed Category (CCC), a category with products,
that is closed at the terminal object, and exhibits connectivity through exponentials
between all objects. A CCC has an internal logic of the typed λ-calculus, an identity
functor and the interchangeability of levels, with nodes being either objects or categories.
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A topos has additional properties beyond a CCC ([17], at p.106) including a subobject
classifier, the internal logic of Heyting, that is intuitionistic logic, and a reflective subtopos
for query closure.

The application of the topos to data was established in papers at ANPA 35 [27] and
ANPA 36 [28]. Structures developed as a topos include pasted pullbacks, to represent
complex relationships, and recursive pullbacks, to represent detailed structures of nodes
as pullbacks in their own right. The exact nature of the match in the pasting operation,
is still to be decided The relationship of the topos structures to Fifth Normal Form (5NF)
[11], also known as PJNF (Project-Join Normal Form), a challenging ultimate stage in
relational database design, is of interest as it indicates the strength of the topos data
structuring method. Other less powerful normalisation techniques are considered to be so
set-based that any categorial approach would be categorification. The Cocartesian dual
to the topos may offer further insights into the data structuring process.

The use of the allegories of Freyd [5] as a basis for data structures was attempted
[28] but rejected because of their lack of naturality as set-based relations; the allegories
may still have some use though in interoperability as a surrogate for relational databases.
Internal queries on a topos are handled by the subobject classifier, which may be Boolean
(0 or 1) or the more general powerobject. Both forms were illustrated in the two ANPA
papers. The provision of examples of Heyting intuitionistic logic for an application remains
an objective. Internal queries are more akin to data searches, such as through Google,
but do not provide a general process capability.

The application used was of student marks in a university context, which was ade-
quate from the data structure viewpoint but limited from a data process angle. A more
interesting application from the process perspective is banking, including the handling of
transactions. This was first studied by us in ANPA 27 [26].

Monadic design is a novel technique for handling the dynamic aspects of an application.
Aspects to be investigated are the adjointness, inherent in the approach, the flavours of
monad which are most suited to process applications and the T-algebra for modifying the
adjunction.

The intention in this paper is therefore to introduce a new application, banking, which
provides a more suitable test for an external process of a monad on a topos data structure.
The mechanism of pasting is to be investigated in detail and the relationship of the topos
to database normalisation is to be clarified. Monadic design will be developed for the
topos.
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2 Pullback: Single Relationship

The pullback category is an example of a topos. Figure 1 shows for the student application,
studied in the ANPA 35/36 papers, a simple pullback : S×R M, the product of Student
and Mark in the context of Result. The relationship between the product S×R M and R
is adjoint, with the following logic condition holding: ∃ a ∆ a ∀. The functor ∆ selects
pairs of S and M in a relationship in the context of R, such that ∃ is left adjoint to ∆
and ∆ is right adjoint to ∀. A diagram with such adjointness was termed by Lawvere as
a hyperdoctrine [12].

Figure 1: Pullback for a Single Relationship S×R M; S Student, M marks, R Result

Other arrows are defined as follows. Projections π are from the product onto its
constituents, left πl and right πr, with dual arrows left π∗l and right π∗r respectively.
Inclusions ι are into the sum S + M + R from its constituents, left ιl and right ιr, with
dual arrows ι−1

l and ι−1
r respectively.

S,M,R are each categories, with an optional internal pullback structure, giving a
recursive pullback structure with potential unlimited depth, as shown in Figure 2.
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Figure 2: Internal Structure of Categories: a) The Pullback in S. SX is id×S+ id, S+ is
name +id address. b) The Pullback in M. MX is no ×M+ no, M+ is title +no grade, c)
The Pullback in R. RX is id×R+ no, R+ is mark +id+no decision.

3 Banking Examples

3.1 Pullback: Single Relationship

We now introduce the Bank example, which is a more suitable subject for illustrating
the action of process on a topos. The simple pullback is shown in Figure 3, defined as
P×T A, that is the product of Process and Account in the context of Transaction, with
P the category Process, A the category Account, and T the category Transactions. An
Account can belong to many users; the Process is the type of the transaction, for example:
standing order, direct debit, ATM cash withdrawal; the transaction is a transfer of funds
according to data processing requirements. P,A,T are categories, with internal pullback
structure, giving recursive pullbacks as required.

