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Outline of Presentation

● The work to be presented builds on that 
presented at ANPA 37, taking up the challenge 
of a testing application for the Cartesian monad 
approach to universal design. 

● The monad presents a musical performance as 
a composition over time signatures, such as 
barlines, with the monad looking forward/back 
and its associated comonad looking 
back/forward. 



  

Outline of Presentation 2

● The physical characteristics of the notes in 
each time-frame are complex, so it is necessary 
to use a strong Cartesian monad, facilitating the 
representation of each time-frame as a product.

● The monad is process, handling dynamic 
aspects. The category upon which the monad 
operates will be a topos holding relatively static 
information such as the players, the score and 
the venue, together with the relationships 
between them.



  

Outline of Presentation 3

● The topos is far from totally static with its 
arrows facilitating flexibility in all information 
held, including relationships; the topos is also 
searchable through the subobject classifier.

● There is no assumption of any particular 
musical genre. 

● Such a categorial framework could be 
implemented in the functional programming 
language Haskell in a similar way to the 
banking example.



  

The Topos – Structural Data-type

● Based on Cartesian Closed Category (CCC)
– Products; Closure at top; Connectivity (exponentials); Internal Logic; 

Identity; Interchangeability of levels 

● If we add:
– Subobject classifier

– Internal logic of Heyting (intuitionistic)

– Reflective subtopos (query closure)

● We get a Topos



  

Examples

● Student Marks
– Simple pullback (1 square)

● Bank Transactions
– Simple pullback (1 square)

– Pasted pullback (2 pasted squares, 3 pullbacks)

– Pasted pullback (4 pasted squares, 10 pullbacks)



  

Pullback - Single Relationship 
Student Marks by Grade



  

Pullback - Single Relationship
Constraints

● SX
G
 M (Student X

Grade
 Mark) 

● Logic of adjointness: ꓱ ┤Δ ┤Ɐ
– Δ selects pairs of S and M in a relationship in 

context of G

– Such that  ꓱ ┤Δ and Δ ┤Ɐ
● Projections π are from product, left and right (dual π*)
● Inclusions ι are into sum S+M+G, left and right (dual ι-1)

● S, M, G are categories, with internal pullback structure, giving 
recursive pullbacks 

● η is the unit of adjunction (creativity), ε is the counit of 
adjunction (qualia)



  

Recursive Pullbacks

A node of a 
pullback may 
itself 
be a pullback

Each node in the pullback for Student over Marks in context of Grade
is itself a pullback, giving a recursive structure.

These are Dolittle diagrams (pulation squares). See Adámek, 1990 (p.205), 
Herrlich 2007, Freyd 1990. 
The Story of Dr Dolittle by Hugh Lofting (1920), Pushmi-pullyu. 
Endofunctors relate top (intension) to bottom (extension). 
Each pullback node should decompose ultimately into a Dolittle diagram. 



  

Dolittle Diagram for Category S

id is the key (identifier) for a student
S+ is all information held on a student
S+ is name +

id
 address 



  

Pullback - Single Relationship:
Bank Transactions by Procedure and Account



  

Pullback - Single Relationship
Details

● P X
T
 A (Procedure X

Transaction
 Account)

– Procedure is type of transaction: e.g. standing 
order, direct debit, ATM cash withdrawal

– Account can belong to many users

– Transaction is item for transfer of funds according to 
ACID requirements

● P, A, T are categories, with internal pullback structure, giving 
recursive pullbacks 



  

Pullback - Two Pasted Relationships:
Bank Transactions by User/Account

Three 
Pullbacks
Pb1, Pb2,
Pb2 X Pb1

U is user
A is account
T is transaction

Usually written in
horizontal (landscape)
form. Vertical layout 
enables deep nested
structures to be 
represented more readily

Pasting condition for Pb2 X Pb1: ι
l

' = π
r 
after Freyd's Pasting Lemma  

For our purposes, a pasted pullback is only a valid pullback if all inner and outer
diagrams are pullbacks
Pasting is associative (order of evaluation is immaterial) but not commutative 
(relationship A:B 1:N is not same as A:B N:1) 



  

Pullback – x10 Natural
Bank Account Transactions

U

   1:N

C company, B branch, U user, A account, P procedure, T transaction

10 pullbacks: Pb1, Pb2, Pb3, Pb4
Pb2 X Pb1, Pb3 X Pb2, Pb4 X Pb3
Pb3 X Pb2 X Pb1, Pb4 X Pb3 X Pb2
Pb4 X Pb3 X Pb2 X Pb1

For our purposes, a pasted pullback
is only a valid pullback if all inner and 
outer diagrams are pullbacks 

N:M and 1:N are
handled by same 
pullback structure



  

Data Structuring with Pullbacks 

● Pasting of pullbacks is desirable when the 
related entities have stand-alone existence e.g. 
(Bank) Branch and User

● Expansion of information on an entity, as 
through hierarchies, may be best handled by 
nesting pullback structures recursively

● This is still an experimental area and another 
example will increase perspective



  

A Topos for Music
● Music is viewed as a communication of some 

manuscript by communicators
● The topos is relatively static (compared to the 

monad) but being arrow-based can readily 
handle change.  

