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Abstract

Information and Communication Systems are part of process in the natural
world. Natural as formally defined in category theory needs to be satisfied to provide
a full and faithful representation of communication in information systems. Current
approaches of translating Information and Communication Technologies into objects
and arrows do not compose naturally as categories. Such categorification that loses
the naturality of the real world information systems is a major case in point.

The early attempts by Ehresmann to devise types of Sketches and Diskin’s later
development of his Unified Modelling Language both relax the rigour of category
theory. Categorification of the entity-relationship model by Rosebrugh and more
recently of Codd’s relational model by Spivak show that the real world does not fit
a category of sets: rather the identification should be within the well-established
natural category of the topos. The topos of the Cartesian Closed Category with
naturality provides a formal representation without loss of rigour for the neces-
sary component of a modern information system: formal structuring capability,
searching, query symmetry, transaction processing, query closure, transactions and
interoperability.

1 Background

About a quarter of large projects in information technology fail.

The cost of failure is difficult to assess but exceeds many billions of

euros each year over Europe and possibly even more in the United

States as discussed in the BCS Report: A Study in Project Failure
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[4] where the design stage was identified as the greatest contribu-

tory to the failure of the whole project. These figures might well

be much greater had not the science of databases been developed

quite early on with the recognition that the logical structure was

more important than even the data itself. So that a database is

not just a bank of data but a logical structure with the capabil-

ity to hold data appropriately typed and with their intra-relations.

The development of generalised structures according to some for-

mal model – the Database – was an early application of reusable

software with its attendant efficiency. The use of a Database off

the shelf is not only much cheaper and more reliable than an ad

hoc approach but can provide more powerful features with meth-

ods and procedures that a bespoke designer might not even foresee

as needed.

Most formal information systems today rely on standard database

systems involving models based on a mathematical structure as de-

scribed later in Section 4. The effectiveness of the mathematical

model and how faithful it is to represent the logical structure of

real world events and data are constrained in two directions. First

the limitations of the mathematics used and secondly the confines

of the current von Neumann architecture of the machine on which

the model is to be mapped. Unfortunately both of these, relying

heavily today on number and set theory, are very poor at repre-

senting the naturality of the real world. For they have no inher-

ent concept of ‘naturality’ because they are developed bottom-up

ex nihilo which cannot provide coherence overall. The philoso-

pher and mathematician Alfred North Whitehead sought to rem-

edy this fundamental defect of modelling in the last century by

ascending two levels from the ‘sub-naturality’ of reductionist mod-

els up through the natural reality of every-day perceptions to the

highest level of ‘supernaturality’ in metaphysics as the top-down
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starter for operations in the concept of process [45]. Whitehead’s

enlightened concept of process has yet to be subsumed into main

stream science. However in the meantime Category Theory has

been developed in mathematics based on a set theoretic model of

process as represented by ‘the arrow’. In category theory ‘natural’

has a technical meaning, relating to the definition of natural iso-

morphism. An object/arrow is defined uniquely over 3 levels up to

natural isomorphism. Each level is a collection of arrows as follows:

1. Categories C,D comprising objects A,B respectively with

identities 1A : A −→ A and 1B : B −→ B and inter-object

arrows f : A −→ A′ and f ′ : B −→ B′

2. Functors F,G mapping category C to D giving the arrows

F : C −→ D, G : C −→ D

3. Natural Transformation α comparing functors F and G with

the arrow α : F −→ G

Objects A,B in categories C,D are defined uniquely up to nat-

ural isomorphism if the diagram in Figure 1 commutes.

F (A)

F (B)
α(B)

α(A)

F (f)

G(A)

G(B)

G(f)

-

-
? ?

Figure 1: α is natural for object A of C

However that version of Category Theory from pure mathemat-

ics is but a half-way house as its concept of naturality is only ‘up
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to the natural isomorphism’ as defined by its axiomatic frame from

set theory. This is where Natural Philosophy needs to kick in to

mediate between reality and its formal representation. In natural

category theory ‘up to natural isomorphism’ is to be interpreted as

‘up to the laws of physics’. A database seeks to represent relations

and types of data from the real world but a reductionist model

based on a classical framework of mathematics cannot guarantee

that these are faithfully maintained in the formalism. Hence the

failures in the design of information systems. However the natu-

rality of physics cannot be enforced in any formalism just by fiat,

by definition or by any other positive assertion: it has to be found

empirically from the real world where it inherently resides as a

natural property. This is a very important principle that applies

to any formal representation in science beyond first order. The

natural philosophy needs to be explored further as it is crucial to

understanding the process of representing real world relationships

in information and communication technology. Indeed it suggests

that every scientific result beyond first order needs to be validated

in metaphysics.

This pertains to the relationship between category theory and re-

ality and therefore the fundamentals of category theory itself. From

what we have learned from the last century it is important for any

formalism to satisfy quantum phenomena and the requirements of

special and general relativity. This is all explained informally in

some detail by Whitehead [45]. Category Theory itself is quite

simple although the current manifestation from its provenance in

pure mathematics is unnecessarily complicated but it can make

the metaphysics of Whitehead a lot less obscure. Natural philoso-

phy provides a ‘natural’ view of Reality as an adjointness between

(using Whitehead’s terms) the ‘concepts’ of quantum phenomena

and our ‘percepts’ of the classical world around us that operate
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according to the laws of physics. In Figure 2 the left adjoint is the

contingent free functor composed of the devolving actual events

of the Universe while the deterministic right adjoint provides the

unique laws of physics from Archimedes Principle to the Heisenberg

Uncertainty Principle, in their archetypal form.

Figure 2: Natural philosophy: Natural reality is an equilibrium between the concepts of
quantum process and the ‘percepts’ of the classical world as we perceive it.

If we zoom out from Figure 2 to Figure 3 we see how reality

sits between metaphysics and models, up to the former, down to

the latter. Natural category theory as outlined above operates

then at the highest level and provides a formal representation of

metaphysics. Reality is an instantiation of metaphysics and the

arrow of category theory is defined by the physics constituting

the pair of contravariant functors in the adjointness of Figure 2.