3.2 Pullback: Two Pasted Relationships

In pasted pullbacks two relations are joined together to form a square. Additional cat-
egories are introduced for Branch of B and for User (customer) of U. Each branch has
many users and each user may have many branches by having multiple accounts across
the banking network: there is a many-to-many (N:M) relationship between B and U. A
user is therefore not unique on its own; we need to qualify a user by its branch to obtain
a unique reference point through the product B×U.

The second pullback is the product of the subproduct of the first pullback P×T A
with B×U in the context of A, as shown in Figure 4. The resulting relationship is of
account transactions by users from branches. For the purpose of discussion, the pull-
backs can be labelled Pb1 for the first square P×T A and Pb2 for the second square
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Figure 3: Pullback - Single Relationship: Bank Transactions by Process and Account

(P×T A)×A (B×U). By standard category theory ([17] pp.71-72) if the squares Pb1
and Pb2 are valid pullbacks, then the whole outer square is also a pullback Pb2 × Pb1.
We therefore have three pullback diagrams in a valid pasted relationship.

Figure 4: Pullback: Two Pasted Relationships: Bank Transactions by Branch/User, in
Portrait Layout

The vertical stacking of the pasted pullbacks, one above the other, in portrait form
is suited to practical applications which could involve 5-10 relationships in a deep nested
structure. In category theory text books, pasted structures are usually written in hor-
izontal (landscape) form as in Figure 5, which is logically identical to that in Figure
4.
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The aim of pasting in topology is to ‘glue together’ two continuous functions to create
another continuous function. The specific pasting condition for the pullback Pb2 × Pb1
is that ι′l = πr after Freyd’s Pasting Lemma [5].

Figure 5: Pullback: Two Pasted Relationships: Bank Transactions by Branch/User, in
Conventional Landscape Layout

To make the application more realistic we add the further category C for (banking)
Company and its relationship with ((P×T A)×A (B×U)) in the context of B×U
giving the pullback diagram for ((P×T A)×A (B×U))×B×U C as shown in Figure 6.

Figure 6: Pullback: Three Pasted Relationships: Bank Transactions by Branch/User by
Company

Figure 6 involves five categories: C company, B branch, U user, A account, P process,
T transaction, and six pullbacks: Pb1, P b2, P b3; Pb2×Pb1, P b3×Pb2; Pb3×Pb2×Pb1.
The relations within a banking system are shown in more conventional form in Figure
7(a) where each arrow represents a 1:N (one-to-many) relationship.

For our purposes, a pasted pullback is only a valid pullback if all inner and outer
diagrams are pullbacks. There are some theorems in pure category theory ([?] pp.71-72)
which enable some deductions to be made based on partial knowledge: for example, with
the diagram in Figure 5, if the inner diagrams are pullbacks then the outer diagram is

6



C

B
U

A

T

(a)

C

B
B × U

A

T

(b)

?

?

?

���
���

���

?

?

?

���
���

���

Figure 7: Relations within a Banking System corresponding to (a) Figure 6 and (b) to
Figure 8. C is Company, B branch, U user, A account, T transaction. Arrows are 1:N
relationships

a pullback, as stated earlier, and if the outer diagram and the right-hand diagram are
pullbacks then the left-hand diagram is a pullback. Such deductions could be facilitated
in any practical system but are a distraction from developing a simple robust solution.

Figure 8: Invalid Pullback Diagram, corresponding to Relations in Figure 7(b)

As an example of an invalid pullback, consider the diagram in Figure 8 where the
relationship diagram has been modified to that in Figure 7(b). There are seven valid
pullbacks in the diagram: Pb4, P b3, P b2, P b1; Pb3× Pb2, P b2× Pb1, Pb3× Pb2× Pb1,
but not all squares are pullbacks, for example Pb4 × Pb2. Therefore the whole diagram
is not a valid pullback.
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For any valid pullback, the logic of adjointness holds for the outer square and all inner
squares. Therefore for Figure 6 with its six valid pullback diagrams, the logic ∃ a ∆ a ∀
holds across every diagram. An example of this logic is shown in Figure 9 for the outer
square.

Figure 9: Adjointness Holds for all Pullbacks

3.3 Subobject Classifier

The pasted structure is a Cartesian Closed Category (CCC) with products, terminal
object and exponentials. Further it is a topos as a CCC with subobject classifier and
internal Heyting Logic. The subobject classifier provides an internal query language for
which a Boolean example is shown in Figure 10.

