
Process as a World Transaction

B. N. ROSSITER, M. A. HEATHER & D. SISIARIDIS
University of Northumbria at Newcastle NE1 8ST, UK,

nick.rossiter@unn.ac.uk www.computing.unn.ac.uk/staff/CGNR1/

Abstract

Transaction is process closure: for a transaction is the limiting process of process
itself. In the process world view the universe is the ultimate (intensional) transaction
of all its extensional limiting processes that we call reality. ANPA’s PROGRAM
UNIVERSE is a computational model which can be explored empirically in com-
mercial database transactions where there has been a wealth of activity over the
real world for the last 40 years. Process category theory demonstrates formally the
fundamental distinctions between the classical model of a transaction as in PRO-
GRAM UNIVERSE and physical reality. The paper concludes with a short technical
summary for those who do not wish to read all the detail.

1 Background

The universe as process has been one of ANPA’s themes for the

last quarter of a century. However, the concept dates back not

just 25 years but at least 25 hundred years to Heraclites. The

ANPA interest has particularly been directed to the combinatorial

hierarchy where from minimal assumptions about bit strings of one

and zero, a number of physical constants of the universe can be

derived [23]. The process mechanism to generate these bit strings

has been represented in the computational model of PROGRAM

UNIVERSE which has been able to predict very precisely many

cosmological values [24].

Nevertheless a number of features are awaiting further elucida-

tion especially the underlying philosophy of process that brings it

all about. The issues may be listed as:

a The formal representation of process.

1

b The significance of zero as a notation for nothing from which

the whole universe is generated.

c The distinction between a mathematical model of computation

and physical computation.

We have already addressed briefly all three issues in [14]. For

the formal representation of process we have made use of the ar-

row of category theory. It then follows naturally that the cartesian

closed category represents reality because like the world it is a cat-

egory with limits and exponentials. This has enabled us to avoid

problems with the second feature (b) above because by means of

the concept of the arrow we are able to replace ‘nothing’ with

the empty monoid as the generator of everything. However, it

is the third feature (c), that of the mathematical/physical divide

that we wish to concentrate on in this paper. There are the well-

known limitations in current mathematics that rely on a concept

of number and axiomatic set theory wedded to Parmedian notion

of invariance [17] that requires some platonic belief in idealism [16].

Gödel has shown that the truth of statements about number in ax-

iomatic systems are undecidable. Whereas here we are concerned

with PROGRAM UNIVERSE and the generation of universal con-

stants. PROGRAM UNIVERSE is algorithmic and presented in

a context to be realised on a machine with a von Neumann ar-

chitecture, that is finite memory cells and a serial instruction set.

The treatment of the algorithm within ANPA has been principally

as a mathematical model for physical computation and includes

the concept of discriminated subsets that identifies the system of

unique bit strings. What then is the physical counterpart to the

mathematical process of discrimination? The current practice in

conventional science is to cross from mathematical to physical com-

putation by using the bridging Church-Turing thesis. This problem

2

was recognised early pre-ANPA by Bastin and Kilmister [5] distin-

guishing simultaneity from similarity of position when checking a

putative new string.

This invokes the Church-Turing thesis of computable recursive

functions. Gödel’s undecidability in this context takes the form of

Turing’s halting problem, a theorem it should be noted that is not

constructive which is symptomatic of those parts of mathematics

that can be only applied to physics with very restrictive (local)

conditions [13].

However this cannot provide the simultaneity of a real event,

that is ‘an occasion’ in the terminology of Whitehead’s Theory of

Process and Reality. The universe is not therefore a von Neumann

processor. There are applications where we would like ordinary

computers to go beyond the universal Turing machine. A very im-

portant example is a database transaction where extensive study

and experience is available, for operations in practice, because of

the very many everyday automated transactions like in banking.

We will look at these in some detail to provide insight into the

nature of physical transactions in the world. The Church-Turing

thesis is more like the proverbial plank in a shipwreck than a firm

bridge built on foundations between mathematics and physics. The

Church-Turing-Deutsch thesis [8] that any recursive function can

be computed on a quantum computer may be true if it can be

realised in a physical system but that is more than just a mathe-

matical model – the current state of quantum mechanics [13].

2 Introduction to Transactions

Transactions have long been part of human activity. The sim-

plest bargain amounts to a transaction with each party agreeing to

terms. After a deal is struck, no withdrawal is possible although

3

it may be subsequently unpicked if its legality is later challenged.

If the results are ineffective, a further deal must be constructed to

achieve the intended results.

With the widespread use of computers in business, information

systems handle many millions of transactions a day in a routine

manner and database technology has been developed to represent

logically in software the complex structure of real-world phenom-

ena. The representation of fixed states gives rise to problems of

logical data independence and normalisation but for dynamic be-

haviour there is the additional feature of natural closure, although

from the process viewpoint it may be no more than the dynamic

limit of normalisation.

This natural closure may be spread out over time. Classical le-

gal analysis reduces the process to two stages: 1) the formation of

the contract; 2) the performance of the contract. Anything before

stage (1) is usually called an ‘invitation to treat’ without bind-

ing effect except as a matter of interpretation under a contract

but even then written terms will prevail over any oral reservations.

Any other conditions not contained within stages (1) and (2) need

a separate collateral contract or a contract of variation. In general

an ill-formed contract is easier to set aside than an ill-performed

one because it is easier to go back to square one without disturb-

ing the rights of third parties who will usually be affected by the

performance of the contract. For the formation of a contract only

affects the rights of the parties while the performance results in a

change in the configuration of the world. Thus purchase of goods

on a web site results in the formation of a contract when a bargain

is struck on-line with usually executed consideration by debit card.

The executory consideration to supply the goods is completed but

the contract remains yet to be physically performed.