Objects in category theory are a label for an identity arrow. The

Universe as process is just such an identity arrow – the highest

possible in the Universe and therefore its closure. Conventionally

it is given the label ‘topos’ following Aristotle’s concept. This

paper is concerned with exploring the properties of that topos.

Models on the other hand both exist in the real world and and are

also an instantiation of it. The object of a model is typically a

‘subobject’ – a general object that has the same name in category

theory. Ordinary objects at the reality level exist as ‘objects’ in the
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sense used in category theory. Objects at the level of metaphysics

might well be termed ‘superjects’, the term coined by Whitehead

for components of metaphysics.

Figure 3: Reality is an Instantiation of Metaphysics and Models of Reality.

Returning to databases we can see from Figure 4 that, like other

models, database models are reductionist.

2 Metaphysics versus Mathematical Models

Science has come a very long way on the back of arithmetic as first

order mathematics and on Euclidean space as first order geometry.

However these are not constructive as shown informally by Brouwer

and more formally by Heyting but only hold approximately in the

real world. Paeno’s postulates have been promoted to axioms and
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Figure 4: Database Models are Reductionist.

hold in pure mathematics but not in physics where they are no

more than a working model. The axioms assume the existence

of zero, equality and a unique successor concept whereas none of

these exist in physics. Absolute zero is a mathematical concept

and is unattainable in the real Universe. No two entities in the

Universe are exactly equal, every entity there is related to every

other and any concept of ‘successor’ is arbitrary. Concepts at a

higher level as found in metaphysics are needed and outlined at

some length by Whitehead. Physics is a higher order process but

to be distinguished from higher order in mathematics that normally

refers only to higher order arithmetic.

A prime example is Einstein who found that he first needed to

resort to non-Euclidean geometry to represent his theories of rela-

tivity. However it is not everywhere appreciated that he was com-

pelled to go much further and made the switch from mathematics

in 1911 [16] to physics in 1916 [17] with his equivalence principle

in order to make his General Theory of Relativity conform with

experimental results. Lo puts it succinctly:
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Theorists have incorrectly assumed that an accelerated

frame must be related to a Euclidean subspace. To ap-

ply Einstein’s equivalence principle, it is crucial that the

space-time under consideration must be a physical space.

Theorists, both for and against general relativity, have

made mistakes by ignoring this [30].

Lo’s list of such theorists to have made this mistake comes as

quite a shock: Synge, Fock, Pauli, Bergmann, Tolman, Landau &

Lifschitz, Zel’dovich & Novikov, Dirac, Wheeler, Thome, Hawking,

Hong, Landau & Lifschitz and even Schwarzschild. Nevertheless

the conclusion of Lo is that ‘general relativity is not a product of

just pure thought. Nature is the ultimate authority of science’.

Databases must have the same ultimate authority if they are

to represent faithfully relationships in the real world. Existing

databases are models built bottom-up and therefore cannot guar-

antee naturality. A top-down design however is able to begin with

naturality and preserve it as it processes downwards. Another im-

portant advantage is that metaphysics can reflect the naturality of

the quantum world. To preserve naturality requires therefore close

attention to fundamentals usually termed ‘foundations’ in a bottom

up approach. This top-down requires close and strict attention to

initial definitions. For historic reasons Category Theory has been

developed in pure mathematics where an axiomatic approach is

favoured. Although any theory may be soundly developed from

the axioms of set theory, the difficulty is that a ‘set’ is nowhere to

be found in the physical Universe and cannot claim to be natural.

Current textbooks on Category Theory are derived from set theory

and cannot be relied on to represent relationships in the real world.

However, where Category theory in mathematics is governed only

by pure thought, it can be a useful guide to understand how the

rigour of nature operates.
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3 Metaphysical Categories versus Categorification

A ‘category’ in pure mathematics is defined bottom up as formed

of objects of a given type related by arrows that satisfy axioms

of identity, composition and associativity. These axioms are to be

found in most current textbooks but the problems inherent in set

theory are glossed over. Russell’s paradox is particularly relevant to

any higher order operation as necessary for physics or information

systems. For instance the tuple1 is a higher order concept basic to

database theory. The other defect is the independence of elements

in a set. As Whitehead has also pointed out the world is connected

and non-separable. Non-separability has to be externally applied in

set theory whereas a category has an internal connectivity through

its natural structure.

An exception from pure mathematics is Adámek’s Abstract &

Concrete Categories [1], which admits in section 2.3 the need for a

foundation requiring three levels: sets, classes and conglomerates,

and draws attention to earlier texts which recognised the difficulties

such as the Appendix to Herrlich & Strecker’s Category Theory

[24] in 1979 where a tuple needs to be defined by a closed world

assumption.

An object may be defined as an identity arrow but the arrow

and the operation of composition are primitives, that is derived

from assumptions. The position is analogous to sets and number

defined from some arbitrarily defined origin that is not identifiable

in physics. Such Category Theory is therefore subject to the same

type of error as Einstein’s theory of 1911 [16] when employed to

express any features of the real world. Categorification is a further

step down that road. Real world features expressed as categories
1In set theory an n-tuple is an ordered collection of n elements. For instance for the Student example

shown later in Table 4.1 the first tuple listed is the 3-tuple < ‘1001′, ‘Smith′, ‘2 The Cuttings, Hexham′ >,
giving the values for id, name and address respectively for a particular student.
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even if proper categories in the sense that they satisfy the axioms

are still subject to the same error. Categorification is a further

example of modelling and does not take on board Whitehead’s

point on the need for metaphysics.

Figure 5: Categorification: Mapping Set Theory on to Category Theory

The simplest example of categorification is for set theory itself.

The practice is described in Figure 5. Mapping set theory on

to category theory is the left adjoint existential operation of a

free functor with a right adjoint defining the qualifications, namely

validity up to the natural isomorphism of the axioms of set theory

which are insufficient to represent the real world. Categorification

of databases would be to take the procedures of classical database

theory, for example operations with Codd’s Relational Model or

rules of SQL, and express them in category theory as shown in

Figure 6.