The subobject classifier facilitates simple database or information retrieval queries:

• Ω{0, 1} is subobject classifier; subobjects classified as either 0 or 1

• ×j characteristic function is query mapping from object S to {0, 1}, false or true

• 1topos is terminal object of topos (handle on topos)

• j is mapping from subtopos U (result of query) to object S

• U is the identity of the subtopos, giving query closure

The diagram may be viewed as a pullback of true along ×j: U is 1topos ×Ω{0,1} S.
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Figure 10: Pullback Square for Subobject Classifier: Derivation of  mapping from
subobject U to Object X

4 Pasting Pullbacks: Discussion

To summarise in a pasted diagram, all pullbacks as inner or outer squares must commute
for the diagram to be a valid pullback as a whole. The structure is recursive in that
a pullback node may itself be a pullback diagram. Two aspects are worthy of further
discussion: how does the pullback diagram relate to data normalisation in conventional
data structuring and can the pasting condition be expressed in other forms, drawing out
the nature of the ’=’ condition?

4.1 Normalisation

Normalisation is the standard technique for evaluating a data design, in particular to
determine how closely the logical design matches the physical world. A number of stages
have been developed for the set-theoretic relational model: 1NF(First Normal Form),
2NF, 3NF, BCNF, 4NF, 5NF. The last and most demanding stage 5NF concerns us here,
not just for its rigour but for its definition in category theory terms, indicated by its
alternative name of Project-Join Normal Form (PJNF).

In set theoretic terms, the definition of 5NF is that the structures resulting from the
projections can be joined together to return the original structure without loss or gain of
information [11]. Looking at the simple pullback diagram, as in Figure 3, the projections
are the π arrows, πl and πr, and the join arrow is the diagonal ∆. PJNF holds through
the adjointness in every pullback: ∃ a ∆ a ∀. The arrows ∃ and ∀ involve the projections
through the compositions: ∃ = ι ◦ π and ∀ = ι ◦ π. In more complex data structures, the
same logic applies. For instance in Figure 9 with six pullback squares, PJNF will hold if the
whole structure and all inner squares are pullbacks with the logic: ∃ a ∆ a ∀. Surprisingly
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pullbacks have rarely been used in normalisation studies, an exception being the work of
Levene & Vincent [15] who briefly mention the pullback inference rule, following from the
interaction between functional dependencies ∃ and inclusion dependencies ι.

It should be emphasised that the pullback is not categorification of the set-theoretic
approach to normalisation of 5NF, as in earlier work with category theory and databases
[9]. The form 5NF was a belated move by set-theoretic adherents to find a viable approach
to normalisation after many earlier attempts had been only partially successful. The
pullback follows basic category theory principles and is a natural choice for an effective
data structure.

4.2 The Pasting Condition

The Pasting Condition is ι′l = πr, that is the left-inclusion of the outer square equals the
right-projection of the inner square. On the surface this looks rather set theoretic, where
the ’=’ would be without context, but in category theory the ’=’ is defined naturally
as unique up to natural isomorphism, through the adjointness inherent in the pullback
category.

Moreover any pullback can be represented as an equalizer [24], as in Figure 11, which
is equivalent to Figure 3. In the equalizer diagram the product of P and A in the context
of T, P×T A, maps onto the product P×A which in turn maps onto T where the two
paths, ιl ◦ πl and ιr ◦ πr, converge.

P×T A P×A

ιl ◦ πl

ιr ◦ πr
T-

-

-

Figure 11: Pullback in Figure 3 Represented as an Equalizer

Equalizer diagrams can also be constructed for pasted pullbacks, as in Figure 12, which
is equivalent to Figure 6. In the equalizer diagram the product of P×T A and B×U in
the context of A, (P×T A)×A (B×U), maps onto the product (P×T A)× (B×U)
which in turn maps onto bfA where the two paths, ιl ◦ πl ◦ π′l and ιr ◦ πr ◦ π′r, converge.

5 External Process

The concept of process is underpinned by metaphysics, as defined in the writing of authors
such as Alfred North Whitehead, in his book Process and Reality [30]. For any entity in
the universe, the actions possible upon it and the rules for such actions are a critical part
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(P×T A)×A (B×U) (P×T A)× (B×U)

ιl ◦ πl ◦ π′l

ιr ◦ πr ◦ π′r
A-
-

-

Figure 12: Pasted Pullback in Figure 6 Represented as an Equalizer

of the whole system. First we look at the technical features within category theory for
representing process. We next look at the requirements for the real world and review the
facilities of the theory that appear to be most relevant.

