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Abstract

The very accurate prediction of experimentally observed values of the coupling
constants has meant concentration on the numerical Combinatorial Hierarchy in
ANPA’s ’internal process universe’. To understand further the structure and origins
of the process of string generation itself needs the language of category theory. A
formal representation of the database transaction can provide more insight into
ANPA’s Program Universe. The universe is an empty monoid. As an information
system it needs to exist in physical form. Matter is generated in a non-local manner
as strings by a natural process in the adjunction between 2-cells F a G where F
and G are respectively the free and co-free functors.

1 Introduction

Irrespective of any mechanism like the big bang or steady state or

bubbling in the latest bubble multiverse cosmology [20], there is

always the question how the mechanism itself is to be derived. In

category theory (CT) an origin corresponds to an initial object in

a category and is given the label ⊥ (’bottom’). The initial object

of the universe as a category is the source of every other object in

the universe – including the source itself, if recursive. In categorial

terms there is nothing but arrows. Every object is an identity ar-

row, where the arrow domain and codomain are indistinguishable.

In a category that is cartesian closed there is a unique equaliser

arrow 1 from ⊥ to every object so the initial object of our universe
1See [23] at p.70 for equaliser and at p.97 for cartesian closed categories.
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Figure 1: Initial Object.
By Composition with the broken arrows there is a unique arrow from the initial object to
every object. The full vertical arrow is the equaliser of the two vertical broken arrows.

is the source of every object in it. It is cartesian closed 2 because

we are only concerned with a universe that exists, that is with

limits and exponentials. The exponentials are in effect all possible

relationships (i.e. arrows) between objects. The equaliser is one

type of limit and therefore a characteristic of cartesian closed cat-

egories. The equaliser is effectively a unique arrow between every

pair of objects 3. This is in accord with the usual definition of

the universe as objects accessible to us. An inaccessible object is

normally thought of as no interest to us. In physical terms the

unique arrow is a resultant of all relationships. So the effect of one

physical object on another is the resultant for instance of gravita-

tional, electromagnetic and nuclear forces. However, the results of
2It should be noted for this paper throughout that we are concerned only with a constructive approach

to reality, that which can exist. Therefore we do not need to go outside of the cartesian closed category
nor resort to the category of sets. This simplifies the notation so that we do not need a gothic typeface
to denote any category. In applied categories we are always operating in what a pure categorist might
call formally a ’class’ or enriched category.

3The unique resultant arrow is given in categorial terms by composition. This may be a composition
diagram of two parallel arrows which as the vertical arrows in Figure 1 cannot be drawn as a triangle.
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this paper suggest that a CT definition of the universe is a cate-

gory of adjoint categories. The observer (if needed) is just such a

category adjoint to all others and requires no special status. It also

leaves open the question whether there are objects which cannot

be perceived with the physical senses.

Figure 2: Terminal Object

Figure 1 shows a category that is cartesian closed and which

therefore has its identity functor indistinguishable from its termi-

nal object > (’top’) and with unique arrows from its initial object

⊥ (’bottom’) to every other object. Other paths are possible as

shown by the dotted arrows but any alternative path composes to

the corresponding direct unique arrow. The closure of the category,

>, is depicted as a circular arrow because it is an arbitrary func-

tor mapping the internal arrows onto themselves. The points are

identity arrows of the category and not points in a mathematical

space but much closer to the concept of a field. Figure 2 shows the

terminal object with a unique arrow to it from each object. The

terminal object is indistinguishable in a closed cartesian category

from the identity functor, the intension of the category. The oppo-
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Figure 3: A category types its objects

site arrows in Figure 3 are therefore ’picking out’ from the terminal

object each internal object in the category, that is indicating that

it belongs to that category in the sense that it is of that type. Note

the general contravariant direction of the extensional typing 4 in

CT as appears later. This was the seminal result of Lawvere [19]

who was able to show contravariant functors to be bound up with

intension/extension adjointness and logic quantification.

Earlier designations of the origin are traditionally zero (0) using

number theory or the null set (∅) in set theory. However neither

of these are a true initial starting line because they are still un-

der the starter’s orders of preconditions like Peano arithmetic or

the axioms of set theory. The set theoretic version of generating

the universe is a hierarchy produced by taking iteratively the set

of the null set and so on: ∅, {∅}, {{∅}}, {{{. . .. These can be

ordered properly as a total order by inclusion but each label is

representing a set at distinguishable levels and therefore of differ-

ent types. There is no natural closure except by invoking some
4Those approaching CT from a set theoretic perspective often want to point a typing arrow from the

object to its type but it is the other way round in CT.
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platonic concept like infinity. This hierarchy treats every distin-

guishable object as being of a different type and therefore loses

the very concept of type and any notion of natural categorisation.

