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Abstract

Plato’s ideas and Aristotle’s real types from the classical age, Nominalism and
Realism of the mediaeval period and Whitehead’s modern view of the world as pro-
cess all come together in the formal representation by category theory of exactness
in adjointness (a). Concepts of exactness and co-exactness arise naturally from ad-
jointness and are needed in current global problems of science. If a right co-exact
valued left-adjoint functor (Σ) in a cartesian closed category has a right-adjoint left-
exact functor (∆), then physical stability is satisfied if ∆ itself is also a right co-exact
left-adjoint functor for the right-adjoint left exact functor (Π): Σ a ∆ a Π. These
concepts are discussed here with examples in nuclear fusion, in database interroga-
tion and in the cosmological fine structure constant by the Frederick construction.

1 Exactness

The principles of exactness and adjointness have appeared over the

centuries in many guises in a multitude of phenomena and applica-

tions but it is only since the development of category theory that

their interrelation has become transparent and their character as

universal recognised [13, 12]. Exactness is that property of bound-

ary at the closure at the top of any system, with its dual property of

co-exactness corresponding to the origin or bottom of any system.

A distinction between top-down and bottom-up methods is often

made but it is not always appreciated that there is a fundamental

type change between the two approaches: whichever is treated as

covariant then the other is contravariant. In a world of ‘process’

(rather than of fixed sets) the respective vocabulary of source and
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sink for bottom and top might be more appropriate 1.

Aristotle was probably the first to make a serious study of the

nature of categories in the Organon [1]. However, there was little

formal work on categories for well over 2,000 years until (initially

independent of but then) building on the work of Frege [11], White-

head and Russell introduced the topic of typing at the beginning of

the Principia Mathematica written in the first decade of the 20th

century ([40] chapter II pp.39-68). Russell first developed a more

advanced theory of types to deal with his eponymous paradox - the

anomalous set of all sets that cannot be a member of itself. This

was in his Principles of Mathematics 2.

At the time Russell thought that the doctrine of types in his

Appendix B proved the existence of mathematical objects but in

the second edition, he changed his view:

What is said on existence-theorems in the last paragraph

of the last chapter of the “Principles” (pp. 497-8) no longer

appears to be valid: such existence-theorems, with certain

exceptions, are, I should now say, examples of propositions

which can be enunciated in logical terms, that can only

be disproved or disproved with empirical evidence (at p.

viii [36] 2nd edition).

This disenchantment with the theory of types is further con-

firmed by remarks of Spencer Brown:
1In Rossiter, Heather & Sisiaridis Process as a World Transaction [33] the nature of banking database

transactions provides an example where the zero balance might be implemented as a process when there
is an arrangement with the bank automatically to top up an account from a second account to prevent
the first from going into overdraft.

2Russell’s Principles of Mathematics of 1903 [35] needs to be distinguished from the more formal
mathematics of Whitehead & Russell’s Principia Mathematica [40] although the latter was planned as a
second volume to the former. However the Principia was found to be a much greater undertaking than
originally anticipated. The outcome was that the Principia was published as a self-standing work in two
volumes with a third volume planned but never published although much of it was written. Apparently
most of the formal mathematical content was penned by Whitehead with Russell making policy decisions
[Ivor Grattan-Guinness private communication 2007]. Whitehead himself says in a footnote in Process
and Reality [41] that Russell was responsible for most of (and in the 2nd edition the whole of) the
philosophical content.
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Recalling Russell’s connection with the theory of types, it

was with some trepidation that I approached him in 1967

with the proof that it was unnecessary. To my relief he was

delighted. The Theory was, he said, the most arbitrary he

and Whitehead had ever had to do, not really a theory

but a stopgap, and he was glad to have lived long enough

to see the matter resolved (pp. xiii-xiv in ([37]).

Whether this did resolve the matter is doubtful. Spencer Brown’s

theory of standard forms only took the theory further to a limited

extent. In his words:

Put as simply as I can make it, the resolution is as fol-

lows. All we have to show is that the self-referential para-

doxes, discarded with the Theory of Types, are no worse

than similar self-referential paradoxes, which are consid-

ered quite acceptable in the ordinary theory of equations.

Spencer Brown seems only therefore to seek to make the para-

doxes respectable, not to remedy them. It is certainly a valid point

he mentions not generally appreciated that Russell’s paradox is not

just a special case but is present everywhere in algebra. However

he certainly made no attempt to deal with the much more far-

reaching knock-out blow dealt to set theory by Gödel’s theorems

of undecidability ([10] at p.49) which we have discussed elsewhere

[17].

With the advent of modern digital computers, typing soon be-

came a very practical issue. This is one aspect of exactness. The

simple sum of two entities has to be carefully specified if the enti-

ties are of different types. The human brain can adapt according

to context. A computer (currently) needs specification because it

lacks an awareness of context. These must be suggested either

explicitly, by default or be determinable by a specified procedure.
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The topic of types had not totally disappeared between Aristotle

and Russell for there was a very active debate in mediaeval philos-

ophy between the Nominalists and the Realists, which arose from

the translation of the Organon into Latin. Aristotle’s teaching on

categories does not make plain, which is more fundamental, the

intension or extension. Is there an absolute concept that enables

us to identify a tree when we see one or do the examples of trees

we see around enable us to construct an archetypal concept of a

perfect tree? The Nominalists argued strongly for the former, the

Realists for the latter.

The precise distinction between intension and extension was not

really recognised until the treatment of these concepts in the Port-

Royal logic, for instance in Ideas 1662-1683 ([2], Comprehension

and Extension at pp. 39-40):

Now in these universal ideas there are two things which it

is most important to distinguish clearly, the comprehen-

sion and the extension. I call the comprehension of an

idea the attributes that it contains in itself, and that can-

not be removed without destroying the idea. For example,

the comprehension of the idea of a triangle contains ex-

tension, shape, three lines, three angles, and the equality

of these three angles to two right angles, etc. I call the ex-

tension of an idea the subjects to which this idea applies.

These are also called the inferiors of a general term, which

is superior with respect to them. For example, the idea of

a triangle in general extends to all the different species of

triangles.
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2 Exactness in Category Theory

The formal development of a ‘Gödel free’ notion of types can now

be found in category theory. We find that it is not a question

of which came first, the intension or extension. It is neither. It

is a matter of adjointness and not a question of one or the other.

Nominalists and Realists are really addressing two sides of the same

coin 3. It is the context that makes typing so important. A local

system can be treated as roughly homogeneous and therefore the

methods of classical physics have given rise to some astonishingly

exact theories derived from simple models based on number and set

theory. Such simplicity however is not maintained across problems

of biology and medicine or in many examples of global systems

important today. There set theoretic methods can be very inexact.

In applied mathematics we are concerned directly only with

cartesian closed categories 4. Cartesian closed categories possess

both limits and exponentials as well as possibly their duals. The

property of co-exactness is existence. For it is the property of be-

ing ‘spot-on’ i.e. relevant. It seems hardly a chance coincidence

that the vocabulary used by both lawyers and physicists for this

concept of relevancy is ‘material’. It seems to arise from the way

natural language is constructed as a reflection of the world as it is

to be found. Co-exactness is what makes Aristotelian reality, that

is matter [1].

