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Abstract
The World is concerned with relationships between entities whether living or

inanimate. Representing relationships is therefore a key activity in the physical
sciences, life sciences and the social sciences. These may all be modelled formally
within information systems. Mathematically relations can be represented as a gen-
eralisation of the function in sets but there are a number of problems with such
treatment: the fundamental basis of set theory is discrete elements rather than
morphisms between sets. There is no inherent natural way in set theory of em-
ploying higher-level mappings as is often required for a full solution to real-world
problems.

The topos within category theory with its emphasis on morphisms (instead of
sets of elements) and with a multilevel architecture is a promising candidate as a
structure for representing relations. At recent ANPA meetings the authors have
explored the topos with its potential of the Cartesian closed category as the leading
contender in meeting requirements for handling relations. Pure mathematics on the
other hand has developed the use of the category REL as a categorification of the
relation in set theory. However REL is not Cartesian closed which severely limits
its usability. Recognising the limitations of REL Freyd and Scedrov, working in set
based category theory have developed the ‘category of allegories’.

The purpose of the current paper is to understand limitations in REL, to describe
allegorical categories and to explore and evaluate their use in comparison with the
topos approach in the context of information systems.

1 Introduction

The concept of relation underpins the Universe. It works coherently through the inter-
actions between its particles. To model the Universe it is not surprising therefore that
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every branch of mathematics attempts to capture the relation as connections between
one entity and another: from quantum entanglement through graphs to simplified set
representations. Models that are suitable for implementation in information systems have
recently found increased credibility, for example the Relational Data Model in computer
science

It is usually not possible to separate relation from process. Process is the more fun-
damental concept as it covers the functionality and the inherent atomicity, consistency,
isolation and durability, of any transaction, as well as the necessary, but limited, descrip-
tion in the relation of the static properties alone. In this sense a relation can be viewed
as a static view of process as opposed to its dynamic aspects.

2 Process and Categories

Aristotle recognized that no two entities in the Universe are alike but exist at various
levels of equivalence. In order to explore in detail the internal logical relations of this
empirical phenomenon he introduced into his Organon the concept of type by coining the
word ‘category’. Its literal meaning was ‘down at the market’ and it had there evolved as a
technical legal term. For the market place in Athens was where justice was administered in
an early form of court proceedings. The word category was used to describe an indictment
as a precise legal statement or charge. Exact descriptions are needed at law for there is
often an adversary to challenge any statement with some rational argument. That need
for high level of precision continues today into the scientific use of the word ‘category’.
Type identifies differences within equivalent concepts. Thus no two persons are absolutely
alike (even so-called identical twins) but humans form a category with many different
subcategories. No two computers are identical but form a category and so on for any real
world entity.

There are two significant ontological features of categories: how they relate one to the
other internally and how they relate one to the other externally. Two important move-
ments of the twentieth century have advanced these. Category Theory as first conceived
by Eilenberg and Saunders Mac Lane [19] provides a formal calculus of relationships in
mathematics with three levels represented by arrows, functors and natural transforma-
tions. Thus a category of computers could represent the physical machinery as objects
and their comparison by the arrows between the objects.

The other movement posits ‘process’ as Universal. The notion of process originally
harks back to the pre-Socratic philosophers of ancient Greece but has more recently
been revived by Bergson and others culminating in the version of Whitehead’s Process &
Reality [27]. Existence is ‘becoming’. Thus Whitehead even interprets the equals signs in
operations on Natural Numbers as ‘becoming’. For example 2× 3 = 6 means ‘twice three
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becomes six’ ([28] p 91 et seq). This recognises that the two sides of the equation are not
the same.

3 The Predominance of Process

In order to understand the concept of process further consider the registration of students
on a university course as an example of process. The process as a whole can be broken
down into a number of stages:

Figure 1: Activity Diagram for Student Registration System

1. Establishing the course with credentials and requirements

2. Setting a time frame for each delivery of the course

3. Seeking applicants to the course

4. Recruiting appropriate applicants

5. Enrolling students on the course

All these stages are dynamic, involving transformations from one state to another, as
in Figure 1 where each stage is shown in a circle, together with its name and sequence
number as in the enumerated list above. The arrows indicate a flow of data between each
stage. Such data might be:
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• 1 −→ 2 valid course details

• 2 −→ 3 course running details

• 3 −→ 4 raw applications

• 4 −→ 5 approved applications

These flows are also shown in Figure 1. It should be noted that initial and terminal
flows of data are needed, the former is represented by Research to start the sequence of
process stages, and the latter by Students on courses to indicate the eventual outputs
from the stages. Such a presentation is popular from the perspective of systems analysis
and design perspective, where it is termed an activity diagram in modelling languages
such as the Universal Modelling Language UML [8]. For converting such diagrams into
category theory representations we need precisely to distinguish each action by identifying
its morphism, with its source and target. We abbreviate the concepts to avoid obscuring
the mathematics. The morphisms are:

• est : R −→ V (est is establishing the course, R is research, V is valid course details)

• set : V −→ C (set is setting the time-frame, C is course running details)

• seek : C −→ RAW (seek is seeking applicants to the course, RAW is raw applica-
tions)

• rec : RAW −→ A (rec is recruiting suitable applicants, A is approved applications)

• enr : A −→ S (enr is enrolling students on the course, S is students on courses)

As the output of one process is the input for another, we can compose the morphisms
to form a further arrow course make:

course activity = enr ◦ rec ◦ seek ◦ set ◦ est

where ◦ gives a product with an ordering according to the convention explained below.
The result can then be viewed as the category Course Create shown in Figure 2

with the five morphisms enr, rec, seek, set, est and their composition course activity. For
Course Create to be a category, there will be identity arrows for each object, for example
1V : V −→ V , and identity arrows are composable with the arrows forming the process.

As it stands Course Create is very limited, lacking any rules and constraints, which
are part of the operational environment. Indeed Course Create is really an example
of categorification where a simple translation has been made between systems analysis
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Figure 2: The Category Create Course for the Student Registration System

properties and categorial ones. Besides the typing of the individual arrows and objects,
the process should also satisfy the basic properties of a transaction, often summarised as
ACID (Atomicity, Consistency, Isolation, Durability). One way to exploit the power of
category theory is to raise the levels of the application so that, within a category, objects
become categories in their own right and the arrows between the objects become functors.
Raising the levels for the application above yields the categorial structure shown in Figure
3.

Figure 3: Student Registration System as categories with functors

In Figure 3 R, V, C, RAW, A, S are categories and EST , SET , SEEK, REC,
ENR are functors, mapping again from left to right. One of the powers of the functorial
level is that we can define inverse functors, mapping from right to left, representing the
mapping in the opposite direction. These are defined as:

• CHEC : V −→ R (checking course details against the research)

• V ER : C −→ V (verifying course running details against the course details)

• V AL : RAW −→ C (validating raw applications against the course running details)
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• ENS : A −→ RAW (ensuring application has been made)

• QUAL : S −→ A (ensuring student is qualified)

Figure 4: Student Registration System as categories with dual functors

The pairs of arrows are shown in Figure 4. In the right-hand direction, we have creativ-
ity through the free functors and, in the left-hand-direction, we have a series of validation
checks ensuring consistency through the underlying functors. This representation is very
powerful in handling transactions. If the dual pairs of composed functors are adjoint then
the structure in Figure 4 satisfies the ACID requirements [13], through the monad (T 3)
and comonad (S3) constructions, where F is the composition of free functors, G is the
composition of underlying functors, T 3 is the cycle GF repeated three times and S3 is
the cycle FG repeated three times:

F : ENR ◦REC ◦ SEEK ◦ SET ◦ EST

G : CHEC ◦ V ER ◦ V AL ◦ ENS ◦QUAL

T 3 : GF ◦GF ◦GF

S3 : FG ◦ FG ◦ FG

The monad and comonad structures can be applied to a topos, holding the structure of
the data, to define the transaction design for process handling. The category of algebras
over a monad is traditionally called its Eilenberg-Moore category ([19] at pp. 139-142).
Dually, the Eilenberg-Moore category of a comonad is its category of coalgebras. The
subcategory of free algebras is traditionally called the Kleisli category of the monad, as
is its dual the subcategory of co-free co-algebras of the comonad ([19] at pp. 147-148).
Further work is planned to expound on implementation from the free algebra perspective.

The categorial monadic approach is being used for the Blockchain [21], a transaction
system, adopted by Bitcoin, for keeping hundreds or even thousands of copies of each
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transaction record, using multiple transaction logs. The monadic design pattern provides
a broad range of transactional semantics with composition the key to scaling any system.
The blockchain approach is drawing interest from the established banking industry, where
a blockchain is viewed as a shared, encrypted ‘ledger’ that cannot be manipulated, offering
promise for secure transactions [23].

What is apparent from the development of this transaction example is that the appli-
cation is predominantly dynamic based on process, with the static data structures as data
relations, a relatively small part of the whole. Yet the static side cannot be ignored as
it is through the relations that data is stored with persistence to enable organizations to
function over time. We now look at the static side to examine the choice of the theoretical
structures available.

4 Theories for Relations

In set theoretic terms a Relation is for example the data structure sMt where s, t are
sets and M is a relationship between the sets. In marriage s is male partner, t is female
partner and M is the marriage between s and t. It is important to note that even for this
simple example the relation is a surrogate for a process, the act of marriage 1.

In general set theoretic terms, the form for a relation R is sRt where s, t are sets and
R the mapping between them. There may be more than one relation between the same
two sets; for example sUt is another relation U between the two sets s, t.