CT on the other hand recognises the typing and has a natural clo-

sure in a four-level sandwich of three interfaces. For in the first

interface identity arrows together with arrows distinguishing them

make up a category that is an identity functor in the second in-

terface. Arrows distinguishing categories are functors and in the

third interface arrows distinguishing functors are natural transfor-

mations. There this categorial cumulative hierarchy ceases because

arrows distinguishing natural transformations are themselves nat-

ural transformations so providing natural closure. This sandwich

is shown in Figure 4. As this is completely general and requires

no assumptions other than the existence of the arrow this closure

may be the ultimate explanation for the limitation within the four

levels of ANPA’s Combinatorial Hierarchy (CH).

Terminal closure with composition of natural transformations

Natural Transformations

Identity Natural Transformation

Functors

Identity Functors

Categories

Initial Identity Arrow

-

-

-

-

Figure 4: Sandwich of category theory layers

The universe itself is therefore a one object category consist-

ing of internal transformations (i.e. arrows). Formally this is the

structure of a monoid where the one object is both initial and ter-

minal It is represented mathematically in set theory by a structure
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< M, f > where f : M −→ M are permutation functions on the

set M 5. The one object is the intension and the internal trans-

formation is the extension. Nevertheless, for natural numbers, it

is perhaps worth noting set theory examples for natural numbers

(N), the powerset ℘X of the set X and strings of words (S∗) on

an alphabet S:

numbers < N, +, 0 > < N,×, 1 >

sets < ℘X,
⋃
, ∅ > < ℘X,

⋂
, X >

strings < S∗,u, Λ >

Categorically the central column represents colimits and the last

column limits. Very significant is the gap for the limit monoid for

the operation on strings, This is perhaps the discovery of Parker-

Rhodes that there is such a fundamental operation as a process

generator for the universe. In some sense the whole of this paper is

concerned with this missing monoid involving an emergent process

operation combining extension with intension. We need therefore

to look in more detail at the concept of monoid, intension, exten-

sion and process. For this we find it convenient to go past the

usual ANPA number theory CH and the generation of Program

Universe to consider these as adjointness within an information

system. A little inspection makes the monoidal structure very ob-

vious. The first member of a triple is the underlying entity whether

N, ℘X or (S∗) words on an alphabet S. The second member is

one of the usual operations +,×,
⋃
,

⋂
,u (concatenation is u). The

final member is the neutral element under the operation namely

0, 1 the set X itself or the null string Λ.

In CT the monoid comes into its own with its full glory. It is

introduced as early as page 2 of the Categories for the Working

Mathematician of Saunders Mac Lane with the statement:
5see ([16] at p.66-67) where the standard Handbook of Logic in set theory gives the monoid only as an

unnamed example although referenced monoid in the index.
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The notion of a monoid (a semigroup with identity) plays a cen-

tral role in category theory

The structure < M, f > from above is replaced by its much richer

categorial version < M, µ, η > defined by commuting diagrams

for µ and η. The significance for this paper is that µ looks back

and η looks forward.

2 The Monoidal universe

The physical universe appears then to exist as an aggregate of

extensional objects which can properly be formalised in CT as

identity arrows. The objects are binary in the sense that the re-

lationship between every pair of objects is reflexive and transitive.

This structure is a preorder which is defined in CT in the sense

that there is just one arrow between any pair of objects. A pre-

order is a one-object category where the binary relation defines

internal subobjects. A category with a preordering is a semigroup

as it is a binary operation [15, 21].

The empirical assumption-free universe consists of binary rela-

tions on potential objects. In pure mathematics this structure is an

empty semigroup. However, the universe must have some identity

to exist. An empty semigroup with an identity is a monoid. The

intensional form of the universe is therefore a one-object monoid as

already indicated. The extensional form of the universe consists of

freely-generated internal objects – a free monoid. Internal objects

of the universe can therefore be represented by strings generated

from some sorts, that is an alphabet although atomic but not nec-

essarily discrete. A singleton character in the alphabet [s] maps

under a free functor to a single character string [s] 7→< s >. A

natural transformation compares the alphabet character with the

character string η : S −→ T (S) where T is a composition func-
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tor of an underlying functor G applied to some free functor F as

shown in Figure 5.

S F (S)F

T

S∗

G

?

