

Music as a Composition of
Cartesian Monad over a Topos

Nick Rossiter
Visiting Fellow

Computing Science and Digital Technologies
Northumbria University

ANPA 38
St John's College,

Rowlands Castle, Hampshire, UK
10 August 2017

Acknowledgements

● Michael Heather
● Michael Brockway
● Members of the Royal Northern Sinfonia,The

Sage, Gateshead

Outline of Presentation

● The work to be presented builds on that
presented at ANPA 37, taking up the challenge
of a testing application for the Cartesian monad
approach to universal design.

● The monad presents a musical performance as
a composition over time signatures, such as
barlines, with the monad looking forward/back
and its associated comonad looking
back/forward.

Outline of Presentation 2

● The physical characteristics of the notes in
each time-frame are complex, so it is necessary
to use a strong Cartesian monad, facilitating the
representation of each time-frame as a product.

● The monad is process, handling dynamic
aspects. The category upon which the monad
operates will be a topos holding relatively static
information such as the players, the score and
the venue, together with the relationships
between them.

Outline of Presentation 3

● The topos is far from totally static with its
arrows facilitating flexibility in all information
held, including relationships; the topos is also
searchable through the subobject classifier.

● There is no assumption of any particular
musical genre.

● Such a categorial framework could be
implemented in the functional programming
language Haskell in a similar way to the
banking example.

The Topos – Structural Data-type

● Based on Cartesian Closed Category (CCC)
– Products; Closure at top; Connectivity (exponentials); Internal Logic;

Identity; Interchangeability of levels

● If we add:
– Subobject classifier

– Internal logic of Heyting (intuitionistic)

– Reflective subtopos (query closure)

● We get a Topos

Examples

● Student Marks
– Simple pullback (1 square)

● Bank Transactions
– Simple pullback (1 square)

– Pasted pullback (2 pasted squares, 3 pullbacks)

– Pasted pullback (4 pasted squares, 10 pullbacks)

Pullback - Single Relationship
Student Marks by Grade

Pullback - Single Relationship
Constraints

● SX
G
 M (Student X

Grade
 Mark)

● Logic of adjointness: ꓱ ┤Δ ┤Ɐ
– Δ selects pairs of S and M in a relationship in

context of G

– Such that ꓱ ┤Δ and Δ ┤Ɐ
● Projections π are from product, left and right (dual π*)
● Inclusions ι are into sum S+M+G, left and right (dual ι-1)

● S, M, G are categories, with internal pullback structure, giving
recursive pullbacks

● η is the unit of adjunction (creativity), ε is the counit of
adjunction (qualia)

Recursive Pullbacks

A node of a
pullback may
itself
be a pullback

Each node in the pullback for Student over Marks in context of Grade
is itself a pullback, giving a recursive structure.

These are Dolittle diagrams (pulation squares). See Adámek, 1990 (p.205),
Herrlich 2007, Freyd 1990.
The Story of Dr Dolittle by Hugh Lofting (1920), Pushmi-pullyu.
Endofunctors relate top (intension) to bottom (extension).
Each pullback node should decompose ultimately into a Dolittle diagram.

Dolittle Diagram for Category S

id is the key (identifier) for a student
S+ is all information held on a student
S+ is name +

id
 address

Pullback - Single Relationship:
Bank Transactions by Procedure and Account

Pullback - Single Relationship
Details

● P X
T
 A (Procedure X

Transaction
 Account)

– Procedure is type of transaction: e.g. standing
order, direct debit, ATM cash withdrawal

– Account can belong to many users

– Transaction is item for transfer of funds according to
ACID requirements

● P, A, T are categories, with internal pullback structure, giving
recursive pullbacks

Pullback - Two Pasted Relationships:
Bank Transactions by User/Account

Three
Pullbacks
Pb1, Pb2,
Pb2 X Pb1

U is user
A is account
T is transaction

Usually written in
horizontal (landscape)
form. Vertical layout
enables deep nested
structures to be
represented more readily

Pasting condition for Pb2 X Pb1: ι
l

' = π
r
after Freyd's Pasting Lemma

For our purposes, a pasted pullback is only a valid pullback if all inner and outer
diagrams are pullbacks
Pasting is associative (order of evaluation is immaterial) but not commutative
(relationship A:B 1:N is not same as A:B N:1)

Pullback – x10 Natural
Bank Account Transactions

U

 1:N

C company, B branch, U user, A account, P procedure, T transaction

10 pullbacks: Pb1, Pb2, Pb3, Pb4
Pb2 X Pb1, Pb3 X Pb2, Pb4 X Pb3
Pb3 X Pb2 X Pb1, Pb4 X Pb3 X Pb2
Pb4 X Pb3 X Pb2 X Pb1

For our purposes, a pasted pullback
is only a valid pullback if all inner and
outer diagrams are pullbacks

N:M and 1:N are
handled by same
pullback structure

Data Structuring with Pullbacks

● Pasting of pullbacks is desirable when the
related entities have stand-alone existence e.g.
(Bank) Branch and User

● Expansion of information on an entity, as
through hierarchies, may be best handled by
nesting pullback structures recursively

● This is still an experimental area and another
example will increase perspective

A Topos for Music
● Music is viewed as a communication of some

manuscript by communicators
● The topos is relatively static (compared to the

monad) but being arrow-based can readily
handle change.