5.1 Process in Category Theory

An internal process is a morphism (arrow) within a topos, such as p : A −→ B, where
the process p takes object A to object B in the same topos. Such arrows play a natural
role in the category construction. An external process is activity on a topos E, taking
it to another topos E′, such as provided by a functor F with F : E −→ E′. Both E,E′

must conform to the natural rules for topos construction. Constraints on the transition
between E and E′ are enforced through adjointness between F (E −→ E′) and its dual
G (E′ −→ E), such that F a G and the 4-tuple < F,G, η, ε > exists where η is the unit
of adjunction η : 1E −→ GFE, ε is the counit of adjunction ε : FGE ′ −→ 1E′ and E, E ′

are objects in categories E and E′ respectively. The pair of adjoint functors FG may be
written as T and the dual GF as S. The functors and their constraints are illustrated in
Figure 13.

Figure 13: Multiple ’Cycles’ to represent adjointness

The adjointness T can be enhanced by performing it three times, T 3, to achieve clo-
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sure. Such a construction is termed a monad, with its dual S3 termed a comonad. The
monad is a generalisation of the single-level monoid, which has a single operation, binary
multiplication M ×M −→M , and the identity 1 −→M , for an object M .

5.2 Real-world Requirements

The process is represented in information systems by the transaction, which has been
the subject of intense study because of its criticality to applications such as banking and
Internet-based commerce. However, the concept is a very general one, applying for in-
stance to drafting where a transaction may last several days as a technical drawing is
modified from one consistent state to another, or maybe months, as a legal document is
modified similarly. The notion of transaction in a categorial context was developed in
earlier ANPA papers, more generally at ANPA 31 [8], and in considerable detail at ANPA
27 [26]. The principles of the transaction are summarised as ACID: Atomicity, Consis-
tency, Isolation, Durability. Atomicity ensures that the process, however complicated, is
viewed as a single arrow. Consistency ensures that all rules have to be satisfied before the
transition is made. Isolation ensures that any intermediate results in the process are not
revealed. Durability ensures that once a transaction is performed, the results persist until
changed by another transaction. The transaction is a logical technique for controlling the
real world.

5.3 Applicability of the Three Cycles

A transaction is viewed naturally as three ‘cycles’ of adjointness [26]. The first cycle
performs the actual work required; the second checks for any errors or inconsistencies
resulting from the first cycle; the third cycle consolidates the changes made provisionally
in the first cycle and checked in the second cycle. The ’cycles’ are not separate stages; all
three cycles are performed as a single snap: the prehension, or grasping, of Whitehead
[30]. This single snap satisfies the atomicity and isolation requirements. The second cycle
satisfies the consistency requirement, through review against the rules. The third cycle
satisfies the durability requirement, through consolidating the results. If adjointness does
not hold in any cycle, the transaction is abandoned. We now look at the application of
the monad in more detail.

5.4 Technical Details of the Monad Approach

For a monad, the diagrams for the associative laws and unitary laws are shown in Figure
14. These diagrams provide the formal basis for the approach. Figure 14(a) shows the
relationship between T 3, T 2 and T where T is the endofunctor GF : X −→ X, X being
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Figure 14: (a) Associative Law for Monad < T, η, µ >; (b) Left and Right Unitary Laws
for Monad < T, η, µ >

any category. An endofunctor is a functor with the same source and target. A pair of
adjoint functors F and G is an endofunctor as the source of F : X −→ Y is X and the
target of G : Y −→ X is also X. The unit or identity of the monad is η : 1 −→ T from
Figure 14(b) and the multiplication of the monad is µ : T 2 −→ T from Figure 14(a). We
therefore write the monad T as the object < T, η, µ >, with the category X, on which
the monad is based, omitted as it is inferred from the functors involved. However, it is
not wrong to write the monad as the object < X, T, η, µ > where the nature of X has a
bearing on the arguments being made. Further it is often useful to say on which category
the monad is based.