-
�

�
�

�
�

�
�

�
�

�
�/

Figure 5: The whole diagram is a natural transformation arrow namely η : S −→ T (S)
representing a free/co-free structure

The old word problem was to define on a given alphabet S all

possible concatenations of finite strings S∗ i.e. words from the

given alphabet. S∗ is sometimes known as Kleene closure.

Figure 6: The View of the universe as an Underlying Information System

A tenet of ANPA is that the universe has come about from the

generation of strings from something usually described as nothing.

The strings form natural structures and it has been observed by

Parker-Rhodes [26] that by assigning simple number bits to the

strings [6] their calculation in a natural CH correlates very well with
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fundamental coupling constants of the universe 6. This process

has been named Program Universe [24]. It is the analogy of the

computer program to suggest that on each cycle of the computer’s

internal clock, a string is generated. This builds up an information

system populated by the generation of new strings distinguishable

from those already generated. It is an ’internal process view’ [3].

3 Intension and Extension

Intension and extension are used here in their general sense of

comparing a fundamental class of identity relationships. The full

abstract definition needs CT. This we have provided in Figures

1-3 above. In the case of sets the concept of membership is fun-

damental. A set may be identified by some label that connotes

its intension e.g. ’Greek Alphabet’ or by a denotational exten-

sion with elements consisting of the characters of the alphabet

{α, β, γ, . . . , } 7. This relationship will then be relevant in any

application of set theory. For example Codd’s relational database

model relates tables of data with an intension such as a name like

’author’ where the extension consists of a pool of data values like

{’Marlowe’, ’Dickens’, ’Shakespeare’,. . . }. This example shows the

’elementary’ limitations (that is the simplicity of elements) in set

theory. There is no formal relationship between the intension other

than the connection between the words ’alphabet’ and ’characters’

(that relationship in natural language does have a formal basis in

the sense of strings that we shall come to shortly). Nor is any for-

mal relationship, either inter-elements or intra-elements that may

exist, made explicit. Neverthesless they are assumed to be disjoint.
6Recent work suggests that this correlation for the fine structure constant is exact to seven significant

(decimal) figures [17].
7The convention adopted of writing a list like this as a sequence identifiable from the labels used can

be misleading. Extensional elements of a set have no order.
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In the example given there may be interrelationships between au-

thor names like Charles Dickens and Monica Dickens and much

more complicated relationships (at the pragmatics level) between

Marlowe and Shakespeare. There may be relationships within an

element as when a book has more than one author. These interre-

lationships are outside strict set theory. Names can be coined like

multisets or bags but these are really all bastard forms not part of

any consistent theory.

A little more sophisticated intension/extension relationship is

between the closure and the interior of open sets in topology. This,

because of the relationship between intension and extension, has

much more power for applications 8 for it gives relationships both

within data and between the extension of the interior and the ex-

tension of the closure. Other examples are the use of instantiation

where there is a suggestion that the intension is the codomain of

some morphism from intension to extension and ’meaning’ which

goes the other way from extension to intension. A recognition that

the relationship may take various forms is to be found in the object-

oriented paradigm with notions like encapsulation, polymorphism,

etc. In the elementary version of set theory both extension and

intension are fixed. Because this restriction is not very realistic

(i.e. not found naturally in reality) many attempts to relax this

limitation can be found although there is seldom any attempt to

justify these variations formally.

Very significant in this context are Gödel’s celebrated Incom-

pleteness Theorems and Church’s undecidability result ([27] at

p.599). By Gödel’s first theorem extension is undecidable for ax-

iomatic systems with arithmetic and intension likewise by his sec-
8For instance the Kuratowski postfix unary closure operator (defined by A ∼ ∼= A ∼ and 0 = 0 ∼)

was used in an early definition for consciousness by one of us [8] at p.287 in ANPA9 proceedings but we
have since upgraded our ideas on consciousness more on the lines of this present paper [10], [11], [13].
Kuratowski closure can also provide an alternative set-free foundation for toplogy.
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ond theorem. Examples that are capable of escaping the clutches

of Gödel are the Galois connection and language. If built of fab-

ric more general than sets these will be able to exhibit the kind

of behaviour to be described in the main part of this paper. The

example of language is especially important on account of its much

more elaborate version of intension/extension. The structure of the

intension language is syntax while the structure of its extension is

the semantics. These (particularly the latter) are expressed using

sets as for instance in the theory of computer programs. The great

power of natural language (but not usually of artificial languages as

computer programs and other comparable modelling techniques)

is that there is a third layer with syntax, semantics and pragmatics

where the pragmatics process as the context sensitivity of the real

world.