● Manuscript comprises scores and other
intentions of composers and writers

● Includes musical notation (typeset, handwritten or digital)
or more spontaneous formats

● Communicators comprise performers and other
aspects of performance

● Includes an orchestra, group, recording company

Topos of Manuscript by Performers
in Context of Delivery

● Pullback top E

M is category for Manuscript, O for Orchestra, D for Delivery

Each of the nodes can be expanded
1

● M (Manuscript) could be

S is category for Score, C for Composer, V for Version (variant)

Each of the nodes can be expanded
2

● O (Orchestra) could be

A is category for Assemblage, N for Named Musician,
R for Role

Each of the nodes can be expanded
3

● D (Delivery) could be:

L is category for Location, H for Hall,
T for Time

Notes on Expansions

● The nodes in the top diagram E are pullbacks in
their own right

● Need to match across the various nested levels
with the logic

● The top digram is effectively a pullback of
pullbacks as shown next

The Topos E

● Overall Pullback E

The nodes are pullback squares
Categories may be nested further

External Process

● Metaphysics (Whitehead)
● Transaction (universe, information system)
● Activity

– Can be very complex but the whole is viewed as
atomic – binary outcome – succeed or fail

– Before and after states must be consistent in terms
of rules

– Intermediate results are not revealed to others

– Results persist after end

Multiple 'Cycles' to represent
adjointness

● Three ‘cycles’ GFGFGF:

– Assessing unit η in L and counit ε in R to ensure overall
consistency

– 'Cycles' are performed simultaneously (a snap, not each
cycle in turn)

– Conceptually cycle 1 for execution, 2 for review, 3 for tidy-
up

η: 1L  GF(L) ε: FG(R)  1R

η

ε

F -| G

Failure in Adjointness

● Means transaction has failed
● Communication is suspended
● Restart is necessary at some convenient point

(Rollback)
● In music need to distinguish between a wrong

note and differences in expression

Promising Technique - Monad
● The monad is used in pure mathematics for

representing process
– Has 3 'cycles' of iteration to give consistency

● The monad is also used in functional
programming to formulate the process in an
abstract data-type
– In the Haskell language the monad is a first-class

construction
● Haskell B. Curry transformed functions through currying

in the λ-calculus
● The Blockchain transaction system for Bitcoin and more

recently other finance houses uses monads via Haskell
– Reason quoted: it is a simple, reliable and clean technique

Monad can be based on an
adjunction

● The transaction involves GF, a pair of adjoint
functors F -| G
– F: X → Y

– G: Y → X

● GF is an endofunctor as category X is both
source and target

● So T is GF (for monad)
● And S is FG (for comonad)

Monad/Comonad Overview
● Functionality for free functor T, underlying functor S

– Monad
● T3 → T2 → T (multiplication)
● 3 'cycles' of T
● In Bitcoin considered to be zooming-in

– Comonad (dual of monad)
● S → S2 → S3 (comultiplication)
● 3 'cycles' of S
● In Bitcoin considered to be zooming-out

● Objects:

– An endofunctor on a category E (the topos)
● Note this multiple performance matches our transaction

approach, outlined earlier with GF performed 3 times

Using the Monad Approach

● A monad is a 4-cell <1,2,3,4>
– 1 is a category E

– 2 is an endofunctor (T: E → E, functor with same
source and target)

– 3 is the unit of adjunction η: 1
X
 → T (change, looking

forward)

– 4 is the multiplication μ: T X T → T (change, looking
back)

● A monad is therefore <E, T, η, μ>

The Comonad
● The dual of the monad
● A comonad is a 4-cell <1,2,3,4>

– 1 is a category E

– 2 is an endofunctor (S: E → E, functor with same
source and target, S is dual of T)

– 3 is the counit of adjunction ε: S → 1
X
 (change,

looking back)

– 4 is the comultiplication δ: S → S X S (change,
looking forward)

● A comonad is therefore <E, S, ε, δ> or <S, ε, δ>

● Both monad and comonad are often defined by a 3-
cell descriptor with the category omitted (as implicit)

3-cell descriptors with adjoints

● The 3-cell monad < T, η, μ>

– is written <GF, η, GεF> (last up a level for
multiplication)

● The 3-cell comonad <S, ε, δ>

– is written <FG, ε, FηG> (last up a level for
comultiplication)

● The monad structure looks forward with F and η
and backwards with G and GεF

● The comonad structure looks backwards with G
and ε and forward with F and FηG

Terminology

● A monad is often simply addressed by its
endofunctor.