For a comonad, the dual of the monad, the diagrams for the associative laws and
unitary laws are shown in Figure 15. Figure 15(a) shows the relationship between S, S2

and S3 where S is the endofunctor FG : X −→ X, X being any category. The counit or
identity of the comonad is ε : S −→ 1 from Figure 15(a) and the comultiplication of the
comonad is δ : S −→ S2 from Figure 15(b). We therefore write the comonad S as the
object < S, ε, δ > or < X, S, ε, δ >.

Figure 16 shows the two triangular identities for the monad in the category X, derived
by applying the interchange law to Figure 14(b). Through commutativity Figure 16
defines the arrow GεF : GFGF −→ GF . This arrow is the multiplication of Figure 14,
that is µ : T 2 −→ T . Therefore we can rewrite the monad of < T, η, µ > as < T, η,GεF >
as an alternative view, including just the standard units of adjunction η and ε.
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Figure 15: (a) Associative Law for Comonad < S, ε, δ > (b) Left and Right Unitary
Laws for Comonad < S, ε, δ >
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Figure 16: The Monad in the category X: Triangular Identities defining ε

5.5 Historical and Present Usage of the Monad Term

According to Hippolytus (170235 AD), the worldview was inspired by the Pythagoreans,
who called the first thing that came into existence the monad, from which came the dyad,
triad, tetrad, etc. [2]. Gnosticism is a modern term for a multitude of Jewish religious
ideas and systems from the first and second century AD, with the highest God, Supreme
Being or the One, termed the Monad. The Syrian-Egyptian school depicts creation as
resulting from a primal monadic source, finally resulting in the creation of the material
universe.

The monad entered metaphysics as the Monadology of Leibniz, written from 1712-1714
as Principes de la nature et de la grce fond en raison, which has since been published in
various forms and languages [14]. Leibniz allows just one type of element in the building
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of the universe, which is given the name monad or entelechy, and described as a simple
substance, which has no parts, hence indivisible. Monads are elementary particles with
blurred perceptions of one another and have been described as eternal, indecomposable,
individual, subject to their own laws, un-interacting, and each reflecting the entire universe
in a pre-established harmony; monads are centres of force; substance is force, while space,
matter, and motion are merely phenomenal. Like atoms, monads are irreducible but differ
in their complete mutual independence, and in their following of a preprogrammed set of
instructions peculiar to itself, so that a monad ‘knows’ what to do at each moment. Each
monad is like a little mirror of the universe.

The monad term is also used in music, where it is a single note, with a dyad being 2
notes, a triad 3 notes, etc., and in biology where it is a unicellular organsim.

In functional programming, the monad is an increasingly popular construction as an
abstract data type, with promising developments in the language Haskell [7], named after
Haskell B Curry, who developed the transformation of functions through currying in the
λ−calculus. The monad in Haskell is formally classified as an extension of the monad
developed in category theory, involving the notion of a strong monad [21, 23]. Such a
monad is defined in higher-order category theory as a bicategory construction. In more
concrete terms a strong monad is defined as a (categorial) monad with strengthening
with respect to products and idempotency. The strengthening with products leads to
the concept of a Cartesian monad, where if the underlying categories are pullbacks, the
monad T preserves pullbacks, and µ and η are Cartesian, then the monad is Cartesian.
Such a construction facilitates the use of T in transformations where a Cartesian type is
expected. The strengthening with idempotency provides resilience as further operations
are performed. So with the underlying category for the monad X being Cartesian with
the object A × B, there is a natural transformation tA,B from the Cartesian operation
(A × TB) to T (A × B) such that strengthening with the identity 1 is immaterial, con-
secutive applications of strength commute, and strength commutes with monad unit and
multiplication [22]. Further details of the Cartesian Monad are found later in this paper
in Section 7, in the work by Mulry [23] and in Appendix C of Leinster’s book Higher
Operads, Higher Categories [13].

Category theory is regarded as a unifying force so might be able to provide an insight
into all of the above notions of the monad. The notion of unit applies to all the various
usages and this is continued into the categorial version with the unit in the monad defi-
nition < T, η, µ > of η : 1 −→ T and the counit in the comonad definition < S, ε, δ > of
ε : S −→ 1. The monad of Leibniz is similar to the categorial version in respect of their
following a preprogrammed set of instructions with each monad being a little mirror of
the universe. However, there is a major difference – Leibniz’s monad is a particle and
the categorial monad is a process – emphasising the set-based nature of Leibniz’s work.
The use of the term monad in music appears to reflect the physical reality of a single
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note. From a more constructive point of view, musical units, and hence monads, might
also include chords and other logical combinations of notes. The use of the term monad
for a unicellular organism has lapsed, maybe because the general term was confusable
with its use for specific unicellular organisms, the Monas. The comparison between the
monad of functional programming and that in category theory is the most useful: this
shows that the Cartesian monad selected for functional programming is indeed the type of
monad needed for information systems as the underlying Haskell category has products,
in particular pullbacks, which form the basis of our structural approach.