It is not perhaps surprising that the universe has the most elab-

orate structure of all with the three levels of syntax, semantics and

pragmatics for both intension and extension. Three levels raised to

the power of two give classically a bi-cubic, as the signature of a full

information system. This is the underlying structure of the double

helix of the DNA and is also of the same order as the Kortweg de

Vries equation [9], the generalisation of the Schrödinger equation.

The universal closure (i.e. intension) is achieved with at the most

three interfaces each interface consisting of an intension/extension

relationship [28].

3.1 The Arrow as Process

The dimensionality of three interfaces is present in set theory by

taking the intensional and extensional forms as discussed above

together with functions between sets. There is a difficulty. There

is no formal connectivity between the set intension and its exten-

sion. Functions relate sets but are external. With arrows on the
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other hand the three-dimensions are intension, extension and the

direction of the arrow and all three are internal to the concept of a

cartesian-closed category. This means that the arrows can better

represent a concept of process. It is one of the objectives of ANPA

to study the universe as process and what results from process.

Bastin [3] enunciates seven principles in support of the universe as

process:

� I. Process As A Necessary Principle

� II. Cumulative Sums

� III. Iteration And Algebraic Structure

� IV. Program Universe

� V. Perception

� VI. Iteration, The Statistical Background

� VII. A Parallel Development

It is illuminating to compare these headings with the arrow of

CT as a process. In his first Process As A Necessary Principle,

Bastin describes the construction

to express algebraically the construction of successive new sets of

entities out of the operations upon the elements of a previously

existing set.

CT builds a geometric logic on the Bourbakian tripartism of al-

gebra, topology and order. It still has the algebra expressed as

strings but also has the further properties of topological openness

and the built-in concept of order arising from the direction of the

arrow. We shall see below how the arrow upgrades Bastin’s alge-

braic constructivism to a geometrical construction of a succession

of new categories of objects.
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Bastin justifies his second principle of Cumulative Sums as fol-

lows:

We soon found it necessary to see the constructed elements as

discriminately closed subsets. To get the numbers right for ex-

perimental identification it was necessary to add those of the

different stages together.

In the categorial version this adding together of stages corresponds

to a colimit of limits. Iteration gives levels of an hierarchy where

an intension generates an extension which names a new intension.

This intension generates a further extension which adds to the last

intension. Therefore we get a categorial CH consisting of colimits

and limits. A limit is ’discriminately closed’.

For Iteration and Algebraic Structure Bastin comments

So the hierarchy algebra appears as a set of rules which constrain

the development but do not prescribe it.

This categorial version provides both for freeness (unprescribed de-

velopment) and for co-freeness (the prescription of rules) formally

integrated in an adjunction 9.

Bastin queries the basis of Program Universe and whether it

can be a model:

Was it an algebraic device merely or did it have a counterpart in

the world? Sometimes it was said to be just a model, but if so

what was it a model of?

The answer from CT itself seems to be that it is not a model but

a reality of which the universe is an instantiation. The CH in

its classical ANPA description is then a numerical model of this

reality.
9For freeness and co-freeness see below.
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The fifth principle of Perception means to Bastin that the gen-

eration of the CH is a construction and not a matter of filling a

platonic receptacle viewed by a passive observer. The observer

is then part of the construction and deconstruction in the itera-

tion. The arrow of CT well represents this viewpoint and does

not require an underlying mathematical space nor the concept of a

vacuum. The arrow provides everything the vacuum provides and

more. The split idempotent 10 generalises the concept of vacuum.

In his sixth principle, Iteration, The Statistical Background,

Bastin points out the need for some understanding of ’statistical’

and ’random’ concepts. Statistics are right-exact concepts in CT

and subobject classifiers of a topos while randomness is part of the

freeness/co-freeness principle.

An appeal to A Parallel Development by Cahill on ’quantum

foam’ is made by Bastin in support of the concept of process as his

seventh principle. Cahill relies on Leibniz’ monad as the basic unit

with the nature of a gebit (a pre-geometrical bit). This appears

to be the same notion as found in the geometrical aspect of the

categorial arrow where the monad induced by an adjunction can be

identified with the monad of Leibniz ([14] at p.308). The arrow goes

further than Leibniz and even subsumes Aristotle’s comparable

fundamental particle, the entelechy which unlike Leibniz’ monad

has an inbuilt direction pointer. Cahill’s words:

Process physics is a semantic informational system and is devoid

of a priori objects and their laws and so it requires a subtle

bootstrap mechanism to set it up

as cited with approval by Bastin (within a longer quote) might well

have been used to sum up the categorial mechanism that fills the

second half of this paper. From the rest of the quotation we see that

Cahill relies on square matrices to express relational informational
10See [23] at p.20.
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strengths in a stochastic neural network. Matrices as operators are

of course the counit ’bits’ of a functor in CT.