R has various interpretations, being expressed formaically as either:

1. R ⊆ S × T (subset of product)

2. R ∈ {< S, T >} (member of ordered pairs)

3. R = ⊕ < S × T > (disjoint union of product members)

In case 1 the relation is expressed as the subset of the cartesian product of the two
sets. This is a frequently used representation, particularly in relational databases. Case
2 expresses the relation as being in the collection of ordered pairs. Case 3 is interesting,
leading more into the categorial representation, with R as a disjoint union of the ordered
pairs.

In terms of Category Theory on the other hand the Category Rel is either :

1. Rel : Set −→ Set. That is a functor mapping between sets where Rel ⊆ (Set×Set)
or

1This example shows the limitation of the fixed structure of sets as it cannot easily cope with an
extension to same-sex marriages.
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2. Rel : ⊕(A×B). That is a disjoint union category where Rel is a co-product diagram
over objects A, B

The coproduct diagram over objects A,B is shown in Figure 5 where A ∪ B is the
disjoint union of A and B, i, j are inclusions, (f, g) : A ∪ B −→ Q is a unique morphism
such that the diagram commutes with (f, g) ◦ i = f and (f, g) ◦ j = g. Q is the quotient
with < (f, g) > as the coequaliser.

Figure 5: The category Rel with A ∪B as relation over objects A,B

5 The Cartesian Closed Category

Both the set theoretic Relation and the category Rel need to be contrasted with the vital
properties of the Cartesian Closed Category (CCC):

1. as cartesian the CCC provides for products which is the basis for relationships

2. the CCC has closure at the top with the terminal object

3. the CCC has a natural inherent internal intuitionistic logic by way of adjointness of
the logic quantifiers with ∃ a ∆ a ∀

4. the terminal object of a CCC can perform the role of an identity functor

5. categories and objects are interchangeable in the CCC
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6. the CCC has exponentiation which provides for connectivity and evaluation with
the operation eval

7. the CCC is unconstrained by the axioms of sets or natural numbers in process
metaphysics

8. the CCC is implementable

The last three properties are particularly relevant for process studies. Sets and num-
bers require independence of fundamental elements which offend against Whitehead’s
principle of non-separability. That is also the sense here of exponentiation where there
is no need for elaborate constructions like Cantor’s sets. Implementation is an intriguing
concept for the Universe is an implementation of a CCC but no example of a human
implementation has been reported for it has to satisfy both the principles of Einstein’s
Theory of Relativity and those of Quantum Theory. A true quantum computer would
be such an implementation but the difficulties in achieving this by finite means may well
be associated with the difficulties we are discussing here. The CCC may be modelled on
a digital computer based on the von Neuman architecture including advanced versions
such as λ-calculus machines but it must be emphasised that these are only models and
therefore only reliable to first order.

So it is an important question as to whether Rel is a CCC. Rel fails to be a CCC
whichever definition is accepted. There is no terminal object for if Rel is taken as Set −→
Set then both the start and end objects are the same. There is no product if the basis for
Rel is taken as a coproduct thenRel is not a CCC and, in our view, does not therefore
provide a viable construction for relationships or process. Rel is indeed categorification
as a direct translation from the set theoretic concept.

6 Theory for Allegories

The set theoretic concept of relation and its categorification is inadequate as a basis for
representing relations in category theory. Is there a better way forward?

Allegories were proposed by Freyd & Scedrov 1990 as a more categorial way forward:
“Allegories are to binary relationships between sets as categories are to functions between
sets.” ([11] p.195, section 2.1). They claim that the category of allegories is decidable but
not axiomatisable and defined it as a category with the properties listed in Panel 1 from
([11], section 2.1, p.195). Operations on an Allegory are given in Panel 2 from the same
source of Freyd & Scedrov.

Allegories are not inherently Cartesian closed categories: their structure and opera-
tions does not automatically confer them with a terminal object for instance. However,
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Panel 1 : The Definition of the Category of Allegories

• An allegory is a category with unary operation R0 and binary product opera-
tion R ∩ S

– R0, reciprocation, where for R : X −→ Y : xR0y iff yRx

– R∩ S, intersection, where for R, S : X −→ Y : xR∩ Sy iff xRy and xSy

• Introducing a third relation T : X −→ Y

– The main axiom is the modular law: (RS ∩ T ) ⊂ (R ∩ TSo)S [25]

• Intersections are idempotent, commutative, associative

• Composing intersections composes relations

the intersection can be defined in terms of products and the concept has emerged of an
allegory requiring an Underlying Regular Category as good practice. Such a categorical
basis provides the facilities of the classical relational calculus. There are two conditions
for a category to be regular:

Z

X
f

πl

πr

X

Y

f

(a) W

Z

g

X

Y

f

(b)-

-? ?

-

-? ?