Problems arise from context-sensitive terms which may not have

4

been expressed at the time. The implied are uncountable but still

determinable. A full theory of defeasible reasoning is a current re-

search topic of great interest [15]. All possible paths in the sense of

Feynman [9] are solved in the natural closure of the unitary process

of the physical computation of the universe. But the universe is

more than a universal Turing machine. It achieves a closure that is

undecidable on current classical von Neumann machines. To con-

tain this problem in everyday computer transactions, four main

principles have evolved in commercial practice. These are recog-

nised in the ISO standards 1 and are spelt out in the acronym

ACID ([6] p.572-629):

• Atomicity ensures that the transaction either is completely

successful (all rules obeyed) or completely unsuccessful (when

at least one rule broken). No partial results are possible.

• Consistency ensures that the business rules governing the in-

tegrity of the transaction have been obeyed.

• Isolation ensures that intermediate results, which may be un-

reliable before every rule has been tested, cannot be released

outside of the transaction.

• Durability ensures that once the transaction has been com-

pleted, its results will persist. The system attempts to ensure

that the results of the transaction are not lost through the

use of a transaction log to be described in the example be-

low. The state of the data can still change though – through

another transaction.
1ISO/IEC CD 9075-2 Information technology – Database languages – SQL – Part 2: Foundation

(2003).

5

3 Example Application - ATM

All information system transactions involve physical processing if

we take Landauer’s point [19] that information can only exist if

it has a physical manifestation. An interesting application as an

example of real-world application is that performed by an Auto-

mated Teller Machine (ATM) where the physical aspects of the

transaction are very evident in the delivery of cash in note form.

While the external view of such a task is familiar to all today, what

goes on behind the hole in the wall is not so well known even to

the average computer professional or banking official. There is no

absolute certainty of closure using current digital computers. This

raises many problems for the designers of transaction systems. For

instance a banking client who withdraws £500 in cash through a

transaction has a physical asset matched against a logical debit.

The logical system needs to provide closure with a very high de-

gree of certainty if it is to retain confidence. It is a problem of

simultaneity for the basic logic AND operator. The cash has to

be delivered and the customer’s account debited. One cannot be

allowed to succeed without completion of the other. The process

and its associated problems have been well known for some decades

and described in [11].

The detailed exposition of running transactions for a banking

system has been written by Jim Gray of Microsoft [12] for a rela-

tional database system. The implementation program described

in Figure 1 involves one database theBank holding four tables

(Branch, Teller, Account, History). The first three tables have

primary keys declared so that each row will be unique, for example

the Branch has a primary key of branchID, the Teller has a pri-

mary key of tellerID and the Account of accountID. The branchID

attribute also appears in the Teller and Account tables. To avoid

6

inconsistency problems branchID in these tables is declared as a

foreign key to branchID in the Branch table meaning that a branch

in the Teller and Account tables must already be entered in the

Branch table. Data changes are under the control of three stored

procedures:

1 spFillBank for populating initially the branch, teller and ac-

count tables.

2 spDebitCredit for handling a single debit/credit transaction.

3 spRunDebitCredit for running many transactions together.

To drive the whole process, a script ParallelBatch.bat is pro-

vided to run many spRunDebitCredit threads in parallel. The

purpose of Gray’s paper is to demonstrate how an ordinary PC

can handle a very large historic volume of traffic of transactions,

in this case the entire banking system needs for 1970.

Gray illustrates some of the safeguards, in particular the insert

in the History table in statement 12 of the transaction details to

give a copy of the transaction. This assists durability as if the

main tables Account or Branch are damaged after their updates

have been made in statements 11 and 13 respectively, a copy of the

transaction’s action still exists. The commit in line 14 is important

for our subsequent discussion. A commit saves the result of the

transaction on disk, updates the transaction log and closes the

process. The transaction log is used for holding the commands

and results of successful changes and is described in more detail

later. The final stage of commit is only performed after the writing

of the transaction log has been successful.

7

The classic database part of TPC-A (and DebitCredit)

-- This is a single DebitCredit database transaction.

1 create procedure spDebitCredit @tellerID int,

@accountID int, @amount float as

* procedure called spDEbidCredit has 3 parameters

tellerID, accounted and amount *\

2 begin

3 declare @newBalance float,

4 @branchID int,

5 @BranchRadix int

* three local variables are declared above *\

6 set @BranchRadix=1000000

7 * one million is ratio account/teller ID *\

8 set @branchID = @tellerID / @BranchRadix

9 begin transaction

10 update Teller set till = till + @amount

where tellerID = @tellerID

* till of teller is updated by amount *\

11 update Account

set @newBalance = balance = balance + @amount

where accountID = @accounted

* customer account is updated by amount *\

12 insert History (branchID, tellerID, accountID, amount)

values (@branchID, @tellerID, @accountID,

@amount)

* changes are recorded in the History table *\

13 update branch set balance = balance + @amount

where branchID = @branched

* branch balance is updated by amount *\

14 commit transaction

* changes are saved persistently *\

15 end

16 go

Figure 1: Stored Procedure spDebitCredit for single debit/credit of bank accounts (from
[12], Appendix I Debit Credit Sample Code)

The alternative to commit is to rollback to the initial state: no

intermediate results are retained unless the task specifically defines

a savepoint. However, a return to a savepoint is a temporary re-

prieve for the transaction to see if it may be performed in a different

way. A savepoint is not a viable endpoint. Rollbacks are governed

by the atomicity and consistency properties of a transaction: the

8

transaction completely fails if just one rule is broken, resulting in

the return of the data states back to their initial values.

On failure of the database the last saved ‘good’ copy is restored

and the transaction log (described in more detail in the next sec-

tion) run against this copy so that no transactions will be lost.

Transactions in progress at the time of the ‘crash’ are discarded as

partial results are not viable.

While transactions might appear as being logical processes, this

is rather näıve when we look at examples. With the ATM, cus-

tomers withdraw money as cash, the physical form of money. The

mix of logical and physical emphasises the need for a very high de-

gree of reliability. Such examples confirm the principle of Landauer

[19]: information cannot exist except in the physical form.

3.1 Potential Failure Points

The data structures and processes above are only an outline. In

particular business rules and exceptions would be more fully spec-

ified:

1 There is a need to check or provide information on whether the

account from which payment is to be made actually has the

funds available. Such a rule might require the item already

credited to be cancelled through a rollback command. This

offends Consistency in the ACID criteria.