3.2 Generation of the Physical universe

It is the purpose of this paper therefore to amplify in a formal

manner using CT some detail not present in the traditional presen-

tation of the CH. One important point is to justify the generation

of physical matter. In the ANPA descriptions there are two levels,

the process and the data corresponding to intension and extension.

But also the process is the data. Program Universe relies on a

classical von Neumann paradigm where the process is some algo-

rithm that operates on the data but there is a mixing together in

some string of words as in a high-level language or as a bit stream

in an assembler language. The database approach promoted by

the ANSI/SPARC standard treats the program (usually an algo-

rithm) as quite distinct and each may be stated independently

with the programmer’s meta data and data having the property of

persistence. Neither seem to comprehend the spirit of the ANPA

philosophy though the process is data at the same level as the

data. Proponents of the ANPA approach have so far concentrated

on only some aspects. Very little is available on the mechanism of

the progress but it appears generally to rely on a set theoretic per-

spective with generation from the null set. More attention is paid

to discrimination where there is process upward in a particular

natural hierarchy of bit streams with levels filled by discrimina-

tion against strings already generated lower in the hierarchy. In

database practice this is a generate, search, look-up, test and store

recursion. While a set theoretic approach to the CH based on nat-

ural numbers has been able to provide some very compelling results

consistent within a very wide range of experimental data [25], nev-

ertheless the discussion here suggests more formal underpinning is
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needed for the representation of ’process’ and in the way extension

merges with intension in ’discrimination’. CT on the other hand

is able to give some support in these areas to investigate the arrow

version of the Program Universe. The analogy of the tick-tock

clock is that the whole universe turns over in some discrete fashion

from one configuration to the next in some quantum space time

frame. The advantage of using CT is that we are not restricted

to the limitation of set theory and are not excluding possible re-

sults of quantum mechanics and especially the general and special

theory of Einstein’s relativity. Our approach is perhaps to make

more general that of [2] which has already yielded a statistical and

algebraic alternative to classical and quantum space and time.

1S 1A

F

G

>

<

S

f

?

f ]

A?

Figure 7: Correlation between Arrow f in S and f ] in A

1S 1A

F

G

>
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S
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F (S)

?

Figure 8: Identity of the universe (intension): Correlation between Arrow f in S and f ]

in A where η −→ ⊥

16



The example of Codd’s relational model shows that the inten-

sion/extension relationship is rather obscured by the flat nature of

sets without integrated functions. In categories on the other hand

the focus is on arrows integral with objects and where even the ob-

jects are just (identity) arrows. Arrows between arrows give levels

which are not easily identifiable in sets. In the theory and prac-

tice of databases the arrows are fundamental but they are often

described by words such as ’relationships’, ’methods’, ’stored pro-

cedures’, ’functional dependencies’ or ’normalisation’. Often what

are significant are arrows between arrows which is the essence of

typing and therefore the fundamental use of a domain as typing.

Transactions are important everyday use of database features in-

volving arrows between arrows.

A transaction is a dynamically structured process. For instance

a straightforward banking transaction requires a sophisticated re-

lationship between crediting and debiting with resort to a fail-safe

procedure. The application of everyday business rules involve in-

teraction between intension and extension. For instance an ATM

withdrawal for a class of customer may be limited to a specific

value like 300¿ per day. There is a strong physical component in

this transaction. The customer’s account cannot be debited until

the bank notes have emerged from the hole in the wall in case the

transaction fails to complete because of some mechanical failure.

On the other hand there has to be a certainty that the amount will

be debited once the money has been withdrawn despite any failure

in the electronic process. This is achieved in practice by adherence

to the ACID principles 11 with every withdrawal of cash being writ-

ten to a transaction log before the money is paid out. Effectively

the transaction log is written up prospectively in advance to a sec-

ondary file and then in the event that a particular transaction fails
11ACID stands for Atomicity, Consistency, Isolation, Durability [5].
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to complete, it can be unpicked later by re-running from the last

successful transaction to undo the steps in the log that were never

fulfilled. Physical recording aspects of data in hardware are usu-

ally on disk for persistence. However, if the whole transaction were

to be carried out electronically in an e-banking transaction there

would still be some physical involvement because the transaction

has to reside somewhere such as the hardware of the main memory.