Figure 6: Regular Category: (a) Co-equaliser Diagram; (b) Epimorphism Diagram

• if the diagram in Figure 6(a) is a pullback and there is a co-equaliser for πl and πr,
that is f : X −→ Y
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Panel 2 : Operations on the Category of Allegories

• Constant 1: x1y iff x = y

• Reciprocation unary R0: xR0y iff yRx

• Composition binary RS (relational join):

– xRSy iff there exists z such that xRz and zSy

• Intersection binary R ∩ S: xR ∩ Sy iff xRy and xSy

Panel 3 : Properties of the Underlying Regular Category

• A regular category is Cartesian closed (CCC), typically a pullback with some
‘nice’ properties giving stable factorization:

– regular epimorphisms (onto, all objects in coproduct assigned)

– coequalisers (pairs of parallel arrows converge onto one arrow in coprod-
uct)

• if the diagram in Figure 6(b) is a pullback and f (and hence g) are regular epimor-
phisms; a regular epimorphism is an epimorphism (surjection) which coequalises
some parallel pair of morphisms, in this case πl and πr in Figure 6(a).

The two diagrams in Figure 6 can be combined into a single diagram as in Figure
7 to show the regular category C. This category has two products: 1) W which is the
product X × Z in the context of Y , that is X ×Y Z; 2) Z which is the product X × X
in the context of Y , that is X ×Y X. The regular category is therefore the relationship
of W and Z in the context of Y , or a factorisation of W and Z through Y . The co-
equaliser and epimorphism requirements ensure that all maps in the category terminate
with f : X −→ Y and that all Y participate in the factorisation. Y is the coproduct of
the pullback. The requirements for a regular category are summarised in Panel 3.
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Figure 7: Regular Category C: the two Pullback Diagrams in Figures 6(a) and 6(b)
combined

6.1 The Table Category

Perhaps reflecting their close association with first-order logic, allegories do have a tabula-
tion view, bearing some correspondence to the relational database model which, although
set-based, is defined popularly in terms of tables. There is a hint of categorification here
with the allegorical table being a translation of the relational data model. The Table
category is defined in Panel 4.

Freyd acknowledges the link between the table construction and relational inten-
sion/extension mappings as in relational databases: “The usual extensional notion of
relations on sets coincides with the categorical notion as applied to this case of a table”
([11] section 1.415 p.39). Besides regular categories, hyperdoctrines and tables, other
constructions such as the bicategory can be used in an allegory. While this may offer
increased flexibility, it nevertheless reduces the cohesion of the approach.

6.2 The Implementation of Allegories

Allegories have received a rather uncertain reception since their original detailed intro-
duction in 1990 by Freyd & Scedrov’s Categories, Allegories [11]. The allegorical concept
has not been developed further in any significant way by Freyd or other workers in pure
mathematics though it is discussed by Johnstone in Sketches of an Elephant 1 section
A3.2 [16] under Allegories and Tabulations. Bob Walters [25] considered that the modu-
lar law of an allegory was bizarre and that the objectives of an allegory would be better
achieved with the bicategory concept.

In reviewing the literature on the application of allegories since the work of Freyd and
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Panel 4 : The Table Category

• For a table with name T and n columns

– T : x1, x2, x3, x4, . . . with column names xi(1 ≤ i ≤ n)

• The feet of the table are FEET : A1, A2, A3, A4, . . .

– with values for a particular column Ai(1 ≤ i ≤ n)

• Each column of a table is addressed through the mapping: xi : T −→ FEET

• Mapping between tables, including the universal table, gives closure.

– Natural closure between two tables is represented by Θ : T ≈ T ′

– Θ is a relation REL(A1, A2, A3, A4, . . .)

Scedrov, it appears that the take-up of the idea has been limited to allegories selected for
the development of typed first-order logic, particularly of Prolog. The theory of logic has
been dominant with the use of tabular allegories explored by Arias et al [1, 2] in first-order
unification and logic programming with Prolog. Arias completed his Doctoral programme
and published his thesis in 2012 Relational and Allegorical Semantics for Constraint Logic
Programming [3]. His work had employed Σ-Allegories as the basis for the Prolog-style
constraints; such allegories are described as pretabular. An interesting comment at p.138
is on the choice of Σ-Allegories:

Instead of requiring tabular distributive allegories for the semantics of CLP
programs, we built the weakest categorical structure needed for an adequacy
theorem. The partial-tabular nature of Σ-allegories constitutes an interesting
notion from the logical point of view and is an example of ‘just the required
structure’ approach’.

However, much of the further work in Chapter 10 Extensions to Logic Programming
in Tabular Allegories at pp. 127-136, deals with more ambitious logic objectives such as
the use of tabular allegories themselves and monads. This may suggest that the allegory
logic had been difficult to implement in the time available.
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Finkelstein et al [9] consider logic programming with Prolog in tau categories. One of
the co-authors of this paper was Peter Freyd himself. Brown & Hutton [5] apply first-
order relational algebra to circuits designed as pretabular allegories. Palmgren & Vickers
[22] mention allegories in the context of Horn logic but do not actually employ Freyd’s
ideas. Hermida & Jacobs [14] consider the algebraic compactness of Freyd’s structures
without actually applying allegories.