2 There is no exception handling for when an update or insert

fails. Transactions are committed but there is no provision for

rollback. For instance if some of the update and insert op-

erations succeed and others fail, there should be a complete

return to the starting point of the transaction with all changes

aborted. This offends against Atomicity, Consistency and Iso-

lation in the ACID criteria.

9

In addition, as usual for today’s transaction systems, some of the

work done by the information system to underpin the transaction

concept is not made explicit in the definitions. The saving to the

History file is useful but not infallible. For instance the History file

may reside on the same disk as the Account file. If there is a disk

crash with the whole disk pack failing, both files would be lost.

The normal way for recovering from this situation is to use the

History table contents to run forward a repeat of the transactions

from the last save. This would not be possible if the History file

were lost so the requirement of durability is not met.

A common way to achieve durability is to keep a transaction log

(or redo log) for recording every successful transaction, that is one

whose results are committed. The transaction log is maintained

by the database system and is not otherwise accessible to write to

or to read. Every committed transaction is written to a number of

copies of the log. One may be written to the database disk, others

to devices independent of the database and still others over fast

networks to other physical sites. In the event of a failure, the redo

log is re-run from the last saved version. Such techniques achieve

durability to the desired standard because of the many copies of

the log in existence.

There is always though a small degree of risk. The problem is

that what should be a parallel task is decomposed into a number

of sequential steps in which the failure of any part threatens the

ACID requirement. A sequence of operations between fixed cells is

used because of the von Neumann architecture and locality of view.

Obviously businesses can construct systems that are fail-safe from

their viewpoint but such systems can adversely affect customer

confidence. In addition if the business is exchanging physical assets

for logical ones, there is always a risk arising from the differences in

rollback operations for physical and logical items: for physical the

10

business can only request return of goods, for logical the business

can readily undo the effect.

In practice some businesses rely on semi-automatic control for

difficult cases. Supervisors inspect machine logs and recorded

downtimes in order to complete account details and to correct ac-

counts manually if necessary. This is recourse to a higher level of

closure, namely by human intervention.

3.2 Security

This has taken us some way beyond PROGRAM UNIVERSE with

its limited syntactical view of the world. Nevertheless the semantic

and pragmatic aspects are part of the universe and any theory of

process will be inadequate if it cannot include them. The anthropic

principle [4] is of interest in cosmology not just in its weak form

but even in the strong version because of the current debate on

intelligent design [7]. In this context of the transaction we have al-

ready mentioned in passing one human aspect in connection with

the law of contract. But security now plays an important role

in any modern commercial transaction. There are legal elements

here too but much additional complexity comes from extra techni-

cal components needed for security purposes. Therefore although

not always made explicit within a transaction, security is a recog-

nised part of database systems being enforced at least in part by

the access rights granted to stored procedures. Security is increas-

ingly important in modern networked computer systems as they

are exposed to a growing number and a wider variety of threats

and vulnerabilities. It is a very complex task ranging from the level

of crypto-primitives over crypto-protocols to the level of organiza-

tional matters and legislation [1]. A comprehensive analysis of the

literature shows that security for distributed information systems

is not a local feature but has to be treated globally. Information se-

11

curity threats are global in nature and usually automated and loose

on the Internet. Organizations usually respond to security threats

on a piecemeal basis including anti-virus software, anti-spam, and

anti-intrusion software, which need to be updated and redeployed

if they are to remain effective.

Stephenson [29] argues that it is unlikely that any organiza-

tion will have exact knowledge of the probability of the occurrence

of a particular event. Bottom-up approaches (e.g. risk analy-

sis) are subjective; these are more suited to high-level security

risks. On the other hand, top-down approaches (e.g. baseline

approaches) 2 leave the choice of control to the user; they are

most appropriate for low-level security risks. A complete secu-

rity strategy needs to be layered to deal with issues such as con-

tinuity strategies (threat assessment, risk evaluation and control),

security policies, incident response plan, host-based and network-

based perimeter and/or perimeterless detection, auditing proce-

dures, fault tolerance and recovery strategies, anti-malware control

(intrusion detection, router and firewall security, anti-virus control)

as well as legal and regulatory compliance.

A holistic approach embraces all aspects of security, including

systems architecture, policies, procedures and user education. It fo-

cuses on securing the infrastructure itself by forcing users to adopt

best security practices while ensuring that the network is secure

by design: that is rather than to apply post-rational customisa-

tion. A promising solution is to include security considerations as

core processes of the information system itself, where local exten-

sionalities (e.g. local security policies) are interconnected one with

another through global intensionality (e.g. global security policy

or meta-policy framework). Nevertheless, it is crucial that any so-
2such as ISO, Information Security Management ISO/IEC 27001:2005 Specification, International

Organization for Standardization (2005) and ISO, Information Security Management ISO/IEC 17799:2005
Code of Practice, International Organization for Standardization (2005).

12

lution must remain simple to implement as well as simple to use

from an end user perspective. OECD Guidelines [25] have been de-

signed to develop a ‘culture of security’, suggesting the need for a

greater awareness and understanding of security issues. The holis-

tic approach to security follows from the everywhere at every time

need to have an alert guard like a guardian angel. There is then

a security dimension slice through the ACID principles that might

be interpreted as in the table in Figure 2.

Principle Security Aspect Holistic Approach
ATOMICITY ab initio conditions restored and

changes cancelled when compromised
Secure identity of all or
nothing

CONSISTENCY Only authorised processors exe-
cutable

Overall integrity main-
tained

ISOLATION Internal/external firewalls main-
tained

Privacy policy and data
protection

DURABILITY Inviolability Global identity

Figure 2: ACID in Security

A holistic approach with closure seems necessary for any univer-

sal description. A holistic approach also offers benefits in provid-

ing security for a piecemeal approach would inevitably leave gaps

and generate inconsistencies which could be exploited by intruders.

Category theory as already mentioned provides a formal approach

to process by the use of the arrow. It is inherently holistic and

with intrinsic natural closure and will be explored further in the

rest of this paper.