This is an example of the principle of Landauer [18]. Information

cannot exist except in the physical form. The logic of an empty

monoid is itself information and must be manifest in material form.

This is therefore the explanation of matter in the universe.

There is also another aspect which shows up in this banking

transaction, that is parallel processing. The purpose of the sepa-

rate log is to provide an overlapping alternative resource in case of

breakdown in the main transaction. True parallelism of the simul-

taneous recording of the transaction with its performance is not

possible in a von Neumann architecture which relies on a sequence

of processes between fixed cells. This is because classical compu-

tation is local [14] and is the reason for the failure of initiatives in

the 1980s in parallel processors and the limitations of set theoretic

(and therefore local) models like Petri Nets. The universe itself

on the other hand is non-local processing and therefore can carry

out simultaneous events although communication between them is

not possible because that imports localisation. This is manifested

in the cosmological limits like the finite velocity of light and the

issues of the special relativity that arise from it. The operation of

a separate log succeed as a way round the problem by providing

two real-time systems 12. Because of this there is no absolute time
12This is real-time in its true sense namely this is the origin of time. Real time is used here in the

technical sense. Real time is the sequence of operations of a system. This may be synchronous as with
some clocks or asynchronous. This defines a particular inherent time system, based on intensional time.
So there are different possible systems of time. They have to be related through their extensions, for
instance the difficulties of relating crystal time with sideral time or solar time as determined by the
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on the von Neumann machine for serial processing with fixed cells

which determine how a choice is made. This is a weakness of the

Program Universe as a model and justifies the fuller explanation

in information systems available in a database transaction for the

generation of bit streams.

This banking transaction is typical of any transaction as a non-

local process. The log provides a parallel information system to

effect the banking operation consistently. It has two components,

one looking forward to the sequence and one looking back to check

that what was expected was achieved. The universe carries out

transactions all the time non-locally mediating between objects in

time and space. It nevertheless still has the forward and back

components except that they are non-local. This emerges in the

following analysis of adjunctions in CT. The universe operates as

a quantum information processor 13.

4 Process as a Semantic Information System

A feature of a system may be a state, an action, a process, a

property, indeed anything the system is or does. Outside of CT

any of these are usually represented by a set, that is with unordered

elements or with some imposed order like a vector or tuple. The

ordering is independent of the notion of a set. In CT any feature

of a system is an example of the arrow. The direction of the arrow

already includes the notion of ordering and also has inherent typing

so that a feature of a system is naturally distinguishable.

rotation of the earth. This is the essence of time as a local phenomenon projected out of space time
under application of the axiom of choice.

13The banking transaction is a type of process very suited to the quantum computer. It is for this
reason we have been urging recently the quantum processing of information and evolvable databases as
a more realisable everyday application than some of the sensational and more esoteric examples being
promoted like code breaking, teleportation and remote viewing [29, 30].
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Figure 10: Distinction of f ] in S by arrow G(f ])

The CT information system instantiated as the universe is de-

picted in the Figure 6 and elaborated in the sequence of figures

that follow. The instantiation as the one-object monoidal physical

universe comes about as explained because natural logic is infor-

mation and therefore exists in material form. Each of the figures

is a topos with the usual properties that can be found in John-

stone [15] (passim) or modelled in higher operads of n-categories

[21]. Fortunately applied categories can be restricted to the deep

simplicity of nature and we need no more than the fundamental

properties of adjointness that can be found in any basic textbook
14. However, to bring out the dynamic structure of process that

is intrinsic in adjointness we will set out the behaviour of the ar-

rows step by step. The left-hand category (S) in each diagram is
14An example is the second edition of Categories for the Working Mathematician [23].
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the monoidal universe. The functors F and G between S and the

right-hand category (A) are endofunctors so both S, A categories

are really coincident on the left but drawn side-by-side to make the

relationship more patent for the overall transaction of Figure 6.

In more detail Figure 7 shows a typical arrow on the left (f in S)

which is a family of arrows that correlates with a family of arrows

in A which are represented in the figure by a typical right hand

arrow f ]. Correlation under adjunction is given by

η : 1S ⇒ GF

ε : FG ⇒ 1A

The double bar indicates implication and its converse. GF is

the functorial composition of applying functor G to the result of

applying functor F to category S. FG is the corresponding appli-

cation of functor F to the result of applying functor G to category

A. Both arrows above and below the double bar could be replaced

by the usual symbol ≤ for reflexive transitive ordering, an example

of an arrow from where the ordering is derived as mentioned above.