The last twenty years has seen a series of attempts to categorify

physics led by Crane [9] in the early 1990s. Attention has been

mainly directed at current problems in theoretical physics. Baez

has initiated a series of projects, such as quantum gravity, quantum

field, knots, gauge theory and black holes, employing categorifica-

tion; more details can be found elsewhere, for instance on his ap-

proach to quantum physics [3]. In the light of Einstein’s comments

on the ultimate judge being nature, it is difficult to see how such
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Figure 6: Categorification: Current Theory and Practice of Information and Communi-
cation Technology expressed as Category Theory

categorification can produce elementary results beyond that avail-

able using the classical methods of set theory. For categorification

is always limited by being founded in graph theory. The alterna-

tive is to use the naturality of category theory at the metaphysics

level, operating in both top-down and bottom-up modes through

adjointness, as opposed to the bottom-up approach of set theory.

A further reason to invoke Category Theory and Process is ow-

ing to advances in globalisation information systems, which need

to be interoperable with the capability to communicate seamlessly

with one another. For this to come about there needs to exist a co-

herence between information systems. Previously communications

was a separate subject as in Weaver & Shannon’s Theory of Com-

munication [43] where the communication channel only needed to

deal with information within a Boolean syntax. However the work

advanced the understanding of information with the use of methods

borrowed from statistical mechanics. While Weaver and Shannon

advanced our understanding they dealt only with syntax in one

channel. Now category theory raises the levels to integrate the

semantics of communication in the communication process. This

is important for databases where the semantics of relationships is

critical.
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4 Current Information System

Existing approaches to information systems are illustrated formally

by database systems. Such systems are employed for the persistent

storage of data, according to the definition and rules of a schema.

The data can be retrieved and updated through a query language.

The form of the data definition and query language is governed

by the data model employed. Such models are based on a stan-

dard mathematical structure for reliability and efficiency. Each

model separates the intension of the data, the definition, from the

extension, the data values themselves.

Early approaches include the hierarchical data model, based on

trees, and the network data model, based on graphs. The network

data model was extended with the object-oriented paradigm to

include objects, methods and a range of data abstractions; this

paradigm has proven to be most useful for handling complex data

where the methods can be integrated with an object-based query

language. By far the most popular in data processing today is

the relational data model, based on sets [10], where the intension

describes the relationships and the extension is a set of tuples,

represented as tables. Attempts to use functions as the basis have

been attempted but have not gained practical acceptance. Details

of all the various database approaches can be found in textbooks,

including that by Connolly & Begg [6].

A graphical front-end to the relational model, for design pur-

poses, is the entity-relationship model [7], with various enhance-

ments to extend the semantics covered. It is considered that the

graphical approach, with entities as nodes, connected by relation-

ships as mappings, facilitates the construction of complex design

structures. The design structures created can then be automati-

cally mapped into a database design, for example for a relational
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data base. However, the entity-relationship graph can be consid-

ered as an incomplete data model as it has no inherent facilities for

a query language. It might be better to view it instead as a design

notation.

4.1 Example Databases

An example relational database is shown below in Table 1 for an

application involving students’ module choices and outcomes. For

each table the top row holds the data definition, the intension, and

the remaining rows the data values, the extension. The heading

of each column is termed an attribute, each of which will be as-

signed a data type as described later. The ∗ against an attribute

indicates that it is part of the primary key, the identifier of the

table. There are links between the tables. Each Outcome.id value

references Student.id and each Outcome.no value references Mod-

ule.no. The attributes referencing other attributes as primary keys,

termed foreign keys, are marked by a †.
Student
id* name address
1001 Smith 2 The Cuttings, Hexham
1002 Jones 7 Crescent Way, Newcastle
1003 Roberts The Grange, Corbridge

Module
no* title level
CS001 Programming 4
CS057 Architecture 5
CS124 Databases 4

Outcome
id*† no*† mark decision
1001 CS057 65 P
1001 CS001 55 P
1002 CS057 35 F

Table 1: Relational Database Example: Module Outcomes for Students
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Queries can be made on the tables using the SQL standard

language. For instance the query ”give full details of the students

who have passed the module Programming” is expressed as:

SELECT STUDENT.*

FROM STUDENT, OUTCOME, MODULE

WHERE OUTCOME.id = STUDENT.id

AND OUTCOME.no = MODULE.no

AND MODULE.title = ’Programming’

AND OUTCOME.decision = ’P’; (1)

Figure 7(a) shows an entity-relationship diagram for the applica-

tion. STUDENT and MODULE are entity-types in an N:M cardi-

nality (many-to-many) relationship Outcome; each student entity

is linked with between 0 and M module entries; each module en-

tity is linked with between 0 and N student entries. The zeros

(0) are significant indicating that neither a student entity nor a

module entity has to be associated with each other through the

Outcome relationship; this is optional participation. The general

form of the cardinality property is l, u : l′, u′(E : E ′) where l is a

lower-bound (some minimum2), u is an upper-bound (some max-

imum) and E,E ′ are entity-types. For example the cardinality

for the above relationship is 0,N:0,M (Student:Module) meaning

that each student entity is connected to between 0 and M mod-

ules and each module entity is connected to between 0 and N stu-

dents. The entity-relationship model is often converted into the

relational model for implementation purposes. As relationships

with N:M cardinalities cannot be directly handled in the relational

model, the diagram is converted to replace each N:M relationship
2the lower bound is not necessarily 0, e.g. a child has a lower bound of 2 parents naturally but the

upper bound many not be 2 with current genetics.
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by two one-to-many relationships as shown in Figure 7(b) where

OUTCOME becomes an entity-type, associated with STUDENT

by the relationship Has and with MODULE by the relationship

Gives. The lower cardinality values for STUDENT and MODULE

are now 1, indicating mandatory participation in the relationships

Has and Gives from OUTCOME. The entity-relationship model

has been extended with data abstractions such as inheritance and

aggregation, the former representing subclasses such as the various

types of student and the latter constructed collections of classes.

Figure 7: Entity-Relationship Example: Module Outcomes for Students. a) Student and
Module in direct N:M relationship; b) Student and Module in two one-to-many relation-
ships with Outcome. Rectangles indicate entity-types and diamonds indicate relation-
ships. 0 . . . M, N are cardinalities.