4 Theory of Transactions

For a theory of transactions, formal constructions are needed to

represent and measure the changes between states as dynamic re-

lationships. Such changes in states should be governed by the

ACID criteria.

13

The four-level architecture, as developed by this research group

[26, 27], is an example of category theory adjusted into an architec-

ture to which Information Systems (IS) people, e.g. those in data-

bases, could relate. This architecture involves categories at each

level, functors mapping between the levels, natural transformations

comparing one functor with another and adjointness representing

the relationship between one functor and another mapping in a

reverse direction. In our more recent work [27] contravariancy has

been introduced in the functors so that the levels could be clearly

defined as alternate pairs:

value −→ name; name −→ type

The approach can be refined further by introducing subcate-

gories to deal with partial functions and to facilitate multiple in-

heritance. The architecture has become known as a four-level one

but it is perhaps more meaningfully described as three-level in

terms of mappings with three functors connecting the four levels.

In category theory it is possible to go to higher levels [21] although

we have restricted ourselves to the basic levels only. In the broader

sense of security it may be that, on the surface anyway, a more

refined architecture might appeal. The IS architecture is mapping

between data structures at various levels of abstraction. The secu-

rity one is mapping between pairs of adjoint functors with abstrac-

tions still to be decided. However, the building blocks of concepts,

constructs, data types and data values, used for categories in the

IS approach, is not the only viewpoint. The three levels of map-

pings between these data structures are Policy, Organisation and

Instantiation, which might be equivalent to Policy, Organisation

and Mechanism in the security context. There is a difference in

the environments for data structures and security. For security the

power is in the permutation of the compositions so that with six

14

composed adjoints it might be possible to insist on all six working

at the equivalence level or more plausibly at some lower level of

relationship.

The aspect unifying data structures and security is process.

Process is relatively neglected in information studies but is ar-

guably the more important aspect of any system in order to define

how transitions are made from one state to another. In this paper

the realisation in category theory of process, through the transac-

tion concept is further explored. In particular the fine structure of

the levels is investigated in more detail.

5 Adjointness

One of the most important features of category theory is adjoint-

ness, which gives a degree of measurement of the extent to which

the mappings between two categories are equivalent [3, 20].

Figure 3: Adjointness between Two Systems

Figure 3 shows two categories denoted L for left, R for right

for historic reasons because they correspond to left- and right-

exactness respectively. each containing a canonical triangle to il-

lustrate typical composable arrows. The composition of the arrows

(drawn as triangles) represents the natural exactness of real-world

interoperability. As we are relying on constructive process not

axiomatic sets this interoperability is free from Russell’s paradox

and free of Gödel’s undecidability [28]. The arrows between the

15

categories are functors F, G, the free and underlying functor re-

spectively. Each of the functors in Figure 3 may be resolved into

two component types (technically colimits). These are covariant

and contravariant. For a pair of interoperating systems given by

these two categories, that is where the triangle in the left-hand

category maps into the particular triangle in the right-hand cat-

egory, then there is a unique contravariant functor G that maps

between those triangles in the opposite way. The reverse logic gate

F a G is conventionally used to represent adjointness. It is the

phenomenon of naturalness. In the vocabulary of axiomatic cate-

gory theory it is a characteristic of cartesian closed category that

applies to all process arrows. It was the publication of [18] that led

to the recognition that this effect was ubiquitous. F is left adjoint

to G and G is right-adjoint to F . The unit of adjunction η and

counit of adjunction ε measure respectively the quantitative and

qualitative effect of process that is the extent to which the result

from composing the functors differs from the initial behaviour:

ηL is the unit of adjunction 1L −→ GF (L) and εR is the counit

of adjunction FG(R) −→ 1R where 1L and 1R are the identity

functors respectively for the left and right categories.

The categorial basis of process was investigated in our work at

ANPA in 2004 [14] with adjoints used as the principal construc-

tions to represent changes between states as dynamic relationships.

More specifically adjunctions involve two categories, say, S,A and

a pair of functors F : S −→ A and G : A −→ S. F is termed the

free functor which chooses to change the state of the right-hand

category A. G is termed the underlying (or forgetful) functor

which provides the corresponding change in the state of the left-

hand category S. A view of such functors is that F facilitates the

desired change in state and G enforces the rules controlling the

change in state. An adjunction is completely defined by four para-

16

metric arrows: < F,G, η, ε > where η is the unit of adjunction

and ε is the counit of adjunction. η measures the process change

after applying both F and G in turn to the left-hand category S. ε

measures the process change after applying both G and F in turn

to the right-hand category A. An example of adjointness, mapping

the intensional universe, category S, to an extensional information

system, category A, is shown in Figure 4.

Figure 4: Adjointness from intensional universe S to extensional information system A

6 Adjointness for Transactions

A transaction may progress in many ways. Here we look at a num-

ber of possibilities, using adjointness to measure the relationships

between the possible states. Figure 5 shows the initial state with

a category S, corresponding to the left-hand category of Figure 4,

and a category A, corresponding to the right-hand category of Fig-

ure 4. 1S is the identity functor for the category S (1S : S −→ S)

and 1A is the identity functor for the category A. By writing

the identity functor for a category, we are treating the category

as cartesian closed. To study the transaction as process we will

analyse it along an ordered path for which in the banking trans-

action is real time but is just a disection for a universal physical

17

transaction which is an occasion of simultaneity (Figure 3). How-

ever in the order disection viewpoint no mappings have been made

at this point by the functors between the arrow f in S and f] in

A.

1S 1A

F

G

>

<

S

f

?

f]

A?

Figure 5: Initial State: Correlation between Arrow f in S and Arrow f] in A

In S and A, the given categories, there will be a given functor

which maps f onto f] so after ‘one

cycle’ 3 applying functor F to S and G to A, a possible outcome

for the categories is shown in Figure 6. This represents no change

in f as a result of applying GF . Technically this means that η

maps on to ⊥: the unit of adjunction is mapped on to the initial

object. From a transaction viewpoint, no change has occurred in

S indicating a null outcome, probably considered as a failure sit-

uation for a customer in the banking transaction, perhaps due to

a mistaken pin number but still treated as a successful outcome

form the security perspective.

