Music as a Composition of Cartesian Monad over a Topos

Nick Rossiter
Visiting Fellow
Computing Science and Digital Technologies
Northumbria University

ANPA 38
St John's College,
Rowlands Castle, Hampshire, UK
10 August 2017
Acknowledgements

• Michael Heather
• Michael Brockway
• Members of the Royal Northern Sinfonia, The Sage, Gateshead
Outline of Presentation

• The work to be presented builds on that presented at ANPA 37, taking up the challenge of a testing application for the Cartesian monad approach to universal design.

• The monad presents a musical performance as a composition over time signatures, such as barlines, with the monad looking forward/back and its associated comonad looking back/forward.
Outline of Presentation 2

• The physical characteristics of the notes in each time-frame are complex, so it is necessary to use a strong Cartesian monad, facilitating the representation of each time-frame as a product.

• The monad is process, handling dynamic aspects. The category upon which the monad operates will be a topos holding relatively static information such as the players, the score and the venue, together with the relationships between them.
Outline of Presentation 3

- The topos is far from totally static with its arrows facilitating flexibility in all information held, including relationships; the topos is also searchable through the subobject classifier.

- There is no assumption of any particular musical genre.

- Such a categorial framework could be implemented in the functional programming language Haskell in a similar way to the banking example.
The Topos – Structural Data-type

- Based on Cartesian Closed Category (CCC)
 - Products; Closure at top; Connectivity (exponentials); Internal Logic; Identity; Interchangeability of levels

- If we add:
 - Subobject classifier
 - Internal logic of Heyting (intuitionistic)
 - Reflective subtopos (query closure)

- We get a Topos
Examples

- **Student Marks**
 - Simple pullback (1 square)

- **Bank Transactions**
 - Simple pullback (1 square)
 - Pasted pullback (2 pasted squares, 3 pullbacks)
 - Pasted pullback (4 pasted squares, 10 pullbacks)
Pullback - Single Relationship
Student Marks by Grade
Pullback - Single Relationship
Constraints

- $S \times_G M$ (Student X_{Grade} Mark)

- Logic of adjointness: $\exists \Delta \vdash \forall$
 - Δ selects pairs of S and M in a relationship in context of G
 - Such that $\exists \Delta$ and $\Delta \vdash \forall$

- Projections π are from product, left and right (dual π^*)

- Inclusions ι are into sum $S+M+G$, left and right (dual ι^{-1})

- S, M, G are categories, with internal pullback structure, giving recursive pullbacks

- η is the unit of adjunction (creativity), ε is the counit of adjunction (qualia)
Recursive Pullbacks

A node of a pullback may itself be a pullback.

Each node in the pullback for Student over Marks in context of Grade is itself a pullback, giving a recursive structure.

These are Dolittle diagrams (pulation squares). See Adámek, 1990 (p.205), Herrlich 2007, Freyd 1990.
The Story of Dr Dolittle by Hugh Lofting (1920), Pushmi-pullyu.
Endofunctors relate top (intension) to bottom (extension).
Each pullback node should decompose ultimately into a Dolittle diagram.
Dolittle Diagram for Category S^+

- id is the key (identifier) for a student
- S^+ is all information held on a student
- S^+ is name + _id_ address
Pullback - Single Relationship:
Bank Transactions by Procedure and Account
Pullback - Single Relationship Details

- $P X_T A$ (Procedure $X_{\text{Transaction}}$ Account)
 - Procedure is type of transaction: e.g. standing order, direct debit, ATM cash withdrawal
 - Account can belong to many users
 - Transaction is item for transfer of funds according to ACID requirements

- P, A, T are categories, with internal pullback structure, giving recursive pullbacks
Pullback - Two Pasted Relationships: Bank Transactions by User/Account

Three Pullbacks
Pb1, Pb2, Pb2 X Pb1

Usually written in horizontal (landscape) form. Vertical layout enables deep nested structures to be represented more readily

Pasting condition for Pb2 X Pb1: $i = \pi r$ after Freyd's Pasting Lemma

For our purposes, a pasted pullback is only a valid pullback if all inner and outer diagrams are pullbacks
Pasting is associative (order of evaluation is immaterial) but not commutative (relationship A:B 1:N is not same as A:B N:1)
Pullback – x10 Natural Bank Account Transactions

10 pullbacks: Pb1, Pb2, Pb3, Pb4

Pb2 X Pb1, Pb3 X Pb2, Pb4 X Pb3

Pb3 X Pb2 X Pb1, Pb4 X Pb3 X Pb2

Pb4 X Pb3 X Pb2 X Pb1

For our purposes, a pasted pullback is only a valid pullback if all inner and outer diagrams are pullbacks.