● Manuscript comprises scores and other 
intentions of composers and writers

● Includes musical notation (typeset, handwritten or digital) 
or more spontaneous formats

● Communicators comprise performers and other 
aspects of performance

● Includes an orchestra, group, recording company



  

Topos of Manuscript by Performers 
in Context of Delivery

● Pullback top E

M is category for Manuscript, O for Orchestra, D for Delivery



  

Each of the nodes can be expanded 
1

● M (Manuscript) could be 

S is category for Score, C for Composer, V for Version (variant)



  

Each of the nodes can be expanded 
2

● O (Orchestra) could be

A is category for Assemblage, N for Named Musician, 
R for Role



  

Each of the nodes can be expanded 
3

● D (Delivery) could be:

L is category for Location, H for Hall, 
T for Time



  

Notes on Expansions

● The nodes in the top diagram E are pullbacks in 
their own right

● Need to match across the various nested levels 
with the logic

● The top digram is effectively a pullback of 
pullbacks as shown next



  

The Topos E

● Overall Pullback E

The nodes are pullback squares
Categories may be nested further



  

External Process

● Metaphysics (Whitehead)
● Transaction (universe, information system)
● Activity

– Can be very complex but the whole is viewed as 
atomic – binary outcome – succeed or fail

– Before and after states must be consistent in terms 
of rules

– Intermediate results are not revealed to others

– Results persist after end



  

Multiple 'Cycles' to represent 
adjointness

● Three ‘cycles’ GFGFGF: 

– Assessing unit η in L and counit ε in R to ensure overall 
consistency 

– 'Cycles' are performed simultaneously (a snap, not each 
cycle in turn)

–  Conceptually cycle 1 for execution, 2 for review, 3 for tidy-
up

η: 1L  GF(L) ε: FG(R)  1R

η

ε

F -| G



  

Failure in Adjointness

● Means transaction has failed
● Communication is suspended
● Restart is necessary at some convenient point 

(Rollback)
● In music need to distinguish between a wrong 

note and differences in expression



  

Promising Technique - Monad
● The monad is used in pure mathematics for 

representing process
– Has 3 'cycles' of iteration to give consistency

● The monad is also used in functional 
programming to formulate the process in an 
abstract data-type
– In the Haskell language the monad is a first-class 

construction
● Haskell B. Curry transformed functions through currying 

in the λ-calculus
● The Blockchain transaction system for Bitcoin and more 

recently other finance houses uses monads via Haskell
– Reason quoted: it is a simple, reliable and clean technique 

 



  

Monad can be based on an 
adjunction

● The transaction involves GF, a pair of adjoint 
functors F -| G
– F: X → Y

– G: Y → X

● GF is an endofunctor as category X is both 
source and target

● So T is GF (for monad)
● And S is FG (for comonad)



  

Monad/Comonad Overview
● Functionality for free functor T, underlying functor S

– Monad
● T3 → T2 → T (multiplication)
● 3 'cycles' of T
● In Bitcoin considered to be zooming-in 

– Comonad (dual of monad)
● S → S2 → S3 (comultiplication)
● 3 'cycles' of S 
● In Bitcoin considered to be zooming-out

● Objects:

– An endofunctor on a category E (the topos)
● Note this multiple performance matches our transaction 

approach, outlined earlier with GF performed 3 times 



  

Using the Monad Approach

● A monad is a 4-cell <1,2,3,4>
– 1 is a category E

– 2 is an endofunctor (T: E → E, functor with same 
source and target)

– 3 is the unit of adjunction η: 1
X
 → T (change, looking 

forward) 

– 4 is the multiplication μ: T X T → T (change, looking 
back)

● A monad is therefore <E, T, η, μ>



  

The Comonad
● The dual of the monad
● A comonad is a 4-cell <1,2,3,4>

– 1 is a category E

– 2 is an endofunctor (S: E → E, functor with same 
source and target, S is dual of T)

– 3 is the counit of adjunction ε: S → 1
X
 (change, 

looking back) 

– 4 is the comultiplication δ: S → S X S  (change, 
looking forward)

● A comonad is therefore <E, S, ε, δ> or <S, ε, δ>

● Both monad and comonad are often defined by a 3-
cell descriptor with the category omitted (as implicit)



  

3-cell descriptors with adjoints

● The 3-cell monad < T, η, μ>

– is written <GF, η, GεF> (last up a level for 
multiplication)

●  The 3-cell comonad <S, ε, δ>

– is written <FG, ε, FηG> (last up a level for 
comultiplication)

● The monad structure looks forward with F and η 
and backwards with G and GεF

● The comonad structure looks backwards with G 
and ε and forward with F and FηG 



  

Terminology

● A monad is often simply addressed by its 
endofunctor.