When η maps other than to the initial object ⊥, the ‘single

cycle’, applying functor F to S and G to A, gives a change in S
3‘single cycle’ or ‘one cycle’ will be used in quotes for the remainder of this paper as a reminder that

it is a non-local component of simultaneity in a process transaction in the physical universe. For similar
reasons ‘two cycles’ and ‘three cycles’ will be used later.

18

1S 1A

F

G

>

<

S

f

G(A)?

f]

A

F (S)

?

Figure 6: After ‘one cycle’ GF from left-hand category: η −→ ⊥, transaction failure

as shown in Figure 7. The triangle, as shown in Figure 8, gives

a unique solution such that f = G(f]) ◦ η. The mapping η :

S −→ GF (S) indicates the change in S after applying functors

F and G in turn. This state indicates a potentially successful

transaction in that change has occurred but we are far from being

in a position to satisfy the ACID requirements. This is flagged by

the status of TRANSACTION PROGRESSES. For the occasion

of a transaction in the physical universe this is ‘natural’.

1S 1A

F

G

>

<

S

f

G(A)

GF (S)η

G(f])

?

-
�

�
�

�
�

�
�

�
�

�
�/

f]

A

F (S)

?

Figure 7: After ‘one cycle’ GF from left-hand category: η maps to other than ⊥, ‘trans-
action progresses’

Figure 9 shows the triangle in the broader context of an adjoint-

ness diagram, such as that shown in Figure 4.

19

f

η

G(f])

?

-
�

�
�

�
�

�
�

�
�

�
�/

Figure 8: Uniqueness of adjunction: only one possible arrow G(f])

Functor F freeness

Functor G co− free

S

G(A)
f

F (S)

A
f]GF (S)η

G(f])

Category S

universe S

Category A

Information System A

??

-

�

XXXXz
���9

Figure 9: Covariant Mapping between universe and Information System: unit of adjunc-
tion η maps on to other than ⊥

So far we have been looking at the transaction solely from the

perspective of the category S. To achieve symmetry we need to

add the perspective for category A. This results in the diagram

of Figure 10 which determines the counit of adjunction defined as

ε : FG(A) −→ A. The state of the transaction is now that ‘one

full cycle’ has been completed in each direction: GF from left to

right to left and FG from right to left to right. We have four

possible cases for the dynamical relationships:

1 η maps on to other than ⊥ and > is other than ε (Figure 10):

changes have occurred in both categories and the transaction

progresses normally.

2 η maps on to ⊥ and > maps on to ε (Figure 6): no changes

have occurred in either category and the transaction has null

success. For more pure mathematicians working in more gen-

eral category theory this situation might be described as triv-

ial. In the applied categories of a PROGRAM UNIVERSE this

20

situation is the empty monoid which describes the intensional

form of the universe [14].

3 η maps on to ⊥ and > is other than ε (Figure 10 with η

mapping on to ⊥): changes have occurred in the right-hand

category but not in the left-hand category; the transaction is

still progressing but there are consistency problems which may

arise from the response of some security mechanism.

4 η maps on to other than⊥ and>maps on to ε (Figure 10 with

> mapping on to ε): changes have occurred in the left-hand

category but not in the right-hand category; the transaction

is still progressing but there are other consistency problems

again possibly from a security procedure.

Cases 1 and 2 both provide consistency, the first for a successful

transaction, the second for an unsuccessful one. In the second

case, the adjointness relationship is the special one of equivalence.

Cases 3 and 4 provide an inconsistent position from a transaction

perspective with changes made on one category only.

1S 1A

F

G

>

<

S

f

G(A)

GF (S)η

G(f])

?

-
�

�
�

�
�

�
�

�
�

�
�/

f]

A

F (S)

ε FG(A)

F (f)

?
�

S
S

S
S

S
S

S
S

S
S
Sw

Figure 10: After ‘one cycle’ GF from left-hand category and one cycle FG from right-
hand category: η maps on to other than ⊥ and > maps on to other than ε, ‘transaction
progresses’

The single cycles GF and FG provide a provisional view of how

the transaction is running. They are insufficient for closure as can

21

be seen with cases 3 and 4 as inconsistencies may occur. Even

with cases 1 and 2, closure is not achieved yet although there are

indications as to the likely outcome. It is worth reviewing how the

results of this ‘single cycle’ meet the ACID principles:

• Atomicity: all outcomes are achieved from the single compo-

sition of functors (GF and FG).

• Consistency: changes to one category and not to the other

suggest changes made may not satisfy all of the rules so a

rollback is needed.

• Isolation: results have not been released during the single cy-

cles and it is still not safe to do so because of consistency

problems.

• Durability: a commit is needed to maintain consistency.

A further cycle could be employed as in Figure 11. Such a cycle

might enable a view to be taken of the results so far and what

needs to be done for closure to satisfy the ACID principles.

1S 1A

F

G

>

<

S

G(A)

f

η

G(f])

η

GF (S)

g[

GFG(A)

η

G(g)

GFGF (S)

?

-

-

-
�

�
�

�
�

�
�

�
�

�
�/ ?

�
�

�
�

�
�

�
�

�
�

�/
A

F (S)

f]

ε

ε

F (f)

FGF (S)

g

FG(A)

F (g[)

ε FGFG(A)?

S
S

S
S

S
S

S
S

S
S
Sw

�

�
?

S
S

S
S

S
S

S
S

S
S
Sw

�

Figure 11: After ‘two cycles’ GFGF from left-hand category and ‘two cycles’ FGFG
from right-hand category: η maps on to other than ⊥ and > maps on to other than ε,
‘transaction can complete’

22

One very interesting addition is the arrow g in the

category A 4. If f is the arrow generated in category S and sharp-

ened to f] in A, then g is the arrow generated in category A and

flattened to g[in S. It therefore appears that to gain symmetry

with the creation of records in the two categories, ‘two cycles’ are

necessary.

The diagram shows a further application of η and of ε. The

values for η and ε must be the same for each cycle although the

values as a whole could be revised during the ‘second cycle’ to take

account of new circumstances. So it would be possible for > to

map on to other than ε in a ‘single cycle’ system but in a ‘two

cycle’ system the solution could be revised so that > maps on to

ε in each cycle.

One of the needs for a ‘second cycle’ may be understood at the

experimental level as the requirement to ensure consistency in the

categorial structures in the event of a failure during the first cycle.

For instance the free functor F may establish a change ε in the

right-hand category but the underlying functor G may, through the

application of a rule, record no change in the left-hand category: η

maps on to ⊥, that is the state of the left-hand category has been

returned as the initial object. Generally it is not safe to commit

the change ε under such circumstances. In a ‘second cycle’ the

change ε will be undone in the right-hand category: > maps on to

ε, that is the state of the right-hand category has been returned

as the terminal object. This ‘second cycle’ thus achieves a rollback

in transactional terms in which the left- and right-hand states are

restored to initial and terminal respectively. If the ‘first cycle’ is

apparently successful with changes recorded as η and ε, the ‘second
4We are rather using the traditional language of category theory here. In pure process category theory

what we describe as category A is the partial order valued free functor F and S is the preorder valued
underlying functor G. The arrow g as a potential subarrow of G then becomes the corresponding solution
g = F (f) ◦ ε for the subarrow f of F given by f = G(f]) ◦ η.

23

cycle’ is effectively a view to commit or rollback the transaction,

potentially confirming the new states as those to be recorded as

the output of the transaction.

The ‘second cycle’ therefore can be used to advance the achieve-

ment of ACID as follows:

• Atomicity: all of changes done as single composition of func-

tors (GFGF and FGFG) with equal perspective to each cat-

egory including generation of arrow f in S and g in A.

• Consistency: partial changes on one category only are subject

to rollback by mapping η to ⊥ or > to ε on the ‘second cycle’.

• Isolation: intermediate results are not released during the ‘two

cycles’.

• Durability: results are still to be committed after ‘two cycles’

have been completed with consistency. The transaction log

has yet to be written so there is still some risk due to a sys-

tem ‘crash’. That is vulnerability persists from the security

perspective.

7 ‘Three cycles’

So if in the ‘first cycle’ η, ε and f are derived and in the ‘second

cycle’ g is derived and the values of η and ε are reviewed with a view

to commit or rollback, what might a ‘third cycle’ involve? Such

a cycle is concerned with ultimate closure, involving aspects such

as issuing error messages from a rollback, writing the transaction

log and performing the actual commit. We could persevere with

the notation used so far for adjointness but there is a more concise

notation available - the monad.

24

7.1 Monads

Monads represent the multiple cycles identified above. Monads

can be viewed as a generalisation of a monoid ([22], p. 137-138)

with the set of elements replaced by an endofunctor T : X −→
X with the same category X as source and target, the cartesian

product by composition of functors (T ◦T . that is T 2), the binary

multiplication by a natural transformation (µ : T 2 −→ T) and the

unit (identity) object by the unit η : 1X −→ T .

Formally the monad is a triple [2] < T, η, µ > in a category

X which consists of a functor T : X −→ X and two natural

transformations:

η : 1X −→ T ; µ : T 2 −→ T

such that the diagrams in Figure 12 and 13 commute.

T 3 T 2

TT 2

µ

Tµ

µT
µ

-

-
??

Figure 12: Associative Law for Monad T =< T, η, µ >

In Figures 12 and 13 the terms Tµ and µT appear. To illustrate

these terms, we first look at an adaptation of a diagram from ([3]

p.114) to produce Figure 14, showing categories S,A and S again,

functors F : S −→ A, G : A −→ S, F ′ : S −→ A and G′ :

25

IT T 2

TT
=

ηT

=
µ

TI

T

Tη

=

=

-

-
?? ?

�

�

Figure 13: Left and Right Unitary Laws for Monad T =< T, η, µ >

A −→ S, composition of functors G ◦ F and G′ ◦ F ′ and natural

transformations α : F −→ F ′ and β : G −→ G′. Category S is

repeated on the right-hand side so that the example covers directly

the adjointness case described later.

S A S

F ′ G′
βα

F G

- -

- -

? ?

Figure 14: Composition of Functors and Natural Transformations

That the diagrams of Figures 15 and 16 commute, ensures that

composition of functors and natural transformations is natural.

Figure 15 defines a natural transformation βF whose value at

an object S in S is the component of β on the object FS. Such a

natural transformation is sometimes written as βF to indicate that

we are dealing with a functor-valued natural transformation. The

26

G(F (S))

G(F (S′))
βFS′

βFS

G(F (f))

G′F (S))

G′(F (S′))

G′(F (f))

-

-
? ?

Figure 15: βF is natural for arrow f : A −→ A′ in S

construction βF is analogous to that of µT in Figure 13. That is

µT is the natural transformation µ with a functor value of T .

G(F (S))

G(F (S′))
GαS′

GαS

G(F (f))

G(F ′(S))

G(F ′(S′))

G(F ′(f))

-

-
? ?

Figure 16: Gα is natural for object S of S

Figure 16 defines the composition of a natural transformation

αS with G, written GαS. The construction GαS is analogous to

that of Tµ in Figure 13. That is Tµ is the composition of a natural

transformation µ with T .

By the natural logic rules from Godement [10] ([3] section 4.4.7),

the functors and natural transformations in Figure 14 compose

naturally: βF equals Gα. So in Figure 12 µT equals Tµ and in

Figure 13 ηT equals Tη.

The monad construction can be readily adapted to handle an

adjunction. The composition of functors T becomes GF , η remains

27

the unit of adjunction and µ becomes GεF where ε is the counit of

adjunction. Such a construction provides η the unit of adjunction

for the first cycle and GεF the counit of adjunction for the second

cycle. That is the monad is < GF, η, GεF > for the adjunction

< F, G, η, ε >. The arrow GεF is identifiable in the diagram given

earlier in Figure 11. For we map with the contravariant functor F

taking S −→ GF (S) in S to FGF (S) −→ F (S) in A. Then by

applying G to the arrow εF : FGF (S) −→ F (S) in A, derive

GεF : GFGF (S) −→ GF (S), that is µ.