5 Use of Categories

Category theory has been applied to existing database methods by

a number of workers. The applications have attempted to replicate
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models including the relational and entity-relationship in catego-

rial structures. Such categorification provides useful support for

current database models but does not realise the full potential for

category theory in advancing database techniques.

In categorification existing techniques are transformed on a 1:1

basis from application to categories. Examples of attempted appli-

cations are the work by Rosebrugh and co-workers [25, 26], Diskin

[11, 12] and Spivak [39, 40, 41]. The models subject to categori-

fication are the entity-relationship model with Rosebrugh and his

co-workers, the Unified Modelling Language (UML) with Diskin

and the relational model with Spivak.

The entity-relationship model is a graphical technique for design-

ing databases as described in Figure 7. The graphical nature has

encouraged the use of categorical sketches as a means of representa-

tion. Sketches were developed by Charles Ehresmann [13, 14, 15]

as a flexible technique for relaxing certain of the criteria needed

for a category to be robustly designed. There are many types of

sketches and a taxonomical analysis has been made by Wells [44].

The preferred type of sketch for information systems has been the

finite discrete sketch, the fifth in Well’s list in subsection 3.1.5:

3.1.5 A finite discrete sketch has only discrete cones and

cocones. It is usually required that the models of a finite

discrete sketch (and a finite sum sketch (see 3.1.7) be in

a category with finite disjoint sums (see [Barr and Wells,

1990], page 219, or any book on topos theory). This is dis-

cussed in Section 5.3. The category of fields is the category

of models of a finite discrete sketch.

Traditionally a finite discrete sketch S is viewed as a graph G

with:

• a set of diagrams D
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• a set of discrete cones L (limits)

• a set of discrete cocones R (colimits)

A sketch S may be written as a 4-tuple set < G,D,L,R >

with G representing the data structure, D the constraints, L the

relationships, R the attributes (properties). A model graph homo-

morphism M maps the graph G as an intension to an extension

category C (a database state), taking associated diagrams in D to

commutative diagrams, cones in L to limit cones and cocones in R

to colimit cocones. M preserves products. In entity-relationship

terms, the graph G, with associated constructions in the 4-tuple,

is the class structure and the model M is the objects. This gen-

eral definition of a finite discrete sketch is simplified by Johnson

and Rosebrugh [26] to the EAS (Entity-Attribute Sketch), defined

as E =< E,L,R > where E is any entity in a database and

L and R are as previously defined. Note that the 4-tuple is re-

duced to a 3-tuple. The model M subsumes its constraints D and

maps E to C. The model M is embedded in a left exact category,

a Cartesian category with finite coproducts wherein coproducts

are preserved by pullbacks, providing facilities to define classes for

database interrogation. The EAS has been implemented as a Java

application, Easik, for database design, database implementation

and data manipulation in a graphical environment [35]. The guide

to Easik claims:

Within the Easik graphical interface users create a database

design of entities, attributes and constraints. The design

can be exported to a database schema in SQL that enforces

the graphical constraints. Easik is compatible with con-

nectivity to some common database management systems

[such as MySQL]. With a connection available, data entry
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and manipulation can be done via the graphical interface

[35].

This quote shows that Easik is not a categorial database but

is a front-end design tool for a relational database upon which all

subsequent manipulation will be done in the usual way through

SQL. An example of an Easik sketch is shown in Figure 8. This

is taken from a more detailed description of the computing science

behind the project [27]. On the graph, entities are indicated by

rectangles and relationships by directed edges (−→). Constraints

may be of several types, including sum for subclasses, commutative

diagrams, product and pullback. In the process of categorification,

the sketch is then converted to a relational database design by a

java program.

Figure 8: Example of an Easik Sketch: Publications at a Conference, from [27].

UML has a class structure close to that of the entity-relationship

model and indeed Diskin [11] emphasises the similarity. The mo-

tivation behind Diskin’s approach is “a general thesis that any

diagram with precise semantics (to be described in mathematical
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terms) actually hides a sketch in a suitable signature of markers”.

Diskin shows that the sketch is a more precise definition than the

design models, arguing that “the sketch view we suggest gives rise

to a whole program of refining the vocabulary of visual modeling,

making it precise and consistent, and unified”. At the same time,

he indicates that “by suggesting sketches we do not wish to force

everyone to use the same universal graphical language”.

Sketches are attractive at first sight in that they provide a read-

ily visualisable graphical structure, popular in information system

design. They also enable imprecise features of an application to be

handled through relaxing the strict constraints of commutativity in

category theory. However the structures developed may not satisfy

the axioms of category theory as they are not using categories in

a rigorous way. Wells considered that sketches “were invented by

Ehresmann to provide a mathematical way to specify a species of

mathematical structure” [44], such as groups and sets, providing

a possible route for handling interoperability. Diskin has recently

discussed the possibility of using sketches for metamodelling in in-

formation engineering [12]. Wells [44] thought that sketches were

particularly useful for multisorted structures and for models in

categories other than sets. It therefore appears that sketches may

appeal to some as a convenient graphical language, with the po-

tential for capturing semantics and for comparing different models,

but is this only superficial? Work with sketches to date is more in

the nature of a manifesto or a mission statement than as a proven

tool. In earlier work [36] we briefly investigated the use of such

sketches and came to similar conclusions.

Turning to Spivak’s approach, he says “A database schema is a

system of tables linked by foreign keys. This is just a category”.

But this may confuse intension and extension. This categorification

of the relational model involves treating tables as objects within a
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category with cross-references between the tables, from foreign key

to primary key, as functions. The effect is to construct a network

through graphs. There seems to be an immediate problem with

this approach. The table has complex internal structure of its own,

which would need to be captured at the intra-object level. Further

the correspondence of a table to a relation is only approximate with

a relation referencing domains for typing purposes and containing

functionality such as methods (see definition) in object-based ex-

tensions. The table also contains much more than just the schema:

it also contains the data, as shown in our example of a relational

database with the intension, the extension and the various types

of key, given in Table 1.

Spivak captures the set-based nature of the relational model

by introducing a set-valued functor to map from the schema to

the category Set; the set-valued functor represents the instances

of data conforming to the schema. This mapping is analogous

to the model M model functor in the sketch approach. Typing

is introduced by mapping values on to type objects e.g. String,

Real, as in the functional model. Adjoints are considered between

one set-valued functor and another for views and queries and for

the purpose of data migration. It appears that Spivak is using the

higher-order logic of Lawvere [29], with the adjoints ∃ a ∆, ∆ a ∀.
Spivak appears to interpret Σ (∃) as union, ∆ as projection and Π

for join. This seems at odds with Lawvere’s treatment of ∃ as the

existential quantifier, ∆ as the diagonal re-indexing functor and ∀
as the universal quantifier, which is also the interpretation taken

in our own work described later.

All the current approaches are clearly ’categorification’ with a

translation of current information system approaches to category

theory rather than the more fundamental approach of determining

which categorial structures would be the ideal basis for an informa-
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tion system. Thus the sketch approaches are a translation of the

entity-relationship model into categories and Spivak’s approach is a

translation of the relational model into categories. The approaches

are therefore backward looking and ad hoc. The flexibility of the

sketch approach is claimed to be an asset but the ability to relax

the commutativity requirement in some cones and cocones means

the sketch is not a natural structure and therefore is an inappro-

priate formalism upon which to base an information system. The

terminal object requirement is not enforced in sketches so there is

no closure in such structures at the natural isomorphism level. The

approaches in general fail as Whitehead reductionist models, not

meeting the requirements of metaphysics.

More fundamental approaches to representing databases in cat-

egory theory were followed in the 1990s by Rosebrugh [34] and

Baclawski [2] with the database being embedded in a topos. How-

ever, such ideas were not further pursued, maybe because the full

potential of the topos was not appreciated at the time or because

the exact world of the topos could not handle the required relax-

ations of the theory.

6 Fundamental Approach to Information Systems with

Categories

Starting from basics, we need to decide on requirements for an

information system, identify features of category theory that help

to meet requirements and produce a framework which satisfies the

software engineering principles of high cohesion and low coupling.

6.1 Requirements

The requirements are for a database system, the basic properties

of which have been described in Section 4. The requirements can
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be itemized as follows:

1. Mathematical structure. For behaviour to be predictable

with certainty, it is essential that underlying data structures

have a mathematical rather than an ad hoc basis e.g. set

operations would be used in a relational database where the

set is the basic unit of data.

2. Structuring capability with high cohesion, low cou-

pling and strong typing. The data should be able to be

structured according to some formalism, which enables closely

related data to be grouped together, giving high cohesion, but

also permits relationships to be explored on demand, without

such relationships always being pre-specified in a hard-wired

manner, giving low coupling e.g. in a relational database, a

set can be regarded as a class defining a number of closely re-

lated properties but in principle any property can be related

to any another property, wherever defined, through the query

language. Strong typing means data is to be checked against

a pre-defined type system. Typing includes data model con-

straints such as participation rules and cardinalities for rela-

tionships.

3. Searching and manipulation. The data should be search-

able, updateable and deletable by a query language, employ-

ing operations suitable for the mode of data structuring e.g. a

tree traversal query language would be used in a hierarchical

database. Internal methods for classes are an integral part of

the query system.

4. Query symmetry. The way in which users express queries

should reflect the complexity of the request and not be unduly

affected by quirks in the data model.
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5. Query closure. The result of a query can be held as a data

structure, which ranks pari passu with other data structures in

the database. The situation desired is as with SVG (Scalable

Vector Graphics) where images can be manipulated and saved

as first class objects for further transformations.

6. Transactions. Update operations can be grouped together

into a transaction, whereby the collection of operations is re-

garded as an atomic unit with rules governing the success or

failure of the process; the process executes completely or is

rolled back so no changes are recorded.

7. Interoperability. The ability for information systems to

talk to one another is a critical requirement, needed today

even if the systems are based on different paradigms.

6.2 Potential of the Topos

In previous work we have looked in depth at the Cartesian Closed

Category (CCC) as the basis for natural systems. With its carte-

sian product for representing relationships and its terminal ob-

ject for identity, the CCC is the obvious starting point [37, 38].

However, in our more recent work the topos has been given more

prominence [22, 23]. The topos is a CCC but it has a number of

additional features, useful for our work:

1. the subobject classifier for membership criteria

2. the internal logic of Heyting for query and rule processing

3. the ability to define subtopos, such as the reflective subtopos

4. the co-cartesian (dual) of the topos for exploration of database

design issues
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6.3 The Topos: Definition and Properties

The archetype of the natural world is the topos, in its early days

formally defined as a Cartesian Closed Category with subobject

classifiers and informally as a generalised set. Johnstone in his

preface to Sketches of an Elephant [28] lists thirteen alternative

descriptions that have been applied to the topos (pp. viii &sq).

Many of them like for instance “A topos is a generalised space” still

carry hangovers from sets. We would recommend as an informal

definition: “The category of categories of categories”, where cat-

egories describes a structure of classes, after Aristotle’s Organon.

There is a unique arrow from the source of the World to every ob-

ject in it and a unique limiting arrow directly between any pair of

objects as well as a repletion of indirect co-limiting arrows between

them. These relationships satisfy our empirical perception of the

laws of physics. As a categorical structure the topos has attracted

much attention in standard texts, for example Mac Lane’s Cate-

gories for the Working Mathematician [32], Goldblatt’s Topoi:

The Categorial Analysis of Logic [20], Johnstone’s Sketches of

an Elephant: A Topos Theory Compendium [28]. There are

also a number of reports, which make the material more accessi-

ble, for example Pettigrew’s An introduction to toposes [33]. The

popularity of the topos approach appears to be because the topos

captures properties of sets, based on the Cartesian Closed Category

(CCC), which will be considered first.

6.3.1 Cartesian Closed Category

A building block for the topos is the Cartesian Closed Category, for

which the pullback is a well-known example. A CCC is a category

with:

1. All products, with all objects A,B related by products A×B.
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This enables relationships to be expressed between any two

objects.

2. Closure with a terminal object 1, where there is exactly one

arrow from every object in the category to the terminal object.

The terminal object is the least upper bound.

3. Exponentiation (connectivity), with the collection of arrows

from the object A × B to the object C being equivalent to

the collection of arrows from the object A to the exponential

object CB, that is hom(A × B,C) ≡ hom(A,CB). For a

topos ξ the following expression holds:

F : × B : ξ −→ ξ;G : B : ξ −→ ξ;F ` G (2)

A×C B

B

C

A

πl

πr
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
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Figure 9: The Pullback, an example of a Cartesian Closed Category

A simple pullback is given in Figure 9 where C is the colimit,

A ×C B the product of A and B in the context of C is the limit

and hom(A × B,C) ≡ hom(A,CB) is the expression for the ex-

ponential. A is the independent variable and B the dependent

variable. Arrows ı and  are inclusions and πl and πr projections.

The inclusions indicate that although the colimit is simply writ-

ten as C, it must also contain A and B. In the simplest case the

colimit might be written A + B as the disjoint union of A and B
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but amalgamated sums of various types are possible depending on

the semantics. An important special case is where πl is monic (one

path from A×CB to A): the diagram is then both a pullback and

a pushout with the colimit being A +C B, the sum of A and B

in the context of C. Such a diagram is called a Dolittle diagram3,

which we employed in the development of a universal logic [21] as

it provides natural closure. In an analogous manner, the limit can

be either a product, a product in context or an intersection, the

nature of which depends on the semantics.
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Figure 10: The Logic of a Cartesian Closed Category: the Pullback and its Dual

A more complete pullback diagram, additionally showing its

dual, reveals the full power of the logic as shown in Figure 10.

The information significance attached to each projection and in-

clusion arrow is summarised in Table 2. The table shows that the

semantics captured by the full pullback diagram are very rich in-

cluding typing features such as cardinalities and participation for

relationships as well as the more obvious projection and inclusion

of Figure 9. The diagonal arrows ∃,∆,∀ carry additional signif-

icance, associated with query language functionality, as shown in

Table 3. All of the features of the relational calculus and its com-

mercial interface SQL are to be found in the full Cartesian Closed

Category of Figure 10. With respect to the relational database
3The concept is also known as a pulation diagram [1]; Freyd introduced the concept [18] but unfortu-

nately called it incorrectly a Doolittle diagram.
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algebra, each operator may act as follows:

• π: projection from the limit A×CB with ı◦πl or ◦πr picking

out objects in C

• ∃: restrict where the relationship between source A×C B and

target C is queried according to some predicate defined by σ

• ∃: predefined join where the relationship between A and B in

the context of C is explored from the limit A×C B

• ∃: intersection with source as A×B and target as the object

C/B, the slice of C connected to B

• ∃: unrestricted product with target as the universal object {∗}

• ∃: amated sum with target as A +C B, when πl is monic

• ∃: unrestricted disjoint union with source as the universal ob-

ject {∗} and target as A + B

• ∀: divide as an example of a universal property, defined by the

predicate σ

• ∆: query closure as non-contingent truth operator, right-adjoint

to ∃ and left-adjoint to ∀

So the logic provided by the pullback diagram in Figure 10 is

relationally complete, according to relational database theory [8].

The general form of an existential query is:

π((σpredicate∃) a ∆) (3)

and of a universal query:

π(∆ a (σpredicate∀)) (4)
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The form of Expression 3 is analogous to that of the relational

algebra, where the general form of query is:

π(σpredicateR) (5)

In the categorial form it is arrows that are searched such as ∃,
rather than relations R as sets. The categorial queries must also

satisfy the property of adjointness, readily providing the closure

property. For existential queries the base of the query is the adjoint

∃ a ∆ and for universal queries the base is ∆ a ∀.

arrow source target operation type implications

πl A×C B A projection

if epic A has mandatory participation in
A×C B: 1,*: 1,1 (C:A)
if not epic A has optional participation in
A×C B: 0,*: 1,1 (C:A)

πr A×C B B projection

if epic B has mandatory participation in
A×C B: 1,*: 1,1 (C:B)
if not epic B has optional participation in
A×C B: 0,*: 1,1 (C:B)

π∗l A A×C B dual of pro-
jection

if monic A×C B is 1,1:*,1 (A:C)
if not monic A×C B is 1,1:*,N (A:C)

π∗r B A×C B dual of pro-
jection

if monic A×C B is 1,1:*,1 (B:C)
if not monic A×C B is 1,1:*,M (B:C)

arrows
above

derive, from above, minimum and maximum
cardinalities for participation of A, B in A×C

B
ı A C inclusion A ∈ C
 B C inclusion B ∈ C
ı−1 C A superobject C ⊃ A
−1 C B superobject C ⊃ B

Table 2: Information System Semantics: Types of Projection and Inclusion Arrows in the
Pullback in Figure 10. Cardinalities in form l, u : l′, u′(E : E ′) are as described in Section
4.1. Cardinalities in italics are trivial, from the definition of a pullback. Cardinality of *
is a wild-card indicating the value is unknown from this test alone,

As stated earlier query symmetry is an important requirement

for an information system. This is naturally achieved in CCC

through the commutativity of the diagrams. The changing of the

order of the operands (arrows in this case) does not affect the result.

28



arrow source target operation query facilities
∃ A×C B C existential quantifier, left

adjoint to ∆
application of predicate

∃ A×C B {∗} existential quantifier, left
adjoint to ∆

product operation

∃ A×B C/B existential quantifier, left
adjoint to ∆

an intersection operation

∃ {∗} A+B existential quantifier, left
adjoint to ∆

disjoint union operation

∃ A×C B A+C B existential quantifier, left
adjoint to ∆ (if πl is
monic)

sum operation in context

∆ C A×C B diagonal, re-indexing,
right adjoint to ∃, left
adjoint to ∀

query closure

∀ A×C B C universal quantifier, right
adjoint to ∆

application of predicate

∃ a ∆ adjoint validates existen-
tial query results
< ∃,∆, η, ε > where η :
1A×CB −→ ∆∃(A ×C B),
ε : ∃∆(C) −→ 1C

∆ a ∀ adjoint validates universal query
results < ∆,∀, η, ε >
where η : 1C −→ ∀∆(C),
ε : ∆∀(A ×C B) −→
1A×CB

Table 3: Information System Querying: Types of Diagonal Arrows in the Pullback in
Figure 10
.

6.4 Additional Properties of the Topos

From the information system perspective, products are the basis

for relationships, closure the basis for identity and exponentiation

the basis for connectivity. This is a useful starting point but not

sufficient for complete specification of an information system. If

we call the Cartesian Closed Category of Figure 10 CCC then

a topos is the category CCC with the four additional properties

given in Section 6.2. We consider firstly the two properties which

enhance searching ability: the subobject classifier and the internal

logic, Heyting. The subobject classifier is for membership criteria,

the internal logic Heyting for query and rule processing. The key

notion of a subtopos is next considered to explore the typing of

the result of a query. The co-cartesian dual of the topos is not
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considered in this paper; it will be dealt with in a further paper on

database design including normalisation. Finally we look briefly at

whether there are any disadvantages to the topos approach.

6.4.1 Subobject Classifier

A subobject classifier lives within the topos. The classifier is de-

fined by the pullback square in Figure 11 where Ω is a collection of

truth values, true is the subobject classifier, 1 is the terminal object

of the category CCC,  : U −→ X is an inclusion arrow mapping

from the subobject U to the object X and χ is the character-

istic function. The subobject of X defined by the characteristic

function χ is U .

U

X
χ



1CCC

Ω

true

-

-
? ?

Figure 11: Pullback Square for Subobject Classifier: Derivation of  mapping from
subobject U to Object X

6.4.2 The Heyting Internal Logic

The internal logic of a topos is analogous to methods in an object-

oriented database. The logic augments the quantifiers and asso-

ciated relational algebra operations defined in Section 6.3.1. An

example language is the Mitchell-Bénabou Language of a Topos,

defined in various texts [5], ([28] Volume II), [31]. In this language
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types and variables are defined. Expressions are built from formu-

lae and predicates are constructed for membership tests. Logical

operations available include intersection and union. The internal

logic is intuitionistic (Heyting) which is more general than Boolean.

As an example the handling of negation is more sophisticated in

that a double negative may not result in a truth value. Some

examples of the internal logic will be given in a future paper.

6.4.3 The Reflective Subtopos

After a database query has been executed, it is sometimes required

to store the result as a database instance in its own right. This

requires the type of the result to be known. If this can be done,

the database is said to possess query closure. For the topos it

is simple to hold the search result as a subtopos, whose type is

defined by the functorial relationship between the topos and the

subtopos. A construction that appears particularly promising is

the Lawvere-Tierney topology, which is a closure operator on the

subobject classifier of a topos [31].

Freyd & Scedrov [19] introduce the reflective subtopos, where the

subtopos maps on to a topos through a full and faithful functor.

The reflective subtopos can be a member of itself, giving a distinct

advantage over set theory where a set may not be a member of

itself. Reflective subtopos can be defined recursively as monads.

From the perspective of querying the universe, the reflective subto-

pos is identified as a fragment either as a partial order subobject

or as a pullback where the context is the universe and the product

is of the two related objects. Adjointness between the topos and

subtopos means the relationship is exact.
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6.5 Arguments against Topos

While we see many formal advantages to a topos approach in

achieving a natural information system, it has to be observed that

there are currently no readily-accessible examples of usage in prac-

tical applications. In addition, as mentioned earlier in Section 1,

an implementation on current computer architecture would be con-

strained by the von Neumann architecture currently in use, based

on number and therefore on set.

7 Worked Example of Database Application as a Topos

The database application in Section 4.1 is now to be represented

as a topos. The starting point is to represent the example as the

Cartesian Closed Category CCC, with its dual, shown in Figure

12, following the earlier pullback example given in Figure 10. The

diagram features both M and M′ for Module and S and S′ for

Student. M is the total collection of modules and S is the total

collection of students. S′ ×O M′ involves only those students and

modules with an outcome, that is those students and modules that

participate in the relationship O. Building on Table 2 we can now

examine the typing of the various arrows in Figure 12 to capture the

semantics input to the entity-relationship diagram of Figure 7(b).

Table 4 shows the typing assigned, in particular that the cardinality

of the relationship S ′ ×O M ′ is 1,1:0,N (S:O) and 1,1:0,M (M:O).

In the entity-relationship model such typing is included as labels,

which is much weaker than the inherent typing of the categorial

formalism.

There is internal structure to all the categories. This is needed

to represent the attributes in the application described in Figure 1.
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Figure 12: The Logic of the Database Example, as a Cartesian Closed Category CCC
and its dual, with categories S,S′ for Student, M,M′ for Module, O for Outcome

arrow source target operation type
πl S′×OM

′ S projection not epic: S optional participation, S′ ×O M ′

is 0,*:1,1 (O:S)
πr S′×OM

′ M projection not epic: M optional participation, S′ ×O M
′

is 0,*:1,1 (O:M)
π∗l S S′×OM

′ dual of pro-
jection

not monic: S′ ×O M ′ is *,N:1,1 (O:S)

π∗r M S′×OM
′ dual of pro-

jection
not monic: S′ ×O M ′ is *,M:1,1 (O:M)

arrows
above

S′ ×O M
′ is 1,1:0,N (S:O) and 1,1:0,M (M:O)

ı S O inclusion S ∈ O
 M O inclusion M ∈ O
ı−1 O M superobject O ⊃ A
−1 O M superobject O ⊃M

Table 4: Information System Semantics: Types of Projection and Inclusion Arrows in
the Pullback for the Worked Example. Cardinalities in form l, u : l′, u′(E : E ′) as de-
scribed in Section 4.1. Cardinalities in italics are trivial, from the definition of a pullback.
Cardinality of * is a wild-card indicating the value is unknown from this test alone,

To represent this detail, the categories S, M and O in Figure 12

are represented as the pullbacks in Figure 13. Figures 13(a) and

(b) show pullbacks for categories S and M respectively where the

pullback is of the arrow πl with itself; these are termed kernel pairs.

Figure 13(c) shows the pullback where the projection arrows differ:

πl mapping to id and πr mapping to no. The colimits of these

final level categories correspond to the relational tables of Table 1.