The fundamental particles (the spots in ‘spot-on’) of any cate-

gory system constitute its initial object. Exactness on the other

hand is Plato’s sublime reality. It is the idea or ideal condition of

perfection 5. It is not the everyday reality we experience here. To
3It is probably the same explanation for the old conundrum ‘which came first, the

chicken or the egg? That is a general feature of the theory of causation’.
4Other categories from pure mathematics, for example n-categories, may still be used

as models - but they are not reality in an Aristotelian sense.
5As in the Myth of a Cave and the Tripartite Soul [38].
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the Platonist any system we are concerned with in this life is only

a pale shadow of the true potential concept. Left exactness has a

sense of coherence in classical and quantum physics. Coherence in

a process view is not a fixed state but one of dynamic equilibrium

and structural entropy which gives rise to the presently recognised

phenomenon of emergence [32] ([31], at p.124) which was drawn to

the attention of ANPA by Frederick Young [42].

Philip Clayton in his book Mind & Emergence ([9] at p.vi in

preface) 6 defines emergence as:

Emergence is the view that new and unpredictable phe-

nomena are naturally produced by interactions in nature;

that these new structures, organisms, and ideas are not

reducible to the subsystems on which they depend; and

that the newly evolved realities in turn exercise a causal

influence on the parts of which they arose.

The first occurrence of the term emergence seems to be in [23],

but has been traced back to Aristotle’s Entelechies which connects

to the Leibniz monad. The modern pioneer of the concept although

he did not use the term was John Stuart Mill 7 in [26] where

Mill was one of the first to see a connection between levels in his

treatment of induction (Book III) 8.

2.1 Adjoint Exactness

These two realities of Plato and Aristotle, exactness and co-exactness,

are related formally by adjointness as shown in Figure 1.
6As a definition this raises concepts that need themselves to be more precisely defined like ‘organisms’,

‘subsystems’ and ‘causal’.
7Not in Clayton’s article (from [25] pp.37-39) which is fairly comprehensive with references to Morgan

[27, 28], Beckermann et al [5] and Murphy [29].
8The usual edition is Philosophy of Scientific Method, Nagel, Ernest, editor, Hafner, New York (1950),

which is an edited and repaginated version of the earlier one. In particular see in the 1950 edition: Book
III (pp. 170-291) and Chapter X, Of Plurality of Causes and of the Intermixture of Effects (pp. 238-252).
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Figure 1: Left and Right Categories L and R respectively, related by the adjoint functors
F a G where F is left adjoint to G and G is right adjoint to F

The formal representation in category theory of a left adjoint is

that for a subobject process of L there is a subobject process that

is its image in R. Its right adjoint means that there is a reverse im-

age of that subobject process in any limit of L. This is the stability

functor. In a free system where the only conditions are for possible

existence of limits the left adjunct F is a free functor whose choice

determines the existence of R. The right adjoint (G) then defines

the axiom of choice and is known variously as the underlying func-

tor or forgetful functor 9. Because F therefore effectively creates

R it is an existential functor to be identified with the existential

qualifier in logic usually written as ∃ and read as there exists and

its right adjoint (G) a stability functor identifiable as the diagonal

functor (∆). In the very simple case of the direct reverse, the func-

tor (∆) is simply an inverse image usually written as f−1. Often

it is a more complicated precompositional ‘indexing functor’ still

written as f ∗ an old notation from functional analysis with the

* as the usual wild character representing the composition of all

necessary functions. More precisely it is a natural transformation,

sometimes represented by the symbol α∗ 10.
9It enables L to be reinstated without leaving a trace of the choice of F so, that if

unknown, R cannot be recovered by any form of reverse engineering.
10The asterisk wild character in α∗ is really tautologous because a composition of natural

transformation is just an ordinary natural transformation giving closure.
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In the dual situation the same functor ∆ plays the role of the

left-adjoint free functor (F ) and its right-adjoint is the universal

quantifier usually written as ∀ and read as for all. As operators

the existential Σ (sometimes written
∐

) generalises the sum of sorts

and ∀ to the capital Π. More details are given by Paul Taylor ([39]

Section 9.4). Given an intensional subobject there is a limit taken

with all the extensional subobjects, where subobject is a monic

equivalent class of arrows into an object.
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Figure 2: Roles in Adjointness of a) η, the unit and b) ε, the counit of adjointness
respectively

Mathematical results derived from the fundamental theorem of

adjointness ([24], p. 121) show that left adjoints preserve colimits

and right adjoints preserve limits. The physical analogue of this

is that the free functor identifies potential right exact observables

out of the left exact implicate order (as Bohm calls it [6]), or from

the uncollapsed wave function in quantum mechanics. The right

adjoint underlying functor provides the conditions (i.e. the laws of

physics) for this solution. If the conditions are satisfied the result

is physical existence. In terms of quantum theory it is the collapse

of the wave function from quantum reality. In classical physics

right exactness amounts only to a modelling of reality. Neverthe-

less this is rather a simplification. The fuller picture consists of a
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more elaborate left-right dichotomy. A very important example in

practice of the process represented in Figure 1 is adjointness be-

tween syntax and semantics [22] that arises when the left and right

categories are of opposite variance. In the applied mathematics of

the real world there has to be added pragmatics to complete the

trio with syntax and semantics. The finer detail is the diagram

in Figure 2, that is a zoom into the contents of Figure 1 11. This

is the effect of the stability functor that holds between the two

categories. The potential existence identified by the qualificational

existential functor Σ is not realisable in general by the quantifica-

tional universal functor Π. The diagonal stability functor doubles

up as both a left and right adjoint so that it preserves both limits

and co-limits. From the viewpoint of the stability functor both

categories coincide as left and right categories.

Figure 3: Left/Right and Right/Left Categories 1L and 1R respectively, related by the
adjointness Σ a ∆ a Π

The exact adjointness Σ a ∆ a Π formally defines the concept

of process in the universe. It is the fundamental definition of the

arrow in cartesian closed categories as a composition resolvable into

three levels relating the left category 1L with the right category

1R in the diagram of Figure 3. Then Figure 4 shows that a process

is a composition of Σ a ∆ a Π.
11The triangle (a) of Figure 2 is in the left category of Figure 1 and triangle (b) in its

right category. The two triangles mutually establish the unique existence of the exactness
and co-exactness relatively of the left- and right-categories respectively.
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Figure 4: Commuting Diagram showing that Process ≡ Σ a ∆ a Π; dashed diagonal
arrows give simultaneity

3 Examples of Exactness

A physical example of exactness is the discovery of unstable chem-

ical elements e.g. Lawrencium Lr (atomic number 103) and Un-

unoctium Uuo (118). Lr was the first of the trans-uranium ele-

ments to be identified entirely by nuclear, rather than by chemical,

means. Lr was discovered at the Heavy Ion Linear Accelerator

(Hilac) by bombarding a target of californium (with 98 protons)

with boron nuclei (with five protons) thus creating a new element

with 103 protons [14]. Lr is very unstable having a half-life of only

four hours, indicating that the balance between the nuclear reac-

tions creating and decomposing it is very much biased towards the

decomposition side.

The much more recent example is the discovery in 2006 of the

heaviest element known of Uuo 118 which is so unstable that

only three atoms of it have been detected, through collisions of

californium-249 atoms and calcium-48 ions [43]. A half-life of 0.89
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ms was observed, indicating the great instability of this element.

Because of the very small probability that a fusion reaction occurs,

more than 41019 calcium ions had to be shot at the californium to

have only three fusion reactions.

The fusion reaction probability is greater for Lr than for Uuo

but in both cases is very small. This probability is a balance be-

tween F the free functor, producing the heavy elements under col-

lisions made at very high speeds and with great intensity, and G

the underlying functor, decomposing the heavy elements back into

smaller nuclei. The balance between F and G is indicated exper-

imentally by the half-life of the element. Categorially the balance

is represented by the relative values for F and G: F will have a

very low probability as the fusion process is very difficult and G

a very high one as the heavy ions rapidly decompose. The values

of η and ε, the unit and counit respectively of adjunction shown

in Figure 2, provide additional perspective. Because little reaction

takes place from the calcium ions viewpoint then η will be small

but as much reaction takes place from the heavy ions viewpoint

then ε will be large. The unit η and counit ε will be smaller and

larger respectively for Uuo than for Lr as Uuo is the more unstable

of the two elements.