The monad construction with adjointness provides a number of

constraints very relevant to the process transaction:

1 There is a unique solution through the adjointness F a G.

2 The unit of adjunction η maps on to other than the initial

object ⊥.

3 The natural transformation µ, looking back from the ‘second

cycle’ result to those for the ‘first cycle’, is defined as GεF ,

an expression involving the counit of adjunction ε. µ would

be mapped to G>F on the ‘second cycle’ if a rollback was

desired, that is partial changes should be rescinded.

4 The arrow Tµ : T 3 −→ T 2 in Figure 12 is a natural transfor-

mation comparing the second and third cycles from the view-

point of the ‘third cycle’, that is ‘looking back’ so to speak.

Tµ is GFGεF ([22], p. 138). If Tµ is mapped to GFG>F

then the transaction is rolled back. Otherwise the transaction

is committed and redo information written to the transaction

log. This ‘final cycle’ therefore, in giving a final reinforcement

of the constraints, facilitates durability.

In the ‘third cycle’ of the monad, the final value for ε is deter-

mined (to apply across all cycles). The value for η is not changed

28

in this cycle. However, the monad only gives half the story from

the left perspective. There is also a dual comonad which gives the

right-hand perspective. This is needed to represent the full features

of a transaction but there is no room here to pursue the comonad.

8 Categorical Approaches to Banking Application

There are a number of ways in which category theory might be

used to represent the banking ATM system described earlier. In

ascending order of complexity these might include composition,

adjoint functors between two categories and the composition of

adjoint functors. We first look at the two relatively simple cases

and then pursue the third.

8.1 Simple Approaches

Customer Bank

Cash

Security

Funds-checkGrant-access

-HH
HHH

HHH
HHH

HHH
HHj ?

Figure 17: Composition of Functors for Representing ATM System

The diagram in Figure 17 has the simple commutative require-

ment:

Grant-access = Funds-check ◦ Security.

It is not however a very explicit model of the ATM system as

relationships, state changes and rules are not indicated.

A simple formal diagram with logic quantification (with the

usual symbols for existential, universal and diagonal quantifiers)

29

and showing adjoint functors between a customer and a bank is

shown in Figure 18. This expands Figure 17 to show a relationship

in the adjoint functors between customer and bank of ∃ a f ∗ a ∀.

There are also the rules that need to be satisfied if the functors are

to be adjoint. However, no state changes are indicated with this

rather abstract formalism of the logic.

Customer Bank

Pin number ∃

String match f ∗

Access ∀

-

�

-

Figure 18: Adjoint Functors between Customer and Bank

8.2 Monad Approach

Applying the monad approach to the banking example results in

the following BANKING construction:

BANKING =< T, η, µ > where

• BANKING is the monad

• T = GF

• GF is a pair of adjoint functors F a G

• F is the free functor CUSTOMER −→ BANK, a request

for funds

• G is the underlying functor BANK −→ CUSTOMER, a

status check

• η is the unit of adjunction η : C −→ GF (C) for an object C

in CUSTOMER

30

• µ is GFGF (C) −→ GF (C), that is T 2 −→ T , also express-

ible as GεF where ε is the counit of adjunction ε : FG(B) −→
B for an object B in BANK

• the diagrams shown in Figures 12 and 13, representing associa-

tive and unitary laws respectively, commute; the associativity

law introduces Tµ, that is T 3 −→ T 2, also expressible as

GFGεF : GFGFGF (C) −→ GFGF (C).

The monad construction with adjointness provides the constraints

described earlier of uniqueness and of non-mapping of η to >, µ

to G>F and Tµ to GFG>F .

The monad approach is more effective than either the compo-

sition or simple adjoint approach as it has all the required fea-

tures: relationship between a customer and a bank through ad-

joints; specification of rules via constraints (units, counits of ad-

junction); and state changes between the cycles with µ. Compared

to current database representations of transactions, the monad ap-

proach highlights the complexity of the ACID requirements, indi-

cating that ‘three cycles’ (passes) are required ideally.

1C 1B

F

G

>

<

C

G(C)

f

η

G(f])

η

GF (C)

g[

GFG(C)

η

G(g)

GFGF (C)

?

-

-

-
�

�
�

�
�

�
�

�
�

�
�/ ?

�
�

�
�

�
�

�
�

�
�

�/
B

F (B)

f]

ε

ε

F (f)

FGF (B)

g

FG(B)

F (g[)

ε FGFG(B)?

S
S

S
S

S
S

S
S

S
S
Sw

�

�
?

S
S

S
S

S
S

S
S

S
S
Sw

�

Figure 19: After ‘two cycles’ of the banking transaction where η maps on to other than
⊥ and > maps on to other than ε. C is customer, B is bank, F is funds request, G is
status check, ‘transaction can complete’

31

Another advantage of the monad approach is that it can be

readily combined with a detailed approach such as that shown

earlier in Figure 11. For the banking application the diagram in

Figures 19 shows details of the changes after ‘two cycles’ for the

adjointness F a G, where F is a funds request and G is a status

check.

9 Universal Implications

The basic condition for a transaction processing system is that of

naturality. Where there is a two-way functor system, the functors

are adjoint in real-world systems. However, adjointness is typically

achieved in ‘one cycle’. Such a single cycle is not sufficient for

full satisfaction of ACID principles. It is necessary to have ‘two

cycles’ for achievement of Atomicity, Consistency and Isolation.

For ultimate closure with Durability ‘three cycles’ are necessary

as represented in the monad construction that wraps the ‘three

cycles’ into one consistent transaction.