An alternative representation considered was to use categories of

type Rel, representing binary relationship between objects, for the

underlying types. However, as Rel is not cartesian closed it has
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no identity functor and is not suitable for the representation of the

categories as objects in Figure 12. Since the use of Rel is in effect

categorification, this is another example of the problems of such an

approach. The use of Freyd & Scedrov’s generalisation of relations,

namely allegories [19], should be considered in this context.
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Figure 13: Internal Structure of Categories: a) The Pullback in S. SX is id×S+ id, S+

is name +id address. b) The Pullback in M. MX is no×M+ no, M+ is title +no grade, c)
The Pullback in O. OX is id×O+ no, O+ is mark +id+no decision.

Querying can be done in at least three ways, either a) as a

predicate on the ∃ arrow in category CCC of Figure 12, b) as a

predicate on the arrow χ of Figure 11, or c) as an expression in

the Heyting logic. For case a) the SQL query as Expression 1 in

Section 4.1, building on the general form in Expression 3, can be

expressed in terms of adjointness as:

πl((σtarget.O.decision = ’P’ ∧ source.M.title = ’Programming’∃)
a ∆) (6)

For case b) the terminal object of the category 1CCC is an object

in the subobject classifier. The arrow χ mapping from the object

X to the truth value Ω is the logic of the SQL expression and

the subobject U is the result of the query. As the query involves

more than one object, it is necessary to extend the objects to
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powerobjects in Figure 11. This is the subject of further work as

is case c), the exploration of the Heyting logic.

8 Handling Requirements with the Various Approaches:

Discussion

Figure 5 shows how the various approaches handle a particular

information systems feature. For the standard models, the infor-

mation is gleaned from standard texts [6, 8, 10]. For the CCC

approach, the positive information is derived as follows:

• Structuring capability from Section 6.3.1

• Searching from Section 6.3.1

• Query symmetry from Section 6.3.1

• Transactions from earlier work by the authors [22]. Transac-

tions are considered as processes, defined by the application of

monads and comonads to the topos: the adjoint three-levels

match the cyclic nature of database transaction structures

where a natural closure is sought over three-levels of activity.

• Interoperability from earlier work by the authors [38]. Each

CCC represents an intension-extension pair with a contravari-

ant mapping from one component to another. Such pairs can

be defined at varying levels of abstraction from the highest level

representing a philosophical viewpoint of the data to the lowest

representing the data values themselves. The integrity of an

approach is preserved by functors linking the levels. Interoper-

ability is achieved through natural transformations comparing

the functors in one approach with those in another.

The additional positive information for the topos approach, be-

yond that for the CCC approach, is derived as follows:
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• Searching from Sections 6.4.1-6.4.2

• Query closure from Section 6.4.3

Looking at Table 5 the relational model handles the require-

ments most fully of the standard data models. The Cartesian

Closed Category approach matches the relational model in all re-

spects and additionally handles the interoperability requirement.

The topos approach improves on the CCC approach by providing

additional features for searching and by facilitating query closure.

Indeed the topos approach alone handles all of the listed require-

ments.

However, further work has been identified in this paper. More

detail is sought on queries involving more than one object, where

the extension in the subobject classifier from objects to powerob-

jects is required. Some examples of the Heyting internal logic are

required both to show its scope and any limitations.

Database design, where complex networks of related objects are

constructed, also requires further work. One idea is to employ the

co-cartesian dual of the topos for this purpose. Nesting of pullbacks

is another possible solution, giving a recursive approach. Pasting

of pullbacks is adopted in many category theory textbooks but be-

yond very simple examples, this approach offers limited merits in

visualisation and the re-use of names gives complex name hierar-

chies. Normalisation, a technique employed in relational database

design, is considered to be a patch necessary for the set-based

world, whose mimicry in topos design would be categorification.

The use of Freyd & Scedrov’s generalisation of relations, namely

allegories, will be considered as a possible supplement to the pull-

back approach.
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Approach
(Stan-
dard)

Maths
structure

Struct-
uring
Capabil-
ity

Searching Query
symme-
try

Query
Closure

Trans-
actions

Inter-
oper-
ability

Comm-
ercial
Exam-
ples

Hier-
archical

Trees 1:N, con-
straints

Tree
traversal

No, bias
down-
wards

No, tab-
ular dis-
play

Yes,
CICS

No IMS

Network
(ODMG)

Graphs N:M,
con-
straints

Graph
traversal

No, bias
to set
paths

No, tab-
ular dis-
play

Yes No IDMS

Relational
(SQL4)

Relations
of sets

N:M,
con-
straints

Set op-
erations
(SQL)

Yes Yes Yes No Oracle,
DB2,
Access

Extended
Entity-
Relation
-ship

Graphs N:M,
con-
straints

None N/A N/A No No None

Object-
oriented
(ODBT,
XMI,
XQUERY)

Graphs N:M,
con-
straints

Object
query
(OQL)

Yes No Yes No ObjectDB

Functional Functions 1:N, con-
straints

Function
composi-
tion

No, bias
to set
paths

No No No None

Sketch Graphs N:M,
con-
straints

Function
composi-
tion

No, bias
to set
paths

No No No None

Spivak’s
approach

Graphs N:M,
con-
straints

Function
composi-
tion

No, bias
to set
paths

No No No None

Cartesian
Closed
Category

Pullbacks N:M,
con-
straints

Quantifiers Yes No Yes,
monad

Yes,
natural

None
yet

Topos Categorical
Topos

N:M,
con-
straints

Quantifiers,
subob-
ject,
Heyting

Yes Yes,
reflective
subtopos

Yes,
monad

Yes,
natural

None
yet

Table 5: Capability of Data Modelling Techniques for Handling Database System Re-
quirements.
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A database design method based on metaphysics is sought; for

instance design rules such as a lecturer cannot teach two topics

simultaneously is based on the physical restriction that a lecturer

cannot be in two places at the same time. Ultimately database

design rules should hold up to the natural isomorphism of the laws

of metaphysics.

The further work identified above is more an indication of the

obvious channels for additional study to work out the potential and

limitations in more detail, rather than any fundamental weaknesses

in the topos approach. Indeed the topos solution, alone of all the

approaches, satisfies all of the requirements for a database system.

A paramount consideration is that the adjointness of the topos

solution provides a unique solution, critical in information systems.
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