This unstable element resides in the preorder of exactness in the

universe and may be observed briefly as co-exactness under these

right adjoint conditions of certain partial orders. From the view-

point of logic the functors expressed as F,G are the propositions

∃ and ∆ in first-order predicate logic. For modal logic the pair are

correspondingly �, , the usual symbols for possibility and neces-

sity. It is this ubiquity in mathematics and physics that suggests

to us that adjointness is fundamental and the universal logic that

regulates the world both physical and metaphysical [16, 15, 18, 34].

Exactness and co-exactness is a critical feature of very many
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problems in modern life. To illustrate the role of the interplay be-

tween left and right adjoint functors two further examples will be

given. The first shows how computing procedures are an implemen-

tation of these functors in very common operations like searching

databases. The development of algorithms by Newton and Leibniz

for differential and integral calculus based on the concept of limits

in mathematical analysis is “one of the great achievements of the

human mind 12.

The great success of the use of the calculus in applied mathe-

matics, theoretical physics and engineering must outweigh all other

methods put together. Even alternative methods like statistical

modelling often rely heavily on differentiation and integration. Yet

no satisfactory explanation is involved for why these work. The

adjoint exactness of limits and co-exactness in category theory is

an obvious candidate for an explanation. But this remains to be

shown. In the meantime other calculi have appeared where the

connection with adjoint exactness is easier to see. In particular

the rise of computing has brought on to the scene a new class of

algorithm where the workings of these adjoint functors is more ob-

vious. These workings will be shown here for an SQL exact search

for the purpose of data mining in data warehouses.

The second example concerns whether the main ANPA interest

in the use of the Frederick construction is a 3-level combinatorial

hierarchy over an integral binary field of natural numbers. The pro-

gram universe [30] was an early computational model to generate

the cosmological fine structure constant. The categorial version

seeks to eliminate any unnecessary assumptions. An important

feature of the Frederick construction is to climb the level. The

special interest of the Frederick construction form a categorial per-

spective is to provide the structure for dimensionless parameters
12Richard Courant in the preface to Boyer’s History of Calculus [8].
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[20]. There is some suggestion that these are not constants but

have been weakening in time. There seems more attention paid to

the variation in the gravitational constant than the fine structure

constant. As a dimensionless parameter it is arguably a type free

quantity.

A common view of data mining is that it enables rules between

clusters of data to be derived [3]. To illustrate a very simple exam-

ple of this type of problem, we show below the kinds of powerob-

jects which need to be constructed for complex queries. Standard

query languages like SQL are designed to deal with questions such

as: Which students have at least grade B in at least three sub-

jects?.

Probabilistic methods using statistical models can provide very

precise results but there are some application areas where precision

is inadequate. For example a piece of knowledge such as 22.7% of

the candidates obtained at least grade B in three subjects is precise

information but it is not an example of exact knowledge discovery.

This information can tell a particular student the probability of

obtaining three Bs but it does not tell the student what grade that

student actually obtained or would or, even, could obtain.

3.1 Example I. Requirements for Mining Data Warehouses
(‘Mashup’)

Which students have at least grade B in at least three subjects?.

might appear in an undergraduate text as:

SELECT E1.Cand

FROM Exam E1, Exam E2, Exam E3

WHERE E1.Subj ! = E2.Subj AND E1.Subj ! = E3.Subj AND

E2.Subj ! = E3.Subj

AND E1.Cand = E2.Cand AND E1.Cand = E3.Cand

AND E1.Grade <= ′B′ AND E2.Grade <= ′B′ AND
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E3.Grade <= ′B′;

where the symbol != means not equal to and the table Exam

appears as follows:
Cand Subj Grade

1 Maths B

1 Chems A

1 Phys B

2 Chem C

3 Biol B

3 Phys B

3 Chem C

4 Chem A

5 Maths B
This statement first takes the triple product of the table Exam

by multiplying the table twice with itself. It then retrieves from the

product those rows where there are three different course numbers

for the same student and each course is associated with a grade of

B or of lower lexical order. The table (logical silo) below shows an

extract from the resulting triple-product table:
E1 E2 E3

Cand Subj Grade Cand Subj Grade Cand Subj Grade

1 Maths B 2 Chem C 3 Biol B

1 Maths B 4 Chem A 3 Phys B

1 Maths B 4 Chem A 1 Phys B

5 Maths B 5 Maths B 5 Biol B

3 Chem C 3 Phys B 3 Biol B

1 Maths B 1 Chem A 1 Phys B
Only the last tuple satisfies the request. A practitioner would

probably not follow this textbook style but would rather use group-

ing as:

SELECT Cand
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FROM Exam

WHERE Grade <= ′B′

GROUP BY Cand

HAVING COUNT(*) >= 3;

The query on this table provides an example of exactness in

set theory. The powerset on which the query is applied is a sub-

set of the whole powerset for exams namely that part comprising

three exam entries only but is still large containing |Exam|3 entries

where |Exam| is the cardinality of the Exam table.

Knowledge discovery is always looking for links and this query

is almost archetypal as an example of data mining. However the

SQL is not an archetypal method for dealing with it. For exam-

ple this SQL query relies on inherent typing which may not be

natural such as whether A is less or greater than B in the order-

ing system employed. This can only be resolved by resorting to a

higher-level view. Any query can contain many possible problems

of this nature. A SQL expression like the above example might ap-

pear somewhat contrived. In fact it is not ad hoc but systematic.

Nevertheless this simple example illustrates the difficulties for the

casual user in knowledge discovery in information systems. More

fundamental problems like this with the relational data model in

general can be found discussed in [19].

The components of an SQL command are represented in terms

of algebra and category theory in the table below:
SQL construct algebraic operation functor

SELECT attributes projection component of Σ

FROM tables product/join ∆

WHERE predicate restrict component of Σ

GROUP BY quotient Π
Figure 5, adapted from Figure 3, then shows how this struc-

ture of an SQL query maps onto the adjoint relationship. The
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adjointness Σ a ∆ a Π in terms of SQL is: WHERE ◦ SELECT a
FROM a GROUP BY.

Figure 5: Left/Right and Right/Left Categories 1L and 1R respectively, related by the
adjointness Σ a ∆ a Π in terms of SQL constructs

This application of the SQL calculus illustrates well the tripar-

tite structure of a process. Note the simultaneity of the tripartite

structure Σ a ∆ a Π: composition is not time dependent and the

expression can be evaluated in any way, giving associativity.

3.2 Example II. Frederick Construction of Combinatorial Hier-
archy CH

The process view of the universe has been a main theme in ANPA

strongly canvassed by Bastin [4]. It appears that Whitehead grad-

ually came round to the view of process as reality [41]. Apparently

he may have reached this view while writing Principia with Rus-

sell when they found they needed to abolish classes in order to

understand even the proposition 1 + 1 = 2. Russell later said (in

his 2nd edition, at page xi):

Dr. Whitehead, at this stage, persuaded me to abandon

points of space, instance of time, and particles of mat-

ter, substituting for them logical constructions composed

of events. In the end, it seemed to result that none of
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the raw material of the world has smooth logical proper-

ties, but that whatever appears to have such properties is

constructed artificially in order to have them.

In the process view of the universe, mathematical objects are

indistinguishable from physical objects. The structure of the uni-

verse is left exact while observables are right exact. Observations of

the fine structure constant have been made with some very precise

experimental results. These will therefore have an underlying func-

tor (∆) that relates it to the left exact reality of this fine structure.