The unit of adjunction is η : 1S −→ GF and the counit is

ε : FG −→ 1A. If η −→ ⊥, GF returns the arrow f to its

original state f . That is F maps object S to F (S) as G maps A

to G(A) as in Figure 8. If η is other than ⊥, functor G will take

F (S) to a different object in S. So we have η : S −→ GF (S)

in Figure 9. Note the distinction shown in Figure 10 of f ] under

functor G as the arrow GF (S) −→ G(A) labelled G(f ]). Because

of the uniqueness of adjunction there will be only one possible

arrow G(f ]) given by the composition of the triangle shown in

Figure 11.
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Figure 11: Uniqueness of adjunction: only one possible arrow G(f ])

Figure 10 is the explanation of naturality 15. What happens to

the arrow whose source object is GF (S)? In this case we have the

dual perspective, representing co-freeness as shown in the following

Figures 12 to 14. If > −→ ε, FG returns the arrow f ] to its

original state f ]. If > is other than ε, functor F will take G(A) to

a different object in A. So we have ε : FG(A) −→ A as in Figure

12. Note the distinction in Figure 13 of f under functor F as the

arrow F (S) −→ FG(A) labelled F (f ). In Figure 14 we introduce

the correlation between an arrow g in A and g[ in S.

1S 1A

F

G

>

<

S

f

G(A)

GF (S)η

G(f ])

?

-
�

�
�

�
�

�
�

�
�

�
�/

f ]

A

F (S)

ε FG(A)?
�

Figure 12: Correlation between Arrow f in S and f ] in A where > other than ε

In Figure 15 we show the mappings that occur in correlating g

in A with g[ in S where η is other than ⊥ and > other than ε.
15Although not justified here this naturality is defined in the paper [28].
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Figure 13: Distinction of f in A by arrow F (f)

In this diagram we have a general relationship where neither truth

nor falsity hold [12]. The complete picture of the adjointness is

given in Figure 16 to illustrate all the relevant mappings between

an arrow f in A and another arrow g in S where η is other than

⊥ and > other than ε.

1S 1A

F

G

>

<

S

f

G(A)

GF (S)η

G(f ]) g[

?

-
�

�
�

�
�

�
�

�
�

�
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f ]
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F (S)

ε FG(A)

F (f) g

?
�

S
S

S
S

S
S

S
S

S
S
Sw ?

Figure 14: Correlation between Arrow g in A and g[ in S

Figures 7 to 16 show in detail the nature of adjointness, in a

manner perhaps more suited to implementation in a computer sys-

tem than is the normal approach with CT in mathematics where

abstraction is usually preferred. The build up is from arrows in S

to correlating arrows in A for representing the freeness associated

with the free functor F . The co-free functor G is the underlying

functor which is critical in establishing how well S reflects A.
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Figure 15: Correlation between Arrow g in A and g[ in S where η is other than ⊥ and >
other than ε
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Figure 16: Complete Picture: Correlation between η and ε in 2-cell Adjunction F a G

5 The Contravariant Intension/Extension Mapping

So far we have considered adjunctions which are covariant, that

is domains of arrows in one category are mapped to domains of

arrows in the other category. Similarly codomains in one category

are mapped to codomains in the other category. The covariant

case will apply across a single level such as mapping from one in-

tension to another or from one extension to another. If we adjust

our diagram in Figure 6 so that the left-hand side is the inten-

sional universe and the right-hand side is the extensional universe,

then the mapping will be contravariant. The result is shown in

Figure 17 in which the arrows in the left-hand category have been

reversed. In multi-level mappings, such as intension/extension,
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Figure 17: Contravariant Mapping between Intensional universe (left) and Extensional
universe (right)

the relationships have long been known to be contravariant [19].

With a contravariant functor, domains and codomains in one cat-

egory are mapped to codomains and domains respectively in the

other category. In information systems the extension is of the form

value −→ label and the intension is of the form label −→ type so

that the relationship between them must be contravariant if one is

to be mapped on to the other.

The diagram in Figure 17 is not unlike that for interhuman

communication proposed by [22] which assumes two levels are in-

volved. At the first level information is exchanged and provided

with meaning, and at the second level meaning can reflexively be

communicated.