– So < T, η, μ> is called the monad T
● Similarly for the comonad

–  <S, ε, δ> is called the comonad S
● It's a synecdoche



  

Operating on a Topos

● The operation is simple:
– T: E → E

● where T is the monad <GF, η, GεF> in E, the 
topos, with input and output types the same

● The extension (data values) will vary but the 
intension (definition of type) remains the same

● Closure is achieved as the type is preserved



  

Process in Musical Performance

● The topos E defined earlier contains
– The physical notation in the category V (for Variant) 

for the music as conventionally laid out in sheet 
music (or otherwise!)

– The performers in the category R (for Role) for the 
actual musical event

● A single monad/comonad action (of 3 cycles T3) 
will take the music forward one unit of 
performance (phrase or bar), say one step 



  

Process in Musical Performance 2

● Moving from one barline to another is 
determined uniquely by the adjunction  F -| G

– F is the free functor (looking forward, 
creative) 

– G is the underlying functor (looking back, 
enforcing the rules, qualia) 



  

Process in Musical Performance 3

● If adjointness holds over the 3 cycles

–  Then η the unit of adjunction measures the 
creativity of the step going forward (dialectic)

– And ε the counit of adjunction measures the 
qualia of the step looking back (rhetoric)

● If adjointness does not hold over the 3 cycles

– Then integrity has been lost and 
resynchronization is necessary



  

Experience

● Performers do comment that playing is an 
intensive experience:
– at the same time both looking back as to what you 

have played and anticipating what is to come. 

● Such experience is captured by the 
monad/comonad structure with its 
forward/backward nature and inherent 
adjointness  



  

Composition

● A musical work is referred to as a composition.
● It is indeed a composition of steps 

– With the output from one step becoming the input to 
the next step

● The order is fixed in advance
● Composition is an inherent feature of category 

theory
● With one monad execution as a single step, it is 

necessary to compose monads to perform a full 
work



  

Therefore composability is the Key

● Compose many monads together to give the 
power of adjointness over a whole wide-ranging 
application

● In banking with Bitcoin the reliability obtained 
from composing processes over a wide-range 
of machines (distributed data recovery) justifies 
the move to Category Theory



  

Blockchain 1

● The categorial monadic approach is being used 
for the Blockchain [Meredith], a transaction 
system, adopted by Bitcoin, for keeping 
hundreds or even thousands of copies of each 
transaction record, using multiple transaction 
logs. 

● The monadic design pattern provides a broad 
range of transactional semantics with 
composition the key to scaling any system. 



  

Blockchain 2

● The blockchain approach is drawing interest 
from the established banking industry, where a 
blockchain is viewed as a shared, encrypted 
`ledger' that cannot be manipulated, offering 
promise for secure transactions. 

● Meredith indicates that compositionality is the 
key to reliability but offers few details on how 
this is achieved in the monad.



  

Monad Composition needs Care

● There is a problem though in EML (Eilenberg/ 
Mac Lane) Category Theory:
– Monads do not compose naturally



  

Haskell and Monads

● Kleisli Category of a Monad
– Transforms a monad into a monadic form more 

suitable for implementation in a functional language
● Used in Haskell rather than the pure mathematics form of 

Mac Lane

● Strengthens the monad for composability
– As in the Cartesian Monad, with products

● A practical application of the pure maths has 
exposed problems in the maths

● Solution has come from another pure 
mathematician Kleisli



  

Kleisli Lift

● Define a natural transformation:

– τ
A,B

: A X TB → T (A X B) where A,B are objects in X 

and T is the monad such that the following diagram 
commutes 

There is a problem
with distributivity
In EML



  

Cartesian Monads in Music

● Take each barline, or some other time 
signature, as a unit of process
– Such a barline will be Cartesian, representing the 

potentially complex physics of the music
● Combinations of notes, including chords

● Therefore Cartesian Monads as strengthened 
by the Kleisli Lift are essential for composition 
purposes



  

Summary of Progress
● Topos has been established as data-type of 

choice
– Design with pasted pullbacks and recursive 

pullbacks is being explored

– Dolittle diagrams at bottom level provide 
intension/extension mapping

● Monad can process the topos
– Readily as a single step

– A Cartesian Monad requires the Kleisli lift for 
multiple composition 

● Advent of Monads in Haskell gives an 
experimental test-bed



  

Look Forward

● Music application to be developed further
– More contact with real musicians

– Topos should be elaborated
● As general as possible
● Construction of Dolittle diagrams for intension/extension

– Clarification of monad/comonad role
● Describing process in more detail
● Recognition of time jitter
● Understanding of dialectic/rhetoric balance

● Knowledge gained to be fed into general 
advance in utilising category theory
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