ACID is a deconstruction of a monad. A monad is an atomic

entity, which commutes for consistency of identity and association

and has independent existence in its own right for isolation. Dura-

bility results from its preservation under further processing. The

convergence of database theory and category theory in process is

striking. The two theories come from different viewpoints: ACID

in databases a posteriori from commercial practice and monad in

category theory from a relatively minor part of the pure theory.

The convergence is presumably because both have to be natural.

32

10 Concluding Summary

Because adjointness is everywhere and the discussion has been

wide-ranging we should perhaps conclude with a summary of the

main theme of this paper of transaction in information systems as

process. The main steps are:

Figure 20: Adjointness between Two Systems

1 An information system has a left adjoint F i.e. right co-exact

(physically represented) process which is uniquely coordinated

by adjointness with a right adjoint G, left co-exact, underlying

logical process F a G as in Figure 3 reproduced here as Figure

20.

2 An ATM banking transaction where the left-hand triangle

composes with delivery of cash simultaneously debited from

the customer’s account lacks a left-adjoint functor F a G in a

universal Turing machine and therefore on any electronic dig-

ital computer with a von Neumann architecture. However a

true quantum computer would not be so restricted.

3 Commercial practice seeks to model the adjointness with a

sequential process that adheres to the principle of ACID.

4 The ACID principles which evolve out of good commercial

practice can themselves be shown to adhere to a deconstructed

monad, a triple over adjointness, as independently developed

by category theorists.

33

References

[1] Anderson, J R, Security engineering: A guide to building

dependable distributed systems ed., John Wiley (2001).

[2] Barr, Michael & Wells, Charles, Toposes, Theories, and

Triples Springer-Verlag (1985).

[3] Barr, M, & Wells, C, Category Theory for Computing Sci-

ence third edition, Centre de recherches mathématiques, Mon-

treal 526pp (1999).

[4] Barrow, John, & Tipler, Frank, The Anthropic Cosmological

Principle Clarendon Press (1986).

[5] Bastin, E, & Kilmister, C, Concept of Order. I. The Space-time

Structure, Proc Camb Phil Soc 50 278-286 (1954).

[6] Connolly, T, & Begg, C, Database Systems Pearson (2004).

[7] Dembski, W A, & Ruse, M, Debating Design: From Darwin

to DNA, Cambridge (2004).

[8] Deutsch, D, Ekert, A, & Lupacchini, R, Machines, Logic and

Quantum Physics, Bull Association Symbolic Logic 3(3)

265-283 (2000).

[9] Feynman, R P, & Hibbs, A, Quantum Mechanics and Path

Integrals McGraw Hill (1965).

[10] Godement, R, Théorie des faisceaux, Hermann, Appendix I

(1958).

[11] Gray, Jim, The Transaction Concept, Virtues And Limita-

tions, Proc 7th VLDB Cannes, France 144-154 (1981).

34

[12] Gray, Jim, Thousands of DebitCredit Transactions-Per-

Second: Easy and Inexpensive, Microsoft Technical Report

Series MSR-TR-2005-39 (2005).

[13] Heather, M A, & Rossiter, B N, Locality, Weak or Strong An-

ticipation and Quantum Computing I. Non-locality in Quan-

tum Theory, International J Comp Anticipatory Sys 13

307-326 (2002).

[14] Heather, M A, & Rossiter, B N, The Universe as a freely

generated Information System, Against Bull ANPA 26 357-

388 (2005).

[15] Heather, Michael, & Rossiter, Nick, The Logic of Foundations

and the Foundations of Logic, UNILOG 2005, 1st World

Congress and School on Universal Logic Montreux, Switzer-

land, 26 March - 1 April p.69 (2005).

[16] Heather, Michael, & Rossiter, Nick, Kurt Gödel heralds the

Age of Mathematical Enlightenment: The Demise of Num-

ber and the Axiomatic method, Horizons of Truth: Log-

ics, Foundations of Mathematics and the Quest for Un-

derstanding the Nature of Knowledge, Gödel Centenary

2006 27-29 April, University of Vienna (2006).

[17] Heather, Michael, & Rossiter, Nick, Process Category Theory

Salzburg Process Philosophy Conference July (2006).

[18] Kan, D M, Adjoint Functors Trans Am Math Soc 87 294-329

(1958).

[19] Landauer, R, Information is physical, Physics Today May 23-

29 (1991).

[20] Lawvere, F W, Adjointness in Foundations, Dialectica 23 281-

296 (1969).

35

[21] Leinster, Tom, Higher Operads, Higher Categories, Cam-

bridge (2004).

[22] Mac Lane, S, Categories for the Working Mathematician,

2nd ed, Springer-Verlag, New York (1998).

[23] Noyes, H P, A Short Introduction to Bit-String Physics, in

Merologies: Proc. ANPA 18 T Etter, ed, 21-61 (1997).

[24] Noyes, H P, Program Universe and Recent Cosmological Re-

sults Proc 20th Alternative Natural Philosophy Associa-

tion, Aspects II, K.G. Bowden, Ed. 192-214; also available as

SLAC-PUB-8030 (1999).

[25] OECD Guidelines for the Security of Information Systems:

Towards a Culture of Security, OECD Council (2002).

[26] Rossiter, B N, & Heather, M A, Quantum Information

Processing within the Quantum Processing of Information:

The Theory and Practice Compared, 1st IEE Seminar QIP

20 April, St Anne’s College, Oxford University (2005).

[27] Rossiter, Nick, Heather, Michael & Nelson, David, A Natural

Basis for Interoperability, I-ESA’06, Interoperability for En-

terprise Software and Applications Conference University

of Bordeaux, 22-24 March 2006. Preproceedings (CD, W11,

22 March 2006); proceedings LNCS Springer (2006).

[28] Rossiter, Nick, & Heather, Michael, Free and Open Systems

Theory, EMCSR- 2006, Cybernetics and Systems, 18th Eu-

ropean Meeting on Cybernetics and Systems Research Uni-

versity of Vienna, April 2006, Trappl, R, (ed) 1 27-32 (2006).

[29] Stephenson, P, Applying forensic techniques to information

system risk management - first steps. Computer Fraud & Se-

curity 2003(12) 17-19 (2003).

36