6 Process on a Topos

The monad and comonad processes are applied to a topos, defining the structure of the
data, to perform the transactions. The design of the processes ia therefore termed Monadic
Design. We write the process on a topos as:

T : E −→ E′

where T is the Cartesian monad < T, η, µ > for a category E with endofunctor T ,
that is GF : E −→ E, unit of adjunction η : 1 −→ T , unit of multiplication µ : T 2 −→ T .
The source topos is E and the target topos is E′, with the topos based on pullbacks,
including the pasted variety, as described in Section 3. The type (intension) of the source
and target is the same but the data values (extension) will vary. Closure is achieved as
the type is preserved.

For the running bank example, the Cartesian monad T is the banking system transac-
tion, the source information system is E and the target information system is E′. There
may be more than one adjunction for a monad T , based on a category E. For instance
< F,G, η, ε > may be one adjunction for E −→ E′ with another of < FA, GA, ηA, εA >
for E −→ A, where A is a subcategory of E. So a variety of adjunctions may be handled
by a single monad, handling various subcategories of a particular category. This gives
flexibility in handling different data-sets with the same underlying structure.

For the process there will also be a comonad:

S : E′ −→ E

where S is the Cartesian comonad < S, ε, δ > for a category E′ with endofunctor
S, that is FG : E′ −→ E′, counit of adjunction ε : S −→ 1, counit of multiplication
δ : S −→ S2.

Categories of algebras can be defined over the monad and comonad. From the algebraic
perspective, there are two approaches employing the monad/comonad as the underlying
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categories. The category of algebras over a monad is traditionally called its Eilenberg-
Moore category [4] ([17] at pp. 139-142). Dually, the Eilenberg-Moore category of a
comonad is its category of coalgebras. The subcategory of free algebras is traditionally
called the Kleisli category of the monad, as is its dual the subcategory of co-free co-
algebras of the comonad ([17] at pp. 147-148). Further work is planned to expound on
implementation from the free algebra perspective. The Kleisli category of a monad trans-
forms a monad into a form more suitable for implementation in a functional language such
as Haskell. Compared to the pure mathematics form of Mac Lane, Kleisli strength gener-
alises the notion of commutativity and guarantees that products lift to the corresponding
Kleisli categories [23]. From the point of view of products, the monads developed to
Kleisli strength are applicable in a much wider range of computing applications.

6.1 The T-algebra

The T-algebras are one of the algebraic forms resulting from the work of Eilenberg and
Moore [4]. Such algebras facilitate changing the definition of a monad and therefore
permitting fundamental changes to the operand of our process. For any category X, which
in our case is a topos E, the T-algebra produces a new consistent state of adjunction for
a modified intension.

In more detail, applying the T-algebra to a topos E, in the monad with adjunction
< GF, η, µ >, yields a new monad adjunction < GTF T , ηT , GT εTF T >: E −→ ET. That
is a new monad adjunction F T a GT is defined to accommodate the changed category
ET. A T-algebra is < e, h > where e is an object in E. The structure map of the algebra
is h : Te −→ e such that the diagrams in Figure 17 commute. Beck’s Theorem provides
rules on which categorial transformations in the T-algebra X −→ XT are valid [1]. This
is sometimes called PTT (Precise Tripleability Theorem).