– So < T, η, μ> is called the monad T
● Similarly for the comonad

– <S, ε, δ> is called the comonad S
● It's a synecdoche

Operating on a Topos

● The operation is simple:
– T: E → E

● where T is the monad <GF, η, GεF> in E, the
topos, with input and output types the same

● The extension (data values) will vary but the
intension (definition of type) remains the same

● Closure is achieved as the type is preserved

Process in Musical Performance

● The topos E defined earlier contains
– The physical notation in the category V (for Variant)

for the music as conventionally laid out in sheet
music (or otherwise!)

– The performers in the category R (for Role) for the
actual musical event

● A single monad/comonad action (of 3 cycles T3)
will take the music forward one unit of
performance (phrase or bar), say one step

Process in Musical Performance 2

● Moving from one barline to another is
determined uniquely by the adjunction F -| G

– F is the free functor (looking forward,
creative)

– G is the underlying functor (looking back,
enforcing the rules, qualia)

Process in Musical Performance 3

● If adjointness holds over the 3 cycles

– Then η the unit of adjunction measures the
creativity of the step going forward (dialectic)

– And ε the counit of adjunction measures the
qualia of the step looking back (rhetoric)

● If adjointness does not hold over the 3 cycles

– Then integrity has been lost and
resynchronization is necessary

Experience

● Performers do comment that playing is an
intensive experience:
– at the same time both looking back as to what you

have played and anticipating what is to come.

● Such experience is captured by the
monad/comonad structure with its
forward/backward nature and inherent
adjointness

Composition

● A musical work is referred to as a composition.
● It is indeed a composition of steps

– With the output from one step becoming the input to
the next step

● The order is fixed in advance
● Composition is an inherent feature of category

theory
● With one monad execution as a single step, it is

necessary to compose monads to perform a full
work

Therefore composability is the Key

● Compose many monads together to give the
power of adjointness over a whole wide-ranging
application

● In banking with Bitcoin the reliability obtained
from composing processes over a wide-range
of machines (distributed data recovery) justifies
the move to Category Theory

Blockchain 1

● The categorial monadic approach is being used
for the Blockchain [Meredith], a transaction
system, adopted by Bitcoin, for keeping
hundreds or even thousands of copies of each
transaction record, using multiple transaction
logs.

● The monadic design pattern provides a broad
range of transactional semantics with
composition the key to scaling any system.

Blockchain 2

● The blockchain approach is drawing interest
from the established banking industry, where a
blockchain is viewed as a shared, encrypted
`ledger' that cannot be manipulated, offering
promise for secure transactions.

● Meredith indicates that compositionality is the
key to reliability but offers few details on how
this is achieved in the monad.

Monad Composition needs Care

● There is a problem though in EML (Eilenberg/
Mac Lane) Category Theory:
– Monads do not compose naturally

Haskell and Monads

● Kleisli Category of a Monad
– Transforms a monad into a monadic form more

suitable for implementation in a functional language
● Used in Haskell rather than the pure mathematics form of

Mac Lane

● Strengthens the monad for composability
– As in the Cartesian Monad, with products

● A practical application of the pure maths has
exposed problems in the maths

● Solution has come from another pure
mathematician Kleisli

Kleisli Lift

● Define a natural transformation:

– τ
A,B

: A X TB → T (A X B) where A,B are objects in X

and T is the monad such that the following diagram
commutes

There is a problem
with distributivity
In EML

Cartesian Monads in Music

● Take each barline, or some other time
signature, as a unit of process
– Such a barline will be Cartesian, representing the

potentially complex physics of the music
● Combinations of notes, including chords

● Therefore Cartesian Monads as strengthened
by the Kleisli Lift are essential for composition
purposes

Summary of Progress
● Topos has been established as data-type of

choice
– Design with pasted pullbacks and recursive

pullbacks is being explored

– Dolittle diagrams at bottom level provide
intension/extension mapping

● Monad can process the topos
– Readily as a single step

– A Cartesian Monad requires the Kleisli lift for
multiple composition

● Advent of Monads in Haskell gives an
experimental test-bed

Look Forward

● Music application to be developed further
– More contact with real musicians

– Topos should be elaborated
● As general as possible
● Construction of Dolittle diagrams for intension/extension

– Clarification of monad/comonad role
● Describing process in more detail
● Recognition of time jitter
● Understanding of dialectic/rhetoric balance

● Knowledge gained to be fed into general
advance in utilising category theory

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