Looking at current research, since 2014, work has been continued by Arias et al on
constraint logic programming [4]. The proposals by Zieliński et al [29] strike a resonance
with the authors of this current paper:

Because of the deep relationship between relational databases and relational
algebra and also a lively research program of using category theory for con-
ceptual modeling ..., it is surprising that allegories were hardly ever used for
database modeling. The use of allegories for this purpose was suggested in
[9], and recently, the new allegorical data model was introduced by the au-
thors ...; barring that, the authors were unable to secure more references (at
pp.260-261).

The reference ‘[9]’ quoted is to Diskin [7]. The theoretical allegorical model developed
by Zieliński et al [29] also extends the standard relational model to include fuzzy and
modal logic. In a subsequent paper Zieliński et al [30] demonstrate that their earlier
results for binary relations also apply to n-ary relations with appropriate construction of
products. Finally Maietti & Rosolin [20] develop their theory of existential elementary
doctrines with extensive use of allegories.

There have been a number of more informal comments about Allegories, which do
give some insight into how the concept is viewed. From Wikipedia a view consistent
with the aims of Freyd: “the theory of allegories is a generalization of relation algebra to
relations between different sort”. From ncatlab a comment on the aspirations of Freyd:
“an allegory is a category with properties meant to reflect properties that hold in a
category Rel of relations”. From a computing practitioner viewpoint in Hacker News:
“Freyd and Scedrov’s work on Allegories (replace functions in categories with relations)
would be more suitable for relational databases”. A mathematics blog (Maths Stack
Exchange) comments: “With the definition of category, it is easy to have an idea of what
is a category, but with allegories I’m totally lost”.

The above suggests that allegories have been used mainly for relational systems with
first order logic, particularly Prolog and that the take-up of the concept is far from
spectacular and is not increasing at any rate. Maybe the concept has not been found to
be readily comprehensible.
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6.3 Advantages and Disadvantages of Allegories

An advantage of the allegory approach to relations is that it is more in the spirit of category
theory than the set approach, because of its arrow basis. Further as the preferred basis is
the regular category, for example a pullback, the allegory is cartesian closed including a
terminal object and identity (unital property). Unlike with the category Rel the allegory
approach is not categorification. The allegory has the internal logic of first order relational
calculus, making it ideal for formalising relational databases, which hold more than 90%
of commercial data, and logic languages such as Prolog. The tabular view of an allegory is
very close to the relational database design. There is potential for greater capability in the
allegory approach with hyperdoctrine and bicategory views but the extensions to power
allegories and division allegories have still to be shown to be useful in the application
context. Indeed category theory has properties on the wish list of Codd, the relational
database originator ([6] at p477): “The major problem in the entity-relationship approach
is that one person’s entity is another person’s relationship. There is no general precisely
defined distinction between these two concepts ...” Arrows and objects in category theory
are interchangeable but in a closely defined manner.

A major disadvantages of the allegory approach is the closed world assumption with
its inherent Boolean logic, although some extensions to the basic concept such as division
allegories are claimed to be Heyting. The logic is first order, not higher order, and with the
lack of naturality, allegories do not form a basis for metaphysics or for the new generation
of object databases. Although the number of views add diversity, they also reduce the
cohesion of the approach and may lead to inconsistencies in properties such as unitality.

The choice by Freyd of the term allegory for describing the relational concept is inter-
esting. In literature an allegory is usually a transformation. This appears to be the motive
of Freyd for his choice of language as set-based relational structures are transformed into
allegorical structures including the underlying regular category.

Beyond first order it is always necessary to be mindful of Gödel uncertainty namely
that any system relying on axioms and sets is undecidable and any open system is logically
incomplete. In pure mathematics this uncertainty is often just ignored but in work on real
world systems any such omission may be dangerous. Freyd and Scedrov [11] were clearly
aware of the difficulties and declare (at p 195) that the entire equational theory on the
operations of allegories “is decidable but not finitely axiomatizable [2.158].” However there
is nothing about this in their paragraph 2.158 and it can be speculated that the reference
to 2.158 may well be a misprint for paragraph 2.438, which relies on the ‘hypothesized
existence of a simulated consistency proof’. That may be mathematically sound but is of
no use for applications in physics or in computer science. There is some treatment of these
issues of uncertainty by Freyd and Scedrov elsewhere in their book in paragraph [1.182]
within the context of logoi and in the alternative formulation of the work in their Appendix
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B but there is no rigorous or comprehensive treatment of uncertainty in connection with
allegories which should therefore carry a Gödel health warning.

6.4 Prospects for Allegories

As asserted in the quote above by Zieliński et al [29], it is very surprising that workers in
relational data modelling with categories have ignored allegories. For example Johnson
and Rosebrugh have done much elaborate work on entity-relationship database models
and relational databases with sketches; see for example [15]. It would have seemed simpler
to use ‘off-the-shelf’ allegories for the categorial modelling, adding a graphical interface
to the allegory-based system to complete the work.