The formal diagram in Figure 18 shows arrows reversed on the

left from those in Figure 16 except for η which still compares S

with GF (S) and GF (S) with GFGF (S). This diagram shows

the intensional universe on the left and the extensional universe on

the right. The Galois connection [31] can be used to reason with

such diagrams.
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Figure 18: Complete Picture: Correlation between η and ε in 2-cell Contravariant Ad-
junction F a G

6 Abstract Representations of Covariant/Contravariant

Functors

Functor F freeness

Functor G co− free

1S

1S′

s
1A

1A′

a

Category S

universe S

Category A

Information System A

??
�

-

Figure 19: Covariant Mapping between universe and Information System: η −→ ⊥ and
> −→ ε

A more abstract representation (extending that in [14]) is shown

in Figures 19 to 21. Figure 19 corresponds to Figure 8 where the

unit of adjunction η = ⊥, giving a simple equivalence between

the two categories A and S. Figure 20 corresponds to Figure 10

where the unit of adjunction η is other than ⊥ with η taking S

to a different object GF (S). Figure 21 corresponds to Figure 13

where for the counit of adjunction, > is other than ε, with ε taking

FG(A) to a different object A.
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Figure 20: Covariant Mapping between universe and Information System: unit of adjunc-
tion η other than ⊥
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Figure 21: Covariant Mapping between universe and Information System: counit of ad-
junction > other than ε

Figures 19-21 show the covariant mapping between a universe

and an information system. If we consider that category S is the

intensional form of the universe and that category A is the exten-

sional form of the universe, then the mapping between them will

be contravariant as discussed earlier. Each of Figures 19-21 can be

represented in contravariant form by reversing arrows, other than

η, in the left-hand category S. Reversing the arrow s : 1S −→ 1S′

in Figure 19 has an apparently trivial effect as the type of the do-

main and codomain are the same. However, trivial effects may be

of greater significance in applications than in pure mathematics.

When η is other than ⊥ or > other than ε the effects of reversing

the arrows in category S are obviously of greater significance. Here

we show in Figure 22 the contravariant form of Figure 20. This

shows the reversal of the directions of f and G(f ]) with the com-

muting triangle now giving the equation η ◦ f = G(f ]) instead of

η = G(f ]) ◦ f as in the covariant form. The arrow F (S) −→ A

in A is mapped by G on to A −→ F (S) to give GA −→ GF (S).

This is contravariant as the domain and codomain of A are mapped
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on to the codomain and domain respectively of S.

Functor F freeness

Functor G co− free

S

G(A)
f

F (S)

A
f ]GF (S)η

G(f ])

Category S

Intensional universe S

Category A

Extensional universe A

?6

-

�

XXXXz
���:

Figure 22: Contravariant mapping between intensional universe and extensional universe:
unit of adjunction η other than ⊥

For the contravariant form, if indeed η ◦ f = G(f ]), then the

diagram is natural. Further when η is other than⊥ then the arrows

are distinguishable by the application of GF to S which returns

an arrow GF (S) which may be different to S. The combination of

contravariance, naturality and distinguishability provides a formal

basis for relating the intensional and extensional universes.

7 Summary and Future Work

Let us take stock by summarising the argument. Firstly there is the

monoidal universe in which the intensional universe is portrayed

as a one-(object) monoid and the extensional universe as a free

monoid freely-generated internal objects. This provides for the

generation of strings from what is usually described as nothing.

The relationship between the universe and its representation in

an information system has been represented in its most general

form by covariant adjunctions, which have been built up in detail

in a series of stages. When the relationship is considered instead

between an intensional universe and an extensional universe, then

the adjunctions are contravariant to handle the two-level intension-

extension mapping. More abstract formal, natural diagrams have
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been developed to show both the covariant and contravariant ad-

junctions.

Relevant aspects not fully pursued include time dependence.

This is because we are dealing with a non-local condition where

neither time nor space are to be explicitly differentiated. It would

not be difficult to add time if it was needed. We have shown else-

where [12] that it is just the matter of making every time-dependent

category a slice category. It appears that time is not even needed

for local conditions. Contrary to earlier suggestions [7] recent high

quality data from ESOs Very Large Telescope array in Chile show

no evidence to support a time variation in the fine structure con-

stant [4]. Also we have not dealt with pragmatics but that is just

the need to provide context sensitivity by adding an ambient cate-

gory. This is achieved by enriching every category with pragmatics

to a topos.

On the other hand it will be of great interest to pursue further

the emergence operator referred to at the beginning of this paper

to show if it is some fundamental characteristic of a relationship

between intension and extension as the phenomenon of ’discrimi-

nation’ in the theory of ANPA’s CH seems to suggest.
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