7 Application

The categorial monadic approach is being used for the Blockchain [19], a transaction
system, adopted by Bitcoin, for keeping hundreds or even thousands of copies of each
transaction record, using multiple transaction logs. The monadic design pattern provides
a broad range of transactional semantics with composition the key to scaling any system.
The blockchain approach is drawing interest from the established banking industry, where
a blockchain is viewed as a shared, encrypted ‘ledger’ that cannot be manipulated, offering
promise for secure transactions [25]. Meredith indicates that compositionality is the key to
reliability but offers few details on how this is achieved in the monad. Compositionality is
a cornerstone of category theory, defined as a minimum up to some level of isomorphism.
In monad/comonad definitions there is the choice of the Mac Lane or Kleisli algebras
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Figure 17: T-algebra: (a) Associative Laws, (b) Unitary Laws

as introduced above in Section 6. It is the approach owing to Heinrich Kleisli that has
elevated compositionality to a higher level, through the Kleisli lift described for instance
by Mulry [23]. In the diagram in Figure 18, H is a monad < H, η, µ > in X and K is
a monad < K, γ, ρ > in Y. The Kleisli categories, representing the free algebras, are
XH and YK. The Kleisli lift of functor F is the functor F̄ : XH −→ YK such that the
diagram in Figure 18 commutes.

XH

X
F

F̄

IH

YK

Y

IK

-

-

6 6

Figure 18: Kleisli Lifting of Functor F : X −→ Y to F̄ : XH −→ YK

The Kleisli lifting of a bicategory, one involving a product of two categories, is essential
if the products are to be well defined for compositional purposes. This gives rise to what
is termed Kleisli strength, forming the basis of the Cartesian monad, which we saw in
Section 6 as essential for information systems. The enhanced compositionality is achieved
by defining a natural transformation τA,B : A× TB −→ T (A× B) for objects A,B,C in
the category X with monad < T, η, µ > such that four diagrams commute [23], the most
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intuitive of which is shown in Figure 19; the other three diagram involve multiplication
through the arrow µA×B, associativity though the arrow tA,B×C and identity through
the arrow λTA. This diagram in Figure 19shows the use of the Cartesian product, the
most relevant for information systems, but the theory is actually more general covering
the tensorial (outer) product A ⊗ B, which may have more relevance for some areas of
physics, involving vectors. A major advantage of Kleisli strength monads is that they can,
in general, be composed naturally, unlike monads of weaker strength. Such composability
increases reliability and scalability, both of which are vital for large scale information
systems. Kleisli strength facilitates the discovery of distributive laws.

A×B 1A × ηB
A× TB

ηA×B

T (A×B)

tA,B

-
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQs

?

Figure 19: One of the four commutative diagrams facilitating a Strong Monad

Meredith [19] envisages that the monadic design patterns, providing a broad range of
transactional semantics, would have a front-end data sublanguage of the applied π−calculus,
a compositional process calculus developed for concurrent programming by Milner [20].
However, other presentational techniques from category theory are available, such as bi-
graphs, and should also be evaluated before a choice is made.

In the functional programming language Haskell, monadic design patterns are em-
ployed. The design pattern for a category C is H =< H, η, µ > where H is the monad
with type constructor H, η is a return function, µ : HHA −→ A is a join function. In
more conventional monad terminology H is the endofunctor, η is the unit of adjunction,
µ is the multiplication [23]. If the monad is of the Maybe type, there are facilities for
exception handling. To facilitate monad composition, the monad is lifted into a Kleisli
category, with the power of a strong monad or a Cartesian monad. A monad composition
operator, also known as the Kleisli composition operator, is available for composing one
monad with another naturally [3].

Returning to our banking example we can see that composition of processes is readily
available if our monads are Cartesian, with the Kleisli lift. So for two monads T =<
T, η, µ > and U =< U, γ, ρ >, we can write UT for the composite process, where say
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T is the banking transaction with checks for its feasibility and U is a task establishing
mirror facilities, as in data recovery systems, for recording the results persistently. Such
compositionality could be enforced over a large distributed systems by involving many
individual monads. So monads can be used either in the small individually in a local
environment or, through composition, in the whole universe of the information system.
The efficacy of the monad approach can be proven through category theory, thereby
increasing the reliability and robustness of a system, where every transaction is critical.

8 Summary

The combination of the topos, as the underlying data-type, and the monad, as the process
or transformer, appears to satisfy the requirements of information systems. The topos is
based on pullbacks, which can be nested recursively or pasted togethes for complex rela-
tionships. Data normalisation arises naturally through the rules of pullback construction.
The subobject classifier of a topos facilitates internal queries on the information system.
The monad is defined as three components for operations on a category: an endofunctor
that is often an adjunction, the unit of adjunction and the unit of multiplication. There
are two main approaches for applying the monad as an algebra: Eilenberg-Moore and
Kleisli. The Kleisli approach finds favour, with its lift to Cartesian monads, handling
products and providing compositionality across a succession of monads.
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