Allegories will not form part of our work going forward on natural information systems
because of the disadvantages outlined above. However, allegories could still be significant
for another aspect of our work on interoperability: the ability of heterogeneous information
systems to work together are a major problem for information systems today. Allegories,
based on regular categories, are closer to our preferred structure, the topos, than other
approaches to relational systems such as the sketch. For instance the topos and the
allegory have the same underlying structure of the pullback, both can be viewed as regular
categories and both have an internal logic. This commonality provides much potential for
interoperability. With a relational database as an allegorical category A and a natural
database as a topos T, we can compare the two categories through the adjointness: F :
A −→ T;G : T −→ A;F a G.

To summarise: the allegory seems to have unrealised potential for the construction of
first-order relational systems as categories enabling the full power of category theory to
be applied, such as with functors, natural transformations and adjoints.

7 The Topos Revisited

Aristotle not only introduced the concept of the category but also used the term topos
as a metonym for a metaphysical space that gives rise to different aspects of reality.
Alexander Grothendieck needing an abstract space to embed Riemann’s algebraic geom-
etry picked up on the term and formally defined the topos within axiomatic category
theory as an abstract of topology. As the later is but an enriched theory of open sets the
Grothendieck topos can be variously defined according to the assumptions applied in the
enrichment. Freyd & Scedrov seem to prefer the topological theoretic definition for topos
from Grothendieck’s student Giraud using sheaf theory. This is inadequate for process
studies. Although it was Whitehead who with his student Russell wrote the definitive
treatise on sets [26], nevertheless both authors later repudiated the work. Whitehead even
extended his denunciation very widely:
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We can misconceive the very meaning of number and the interconnections of
number. The great mathematicians of the seventeenth and eighteenth cen-
turies misconceived the subject matter of their studies. For example, in re-
spect to the notions of infinitesimals of the necessary precautions in the use
of infinite series and the doctrine of complex numbers, their discoveries were
suffused with error ([28] at p68).

But Whitehead has initiated a revolution which has yet to take off:

I revolt against this concentration upon the multiplication table and the regu-
lar solids: in other words against the notion that topology, based upon numer-
ical relations, contains in itself the one fundamental key to the understanding
of the nature of things.

The regular solids are fundamental to Euclidean geometry but to illustrate allegories
Freyd & Scedrov digress ([11] p205 et seq) beyond Euclid into Desargues’ theorem of
projective geometry with its invariance under projective transformations and a duality
between points and lines. It is to be noted that projective geometry gives rise to a non-
metric space which therefore transcends measurement. This is to be expected in higher
order space and it is a characteristic of the topos that it has no inherent natural number
system or a Euclidean geometric structure. For Whitehead has demonstrated that process
operates top down. The category theory of Freyd & Scedrov is bottom up and relies on
the axioms of set theory to ensure the uniqueness ‘up to natural isomorphism’ that defines
mathematical naturality. Process on the other hand provides the uniqueness ‘down from
natural isomorphism’ that defines physical naturality. That is the simple uniqueness
earlier observed that no two entities in the World are identical and in this context of
relationships gives rise to Whitehead’s empirical fact of non-separability as an alternative
to a Euclidean structure. The latter has proved a very useful first order model for space
but for work on higher order relationships the process topos is more natural.

8 The Topos: further work identified

In earlier work we established the topos as the categorial structure of choice for handling
information systems. We developed a table, Table 5, in [24], which compared capability of
an approach with the facilities required. This showed that the Cartesian Closed Category
approach, described earlier in Section 5, matches the relational model in all respects
and additionally handles the interoperability requirement. The topos approach improves
further on CCC approach by providing additional features for searching and by facilitating
query closure. Indeed the topos approach alone handles all of the listed requirements from
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Table 5 cited above. That earlier work demonstrated that process is the pervasive theme
of an information system and the examples here in Section 3 reinforce how crucial is the
handling of activity in developing an effective information system, even where a superficial
glance might suggest that static data structures suffice.
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Figure 8: Single Pullback: S×R M; S student, M module, R result

In concluding [24] a number of areas were identified for further work. On the data
process side, it was thought that queries, including the use of the subobject classifier and
power objects, should be better illustrated. Examples of intuitionistic logic, the Heyting
internal logic for the topos, should also be developed. On the database design side, areas
for study included the cocartesian dual of the topos, which may aid normalisation, the
pasting of pullbacks to handle more complex (and realistic) examples, recursive pullbacks
for nested structures and allegories, for handling relations.

We have made progress in a number of areas, all of which strengthen the case for the
topos as the preferred structure for information systems. Allegories have been explored in
depth, as described in Section 6, with their potential suggested for handling the relational
part of a broader-based system. With a more complex data description, the pasting of
pullbacks has now been explored. The use of the subobject classifier with both Boolean-
and Heyting-type queries has also now been demonstrated in more detailed examples.