In classical terms this will relate mathematical objects, Frederick

Parker Rhodes put forward his algorithm of a combinatorial hierar-

chy that gave a value in very close agreement with the experimental

results. The most recent work shows very good agreement to seven

significant decimal places. However it is clear that the Frederick

construction [7] is only a model and not reality. The need to in-

clude the McGovern correction makes this very plain by adding

probability theory. Nevertheless the method of Frederick Parker

Rhodes is a fine example of the ∆ functor that mediates between

the mathematical and physical worlds of exactness.

The Frederick construction requires some explanation for the

jump between levels. Parker-Rhodes himself relied on an implicit

association in the numbers suggesting a natural recursive opera-

tion.

References

[1] Aristotle, The Organon, contemporary translations: Edghill,

E M (translator), Categories; Edghill, E M (translator), On

Interpretation; Jenkinson, A J (translator), Prior Analyt-

ics; Mure, G R G (translator), Posterior Analytics; Pickard-

Cambridge, W A (translator), Topics; Pickard-Cambridge, W

17



A (translator), On Sophistical Refutations; The University of

Adelaide: eBooks (2007).

[2] Arnauld, Antoine, & Nicole, Pierre, Logic or the Art of

Thinking, Translated Buroker, Jill Vance, Cambridge (1996).

[3] Barbara, D, DuMouchel, W, Fadoustos, C, & Haas, P J, The

New Jersey Data Reduction Report, Data Engineering 20

(4) 3-45 (1997).

[4] Bastin, E, Physical Understanding comes First, Proc 28th

Alternative Natural Philosophy Association, K.G. Bowden,

Ed. ANPA 28 (2007).

[5] Beckermann, A, Flohr, H, & Kim, J, (edd.), Emergence or

Reduction? Essays on the Prospects of Nonreductive Physi-

calism, 119-138, Walter de Gruyter, Berlin (1992).

[6] Bohm, David, Wholeness and the Implicate Order, Rout-

ledge (1980).

[7] Bowden, K, The Essential Frederick Construction, Proc 28th

Alternative Natural Philosophy Association, K.G. Bowden,

Ed. ANPA 28 (2007).

[8] Boyer, Carl B, The History of Calculus and its Concep-

tual Development, Books on Advanced Mathematics, Dover

Publications, 1st edition (1949).

[9] Clayton, Philip, Mind and Emergence: From Quantum to

Consciousness, Oxford (2004).

[10] Feferman, Solomon, In the Light of Logic, Oxford (1998).

[11] Frege, Gottlob, Die Grundlagen der Arithmetik/The Foun-

dations of Arithmetic (1884), translated by JL Austin,

Evanston, Illinois, Northwestern University Press (1968).

18



[12] Freyd, P, Abelian Categories, an Introduction to the Theory

of Functors, Harper & Row, New York (1964).

[13] Freyd, P, & Scedrov, A, Categories, Allegories, North-

Holland (1990).

[14] Ghiorso, Albert, Latimer, Robert, Sikkeland, Torbjorn, &

Larsh, Almon, Element 103 (Lawrencium) discovery at Hilac,

Magnet 5(4) (1961).

[15] Heather, Michael, & Rossiter, Nick, The Logic of Founda-

tions and the Foundations of Logic, UNILOG 2005, 1st World

Congress and School on Universal Logic, Montreux, Switzer-

land, 26 March - 1 April, p.69 in conference handbook or in

printed form (2005).

[16] Heather, Michael, & Rossiter, Nick, Logical Monism: The

Global Identity of Applicable Logic, Advanced Studies in

Mathematics and Logic 2 39-52 (2005).

[17] Heather, Michael, & Rossiter, Nick, Universal Logic Applied to

a Defeasible World, Perspectives on Universal Logic, Jean-
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