C company, B branch, U user, A account, P procedure, T transaction

N:M and 1:N are handled by same pullback structure
Data Structuring with Pullbacks

• Pasting of pullbacks is desirable when the related entities have stand-alone existence e.g. (Bank) Branch and User

• Expansion of information on an entity, as through hierarchies, may be best handled by nesting pullback structures recursively

• This is still an experimental area and another example will increase perspective
A Topos for Music

- Music is viewed as a communication of some manuscript by communicators.
- The topos is relatively static (compared to the monad) but being arrow-based can readily handle change.
- Manuscript comprises scores and other intentions of composers and writers.
 - Includes musical notation (typeset, handwritten or digital) or more spontaneous formats.
- Communicators comprise performers and other aspects of performance.
 - Includes an orchestra, group, recording company.
Topos of Manuscript by Performers in Context of Delivery

- Pullback top E

M is category for Manuscript, O for Orchestra, D for Delivery
Each of the nodes can be expanded

- M (Manuscript) could be

S is category for Score, C for Composer, V for Version (variant)
Each of the nodes can be expanded

- O (Orchestra) could be

A is category for Assemblage, N for Named Musician, R for Role
Each of the nodes can be expanded

- D (Delivery) could be:

L is category for Location, H for Hall, T for Time
Notes on Expansions

- The nodes in the top diagram E are pullbacks in their own right.
- Need to match across the various nested levels with the logic.
- The top diagram is effectively a pullback of pullbacks as shown next.
The Topos E

- Overall Pullback E

The nodes are pullback squares
Categories may be nested further
External Process

• Metaphysics (Whitehead)
• Transaction (universe, information system)
• Activity
 - Can be very complex but the whole is viewed as atomic – binary outcome – succeed or fail
 - Before and after states must be consistent in terms of rules
 - Intermediate results are not revealed to others
 - Results persist after end
Multiple 'Cycles' to represent adjointness

- Three ‘cycles’ GFGFGF:
 - Assessing unit η in L and counit ε in R to ensure overall consistency
 - 'Cycles' are performed simultaneously (a snap, not each cycle in turn)
 - Conceptually cycle 1 for execution, 2 for review, 3 for tidy-up

\[\eta: 1_L \to GF(L) \quad \varepsilon: FG(R) \to 1_R \]
Failure in Adjointness

- Means transaction has failed
- Communication is suspended
- Restart is necessary at some convenient point (Rollback)
- In music need to distinguish between a wrong note and differences in expression
Promising Technique - Monad

• The monad is used in pure mathematics for representing process
 – Has 3 'cycles' of iteration to give consistency

• The monad is also used in functional programming to formulate the process in an abstract data-type
 – In the Haskell language the monad is a first-class construction
 • Haskell B. Curry transformed functions through currying in the λ-calculus
 • The Blockchain transaction system for Bitcoin and more recently other finance houses uses monads via Haskell
 – Reason quoted: it is a simple, reliable and clean technique
Monad can be based on an adjunction

- The transaction involves GF, a pair of adjoint functors $F -| G$
 - $F: X \to Y$
 - $G: Y \to X$

- GF is an endofunctor as category X is both source and target

- So T is GF (for monad)

- And S is FG (for comonad)
Monad/Comonad Overview

- Functionality for free functor T, underlying functor S
 - Monad
 - $T^3 \rightarrow T^2 \rightarrow T$ (multiplication)
 - 3 'cycles' of T
 - In Bitcoin considered to be zooming-in
 - Comonad (dual of monad)
 - $S \rightarrow S^2 \rightarrow S^3$ (comultiplication)
 - 3 'cycles' of S
 - In Bitcoin considered to be zooming-out
- Objects:
 - An endofunctor on a category E (the topos)
- Note this multiple performance matches our transaction approach, outlined earlier with GF performed 3 times
Using the Monad Approach

- A monad is a 4-cell \(\langle 1, 2, 3, 4 \rangle \)
 - 1 is a category \(E \)
 - 2 is an endofunctor (\(T: E \to E \), functor with same source and target)
 - 3 is the unit of adjunction \(\eta: 1_X \to T \) (change, looking forward)
 - 4 is the multiplication \(\mu: T \times T \to T \) (change, looking back)

- A monad is therefore \(\langle E, T, \eta, \mu \rangle \)
The Comonad

- The dual of the monad
- A comonad is a 4-cell <1,2,3,4>
 - 1 is a category E
 - 2 is an endofunctor (S: E \rightarrow E, functor with same source and target, S is dual of T)
 - 3 is the counit of adjunction \(\varepsilon: S \rightarrow 1_X \) (change, looking back)
 - 4 is the comultiplication \(\delta: S \rightarrow S \times S \) (change, looking forward)
- A comonad is therefore <E, S, \varepsilon, \delta> or <S, \varepsilon, \delta>
- Both monad and comonad are often defined by a 3-cell descriptor with the category omitted (as implicit)
3-cell descriptors with adjoints

- The 3-cell monad <T, \eta, \mu>
 - is written <GF, \eta, G\varepsilon F> (last up a level for multiplication)
- The 3-cell comonad <S, \varepsilon, \delta>
 - is written <FG, \varepsilon, F\eta G> (last up a level for comultiplication)
- The monad structure looks forward with F and \eta and backwards with G and G\varepsilon F
- The comonad structure looks backwards with G and \varepsilon and forward with F and F\eta G
Terminology

• A monad is often simply addressed by its endofunctor.
 - So $< T, \eta, \mu >$ is called the monad T
• Similarly for the comonad
 - $< S, \varepsilon, \delta >$ is called the comonad S
• It's a synecdoche
Operating on a Topos

• The operation is simple:
 - \(T : E \rightarrow E \)
 - where \(T \) is the monad \(<GF, \eta, G\epsilon F>\) in \(E \), the topos, with input and output types the same
• The extension (data values) will vary but the intension (definition of type) remains the same
• Closure is achieved as the type is preserved
Process in Musical Performance

• The topos E defined earlier contains
 – The physical notation in the category V (for Variant) for the music as conventionally laid out in sheet music (or otherwise!)
 – The performers in the category R (for Role) for the actual musical event

• A single monad/comonad action (of 3 cycles T^3) will take the music forward one unit of performance (phrase or bar), say one step
Process in Musical Performance 2

- Moving from one barline to another is determined uniquely by the adjunction $F \dashv G$
 - F is the free functor (looking forward, creative)
 - G is the underlying functor (looking back, enforcing the rules, qualia)
Process in Musical Performance 3

• If adjointness holds over the 3 cycles
 – Then η the unit of adjunction measures the creativity of the step going forward (dialectic)
 – And ϵ the counit of adjunction measures the qualia of the step looking back (rhetoric)

• If adjointness does not hold over the 3 cycles
 – Then integrity has been lost and resynchronization is necessary
Experience

- Performers do comment that playing is an intensive experience:
 - at the same time both looking back as to what you have played and anticipating what is to come.

- Such experience is captured by the monad/comonad structure with its forward/backward nature and inherent adjointness.
Composition

• A musical work is referred to as a composition.
• It is indeed a composition of steps
 – With the output from one step becoming the input to the next step
• The order is fixed in advance
• Composition is an inherent feature of category theory
• With one monad execution as a single step, it is necessary to compose monads to perform a full work
Therefore composability is the Key

- Compose many monads together to give the power of adjointness over a whole wide-ranging application
- In banking with Bitcoin the reliability obtained from composing processes over a wide-range of machines (distributed data recovery) justifies the move to Category Theory
Blockchain 1

- The categorial monadic approach is being used for the Blockchain [Meredith], a transaction system, adopted by Bitcoin, for keeping hundreds or even thousands of copies of each transaction record, using multiple transaction logs.

- The monadic design pattern provides a broad range of transactional semantics with composition the key to scaling any system.
Blockchain 2

• The blockchain approach is drawing interest from the established banking industry, where a blockchain is viewed as a shared, encrypted `ledger' that cannot be manipulated, offering promise for secure transactions.

• Meredith indicates that compositionality is the key to reliability but offers few details on how this is achieved in the monad.
Monad Composition needs Care

• There is a problem though in EML (Eilenberg/Mac Lane) Category Theory:
 – Monads do not compose naturally
Haskell and Monads

• Kleisli Category of a Monad
 – Transforms a monad into a monadic form more suitable for implementation in a functional language
 • Used in Haskell rather than the pure mathematics form of Mac Lane
• Strengthens the monad for composability
 – As in the Cartesian Monad, with products
• A practical application of the pure maths has exposed problems in the maths
• Solution has come from another pure mathematician Kleisli
Define a natural transformation:

\[\tau_{A,B} : A \times TB \to T(A \times B) \]

where \(A, B\) are objects in \(X\) and \(T\) is the monad such that the following diagram commutes

There is a problem with distributivity in EML.
Cartesian Monads in Music

• Take each barline, or some other time signature, as a unit of process
 – Such a barline will be Cartesian, representing the potentially complex physics of the music
 • Combinations of notes, including chords
• Therefore Cartesian Monads as strengthened by the Kleisli Lift are essential for composition purposes
Summary of Progress

- Topos has been established as data-type of choice
 - Design with pasted pullbacks and recursive pullbacks is being explored
 - Dolittle diagrams at bottom level provide intension/extension mapping
- Monad can process the topos
 - Readily as a single step
 - A Cartesian Monad requires the Kleisli lift for multiple composition
- Advent of Monads in Haskell gives an experimental test-bed
Look Forward

- Music application to be developed further
 - More contact with real musicians
 - Topos should be elaborated
 - As general as possible
 - Construction of Dolittle diagrams for intension/extension
 - Clarification of monad/comonad role
 - Describing process in more detail
 - Recognition of time jitter
 - Understanding of dialectic/rhetoric balance
- Knowledge gained to be fed into general advance in utilising category theory