8.1 More Complex Pullback Structures

Our paper [24] dealt with a single pullback as a topos, as here in Figure 8, where the
diagram is S×R M, the product of S and R in the context of M, where S is a student
category, M is a module category and R is a result category. The operators ∃ and ∀ have
the standard meanings of the existential and universal quantifiers respectively. ∆ is the
diagonal operator, right adjoint to ∃ and left adjoint to ∀: ∃ a ∆ a ∀. Other arrows in
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the pullback diagram provide projection π and inclusion ı,  relationships. Figure 8, with
the adjoints, is a hyperdoctrine, as defined by Lawvere [17].

Figure 9: Pasted Pullback Category: (((S×R M)×M D)×D U); U university, D depart-
ment, S student, M module, R result; P1, P2, P3 are labels for diagrams for purpose of
discussion

Realistic examples will involve more categories. For instance we can extend the
Student-Module example to include categories for Departments D, Universities U and
Lecturers L. Pullbacks are pasted together following laws of composition on paths. In
general given a category C, a pasting diagram in C is a sequence of composable mor-
phisms in C. In the pullback context the composable morphisms are the individual
pullbacks within an outer pullback structure. The pastings therefore follow the normal
rules of composition, within a category, and are not intersections of paths, which would
be set-based.

Figure 9 shows the pullback category (((S×R M)×M D)×D U) where the bottom
square vertically P1 is the pullback diagram S×R M (relation between student and mod-
ule in the context of result) as in Figure 8. The middle square vertically P2 is the
pullback diagram ((S×R M)×M D) (relation between pullback diagram P1 and depart-
ment in the context of module) and the top square vertically P3 is the pullback diagram
(((S×R M)×M D)×D U) (relation between pullback diagram P2 and university in the
context of department).

The pastings indicate a number of compositions: the path U −→ D −→ M −→ R
shows a hierarchical path from university to result, giving successive right projections
from the product. The path of left projections: π′′l ◦ π′l ◦ πl, composes the left projections
from the products. There are also three further pullback diagrams: the combination of
P1 and P2, the combination of P2 and P3, and the outer diagram, the combination of
P1, P2 and P3, giving a total of six pullback diagrams in the category if naturality is
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Figure 10: Pasted Pullback Category (((S×R M)×M D)×D U); U university, D de-
partment, S student, M module, R result; intuitionistic logic ∃ a ∆ a ∀ for the outer
pullback diagram

satisfied. There are rules for handling cases where only some of the diagrams compose;
however, it is probably safer for the integrity of information systems to ensure that all
inner and outer diagrams do commute.

Figure 10 shows the intuitionistic logic for the pullback category of Figure 9 with the
adjoints ∃ a ∆ a ∀ for the whole (outer) pullback. Analogous diagrams can be drawn
for the other commuting squares in the pullback category. The whole category forms a
topos, which can be queried with Heyting logic as described later in Subsection 8.2.

We have also experimented with more complex structures such as the network structure
where the category L for lecturers is introduced with the application rule that a lecturer
may be assigned to more than one department. Figure 11 shows the pasting of the square
P4, representing the lecturer-department relationship. This destroys the category as a
pullback with for instance diagrams P2 and P4 not having the appropriate composition.

The solution to this lack of naturality is to introduce D× L into the hierarchy on the
right-hand side between D and M as shown in Figure 12. This enables the relationship
between department and lecturer to be represented in the pullback diagram of P2 as the
product of S×R M and D× L in the context of M. With all diagrams commuting we
now have:

• four individual pullback diagrams P1, P2, P3, P4

• three paired pullback diagrams P1, P2; P2, P3; P3,P4

• two triple pullback diagrams P1, P2, P3; P2, P3, P4

• the outer pullback diagram P1, P2, P3, P4

20



Figure 11: Pasted Construction (((S×R M)×M D)×D U); U university, D department,
L lecturer, S student, M module, R result; P1, P2, P3, P4 are labels for diagrams for
purpose of discussion; not a valid pullback category as not natural

giving a total of ten commuting pullback diagrams. Figure 12 is valid design as it is
natural and 11 is invalid design as it is not natural. Valid design is therefore focused on
pasting together pullbacks in such a way that the inner and outer pullbacks all commute.
The significance of this is quite fundamental for the design of information systems. Nor-
malisation techniques are seen as an effort to capture naturality in the context of artificial
set-based systems. Such techniques are redundant in the design of topos structures such
as the pullbacks dealt with here, where naturality alone is the design criteria. The natu-
rality is linked to the metaphysics, which is the ultimate determinant of the relationships.
Normalisation is consequently regarded as a ’hangover’ from traditional design methods
with no relevance to topos-based system design.

8.2 Subobject Classifier

The subobject classifier plays an important role in the facilities of a topos, providing a
query language and the return of the result as a subtopos of known type, giving query clo-
sure. However, the use of the subobject classifier in an applied sense is not straight-forward
as there are a number of important issues which are glossed over by pure mathematicians.
For instance in the Universe there is a single intension, the one-object structure, which
defines the extension, the many instances, in a preorder. In information systems the
concepts of intension and extension are also paramount. But in the topos of pure math-
ematics, the concepts are not clearly separated and indeed their distinction is blurred so
that it is not an easy task to transfer the results from pure mathematics to the applied
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Figure 12: Pasted Pullback Category (((S×R M)×M (D× L))×D×L D)XDU; U uni-
versity, D department, L lecturer, S student, M module, R result; P1, P2, P3, P4 are
labels for diagrams for purpose of discussion

arena. For instance at the intensional level there may be no subtopos as the intension
cannot be changed through a query. However, the extension can be changed by a query
with the subtopos as an embedding onto the topos through a full and faithful functor
[18].

We will give a Boolean example first as while it is not the best for the real-world, it is
the easiest to explain. Figure 13 shows a pullback diagram of the product of 1CCC and
S in the context of Ω, that is 1CCC ×Ω{0,1} S. 1CCC is the identity for the topos, S is an
object in the topos and Ω is the subobject classifier. In this simplest case the subobject
classifier, or truth object, takes a value from the pair {0, 1} and is written Ω{0, 1} to
indicate the Boolean logic. χj is the characteristic function, that is the query mapping
from object S to {0, 1}, false or true respectively. The arrow j is the mapping between
the result and the subobject. The result of the query is U, the subtopos, derived from
the pullback of true along χj. In typical information systems language χj is the query, in
say SQL (Structured Query Language), 1CCC is the information base, S is the scope of
the search, Ω{0, 1} is the type of logic and U is the result as a typed structure to give
closure.

The arrow sub indicates that U is embedded in 1CCC so, for the query to be natural,
the square should commute, that is true ◦ sub = χj ◦ j. However, pure mathematicians
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Figure 14: Pullback Diagram: product of 1CCC and S in the context of Ω(U); subobject
classifier is Heyting

generally do not attempt this composition because of typing problems, arising from the
intension/extension conflagration. Instead they reason about the arrow sub : U −→ 1CCC

in isolation from the commuting square for the query, using theories such as Lawvere-
Tierney [18], which is a generalisation of the Grothendieck topology [12].

In the Heyting example shown in Figure 14 the Boolean subobject classifier Ω{0, 1}
is replaced by Ω(U), the collection of all open subobjects S of an open object U in X.
The truth value from the viewpoint of an open object U is the open subobject S of U
where the assertion is true. The work here on the subobject classifier needs to be developed
further, in particular with respect to handling both the intension and the extension and for
exploring the related use of the Lawvere-Tierney theories in the topos-subtopos mapping.

9 Closing Remarks

From the perspective of the Universe, the topos approach is confirmed as the optimum
way forward for information systems (Section 7), meeting all objectives outlined in our
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paper at ANPA in 2014 [24], including transaction design for process handling (Section
3), realistic system design (Subsection 8.1) and general interrogation (Subsection 8.2).
The concept of normalisation, so important in artificial set-based database techniques,
has been revealed as a non-issue in natural information systems. Designing a composition
of pasted pullbacks, which commute across all inner and outer diagrams, is the simple
principle to be applied. The subobject classifier, in its Heyting form, does appear to
provide query closure but more work is required on the intension-extension and topos-
subtopos relationships to determine the full potential.

We also looked at the handling of relations generally to confirm that our approach
with the topos was optimal (Section 4). Neither set-based approaches nor the category
Rel, a categorification of the relation as a disjoint union, are Cartesian closed (Section
5). The most promising candidate for a Cartesian approach to relations is the allegory
(Section 6), defined in detail by Freyd and Scedrov [11]. From an examination of the
usage of allegories, it appears they are suited to relational databases and first order logic
languages such as Prolog, with the inevitable weaknesses: the closed world assumption
and the Boolean and first order logic. Allegories are based on the regular category, an
extension of the pullback, which being Cartesian offers an approach more in harmony
with the topos. Indeed we see the scope for improved interoperability between relational
systems as Cartesian allegories and other systems, as topos, based on different paradigms.
Further work is planned on developing the Kleisli category of the monad/comonad to
integrate the topos and the process design and on the subobject classifier in its Heyting
context (Section 3).

From the perspective of mathematics, Alfred North Whitehead and Peter Freyd are
both twentieth century pioneers. Whitehead, with Russell, developed Frege’s set theory
[10]. Within that framework Freyd, with Scedrov, studied relationships and extended
Eilenberg’s categories into allegories. We have attempted to evaluate the category of
allegories as a useful structure to implement information systems but find that allegories
as a category of sets are inadequate for this purpose because of their restriction to first
order Boolean logic. On the other hand Whitehead’s later work on process in metaphysics
suggests that the topos as a cartesian closed category, without natural numbers but with
an internal inherent intuitionistic Heyting logic, as a subobject classifier, will satisfy the
requirements to interrogate real world information systems.
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