Outline of Presentation

• Basic categorical facilities identified for the Universe
 – The Topos (structural data-type)
 – The Monad (process)

• Applying the monad to a topos
 – Alternative Techniques
 – Application

• Discussion
The Topos – Structural Data-type

• Based on Cartesian Closed Category (CCC)
 – Products; Closure at top; Connectivity (exponentials); Internal Logic; Identity; Interchangeability of levels

• If we add:
 – Subobject classifier
 – Internal logic of Heyting (intuitionistic)
 – Reflective subtopos (query closure)

• We get a Topos
Topos: further work identified 2-years ago and now

• Data Process
 – Queries within a topos – use of subobject classifier, particularly with power objects
 – Examples of Heyting intuitionistic logic
 – Applying process to a topos

• Database design
 – Cocartesian approach
 – Pasting of pullbacks
 – Recursive pullbacks
 – Allegories
Progress

Data Process
- **Queries within a topos**
 - ANPA 36: Subobject classifier extended to power-objects for generality
- **Heyting examples, internal logic**
 - Stalled for while but now restarted
- **External process on a topos**
 - Today’s topic, monads

Database Design
- **Cocartesian**
 - For normalisation, not now a priority as thought to be categorification below 5NF
- **Pasting of pullbacks**
 - ANPA 36: Expressed in complex, more realistic design, satisfies 5NF
- **Recursive pullbacks**
 - ANPA 35: Represent different levels of detail
- **Allegories**
 - ANPA 36: Explored, not useful in natural IS but significant for interoperability
Normalization

- Match in data design between logical and physical world.
- Many stages of normal forms in set-theoretic relational model: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF.
- Only last need concern us here.
- 5NF is also known as Project-Join Normal Form
5NF (PJNF) is a Pullback Diagram

- Structure is in 5NF if its projections can be joined to return the original structure.
- Projection is decomposition of a product
- Join is Δ, diagonal from coproduct to product
- Mark Levene & Millist W Vincent evidently consider pullbacks with normalisation
- Simple pullback (two projections, one join) is trivial
- More complex (realistic) examples are handled by pasted pullbacks
Examples

• Student Marks
 – Simple PJ/NF (single pullback)

• Bank Transactions
 – Simple PJ/NF (single pullback)
 – Simple pasted PJ/NF (2 pasted squares, 3 pullbacks)
 – Complex PJ/NF (5 pasted squares, 10 pullbacks)
 – Complex structure (5 pasted squares, not valid pullback)
Pullback - Single Relationship
Student Marks

\[
\begin{array}{cccc}
S & \times_R & M & S \\
\Pi_l^* & \rightarrow & \Pi_l & \rightarrow \exists \\
\Pi_r^* & \rightarrow & \Pi_r & \rightarrow \Delta \\
& & \Lambda & \\
\end{array}
\]
Pullback - Single Relationship Constraints

- $SX_R M$ (Student X_{Result} Mark)

- Logic of adjointness: $\exists \models \Delta \models \forall$
 - Δ selects pairs of S and M in a relationship in context of R
 - Such that $\exists \models \Delta$ and $\Delta \models \forall$
 - Termed by Lawvere as a hyperdoctrine

- Projections π are from product, left and right (dual π^*)

- Inclusions ι are into sum $S+M+R$, left and right (dual ι^{-1})

- S, M, R are categories, with internal pullback structure, giving recursive pullbacks
Recursive Pullbacks

A node of a pullback may itself be a pullback.

Each node in the pullback for Student over Marks in context of Result is itself a pullback, giving a recursive structure.

Figure 13: Internal Structure of Categories: a) The Pullback in S. S_X is $\text{id} \times_{S^+} \text{id}$, S^+ is name + id address. b) The Pullback in M. M_X is $\text{no} \times_{M^+} \text{no}$, M^+ is title + no grade, c) The Pullback in R. R_X is $\text{id} \times_{O^+} \text{no}$, R^+ is mark + id + no decision.
Pullback - Single Relationship: Bank Transactions by Account and Procedure
Pullback - Single Relationship Details

- $P \times T \times A$ (Procedure $X_{\text{Transaction}}$ Account)
 - Procedure is type of transaction: e.g. standing order, direct debit, ATM cash withdrawal
 - Account can belong to many users
 - Transaction is item for transfer of funds according to ACID requirements

- P, A, T are categories, with internal pullback structure, giving recursive pullbacks
Pullback - Two Pasted Relationships: Bank Transactions by User/Account

Three Pullbacks
Pb1, Pb2, Pb2 \times Pb1

\((P \times T, A) \times A U \)
\(P \)
\(\Pi_i \)
\(\Pi_f \)
\(\Pi_l \)
\(\Pi_r \)
\(U \)
\(\pi_l' = \pi_r' \) after Freyd's Pasting Lemma

Usually written in horizontal (landscape) form. Vertical layout enables deep nested structures to be represented more readily

Pasting condition for Pb2 \times Pb1: \(\pi_i = \pi_r \) after Freyd's Pasting Lemma

For our purposes, a pasted pullback is only a valid pullback if all inner and outer diagrams are pullbacks
Pasting is associative (order of evaluation is immaterial) but not commutative (relationship A:B 1:N is not same as A:B N:1)
Pullback – x10 Natural Bank Account Transactions

10 pullbacks: Pb1, Pb2, Pb3, Pb4

For our purposes, a pasted pullback is only a valid pullback if all inner and outer diagrams are pullbacks.
Invalid Pullback

Invalid as not all squares are pullbacks

For instance \(P \times_T A \times_A B \) is not a pullback

\[
(P_X A) \times_A B \quad \xrightarrow{\Pi_r} \quad B \\
\downarrow \quad \quad \downarrow \Pi_r \\
(P_X T A) \quad \xrightarrow{\Pi_l} \quad (B \times_A U) \\
\downarrow \quad \quad \downarrow \Pi_r \\
P \quad \xrightarrow{\Pi_l} \quad U \\
\downarrow \quad \quad \downarrow \Pi_r \\
T \]}
Adjointness Holds for all Pullbacks

∃ Δ ∀ for this outer pullback and all other 9 inner pullbacks
Pasting Pullbacks – Discussion 1

- All diagrams commute
- All diagrams, inner or outer, are pullbacks
 - In pure maths, the condition is relaxed a little
 - Not appropriate for applied
- Structure is recursive
 - A pullback node may be a pullback structure in its own right
 - No limit to recursion
Pasting Pullbacks – Discussion 2

• Meets all Information System requirements as in 5NF (Project-Join)
 - Pullback is project-join through \(\Pi \) and \(\Delta \)
 - Not categorification of set-theoretic approach
 - 5NF was a belated move by set-theoretic adherents to find a viable approach, which happened to follow category theory principles

• Pasting condition appears to be:
 - \(l_i' = \pi_r \) (left-inclusion of outer square = right-projection of inner square)
 - Discussed further later
Pasting Pullbacks – Discussion 3

- Pasted structure
 - is a Cartesian Closed Category (CCC) with products, terminal object and exponentials
 - is a topos as a CCC with subobject classifier and internal Heyting Logic

- The subobject classifier provides an internal query language
The Pasting Condition 1

- \(l'_L = \pi_r \) (left-inclusion of outer square = right-projection of inner square
 - Looks rather set theoretic

- But any pullback can be represented as an equalizer (ncatlab)
Equalizer for Pullback

\[\text{Maps relation onto product onto context via 2 paths through pullback} \]
The Pasting Condition 2

Similarly for a pasted pullback, the equaliser is

\[(P X_T A) X_A U \rightarrow (P X_T A) X U \rightarrow A\]

Equals in sets is undefined as context is not defined.

Equaliser in categories, as a limit, is fully defined up to natural isomorphism.
Subobject Classifier – Searching within a Topos - Boolean example

Ω \{0,1\} is subobject classifier; subobjects classified as either 0 or 1

X_j characteristic function is query mapping from object S to \{0,1\}, false or true

1_{\text{topos}} is terminal object of topos (handle on topos)

j is mapping from subtopos U (result of query) to object S

Diagram is actually a pullback of true along X_j.

U is 1_{\text{topos}} \times_{\Omega \{0,1\}} S

U is the identity of the subtopos, giving query closure
External Process

- Metaphysics (Whitehead)
- Transaction (universe, information system)
- Activity
 - Can be very complex but the whole is viewed as atomic – binary outcome – succeed or fail
 - Before and after states must be consistent in terms of rules
 - Intermediate results are not revealed to others
 - Results persist after end
Transaction is standard way of defining a Process

- **Principles of ACID**
 - Atomicity, Consistency, Isolation, Durability
- **Logical technique for controlling the physical world**
 - e.g. banking transaction
- **Requires three cycles of adjointness between initial and target state**
- **First two for atomicity, consistency and isolation**
 - First makes changes; second reviews changes
- **Third for durability**
Transaction in Category Theory

• In earlier work (ANPA 2010) we used adjointness to represent a transaction
 – Employing multiple cycles to capture ACID

• The aim now is to abstract this work using the monad, which we earlier described as the way forward

• The monad is an extension of the monoid to multiple levels
 – Monoid: $M \times M \to M$, $1 \to M$ (binary multiplication, unit)
Multiple 'Cycles' to represent adjointness

- Three ‘cycles’ GFGFGF:
 - Assessing unit η in L and counit ε in R to ensure overall consistency
 - 'Cycles' are performed simultaneously (a snap, not each cycle in turn)

\[
\eta: 1_L \rightarrow GF(L) \quad \varepsilon: FG(R) \rightarrow 1_R
\]
Promising Technique - Monad

- The monad is used in pure mathematics for representing process
 - Has 3 'cycles' of iteration to give consistency
- The monad is also used in functional programming to formulate the process in an abstract data-type
 - In the Haskell language the monad is a first-class construction
 - Haskell B. Curry transformed functions through currying in the λ-calculus
 - The Blockchain transaction system for Bitcoin and more recently other finance houses uses monads via Haskell
 - Reason quoted is it's a simple and clean technique
Monad/Comonad Overview

• Functionality:
 - Monad
 • $T^3 \rightarrow T^2 \rightarrow T$ (multiplication)
 • 3 'cycles' of T, looking back
 - Comonad (dual of monad)
 • $S \rightarrow S^2 \rightarrow S^3$ (comultiplication)
 • 3 'cycles' of S, looking forward

• Objects:
 - An endofunctor on a category X
Using the Monad Approach

- A monad is a 4-cell \(<1,2,3,4>\>
 - 1 is a category \(X\)
 - 2 is an endofunctor (\(T: X \rightarrow X\), functor with same source and target)
 - 3 is the unit of adjunction \(\eta: 1_X \rightarrow T\) (change, looking forward)
 - 4 is the multiplication \(\mu: T \times T \rightarrow T\) (change, looking back)
- A monad is therefore \(<X, T, \eta, \mu>\)
The Monad as a 'triple'

- A monad is sometimes called a triple as by Barr & Wells. Term disliked by some as too set theoretic, e.g. Mac Lane
- Why a triple when 4 terms above?
- \(<X, T, \eta, \mu>\) is reduced to
 - \(<T, \eta, \mu>\) as category X is implicit in T
- True to the spirit of category theory a monad works over 3 levels, as 3 levels gives naturality
- So the laws we are going to see involve T (endofunctor performed once), \(T^2\) (performed twice) and \(T^3\) (performed 3 times)
- Note this multiple performance matches our transaction approach, outlined earlier with GF performed 3 times
The Comonad

- The dual of the monad
- A comonad is a 4-cell $<1,2,3,4>$
 - 1 is a category X
 - 2 is an endofunctor ($S: X \rightarrow X$, functor with same source and target, S is dual of T)
 - 3 is the counit of adjunction $\varepsilon: S \rightarrow 1_X$ (change, looking back)
 - 4 is the comultiplication $\delta: S \rightarrow S \times S$ (change, looking forward)
- A comonad is therefore $<X, S, \varepsilon, \delta>$ or $<S, \varepsilon, \delta>$
Laws for the Monad

- Book-keeping
- Associative Law
- Unit Law
Associative Law for Monad

- The laws involve T^3 (3 ‘cycles’) with the Associative law:

a) Associative law for monad $\langle T, \eta, \mu \rangle$; b) Associative law for comonad $\langle S, \varepsilon, \delta \rangle$
Unitary Law for Monads

• The diagram commutes

Figure 13: Left and Right Unitary Laws for Monad $T = \langle T, \eta, \mu \rangle$
Monad can be based on an adjunction

- The transaction involves GF, a pair of adjoint functors F -| G
 - F: X → Y
 - G: Y → X
- GF is an endofunctor as category X is both source and target
- So T is GF (for monad)
- And S is FG (for comonad)
3-cell descriptors with adjoints

- The 3-cell monad \(< T, \eta, \mu>\)
 - is written \(<GF, \eta, G\varepsilon F>\) (last up a level for multiplication)

- The 3-cell comonad \(<S, \varepsilon, \delta>\)
 - is written \(<FG, \varepsilon, F\eta G>\) (last up a level for comultiplication)
Terminology

- A monad is often simply addressed by its endofunctor.
 - So \(< T, \eta, \mu>\) is called the monad \(T\)
- Similarly for the comonad
 - \(<S, \varepsilon, \delta>\) is called the comonad \(S\)
- It's a synecdoche
Operating on a Topos

• The operation is simple:
 - T: E → E'
 • where T is the monad <GF, η, GεF> in E, the topos, with input and output types the same

• The extension (data values) will vary but the intension (definition of type) remains the same

• Closure is achieved as the type is preserved
The T-algebras – Changing the Definition

• More fundamental change to the operand (X or E)
• Produces a new consistent state of adjunction with modified intension
• The T-algebras manipulate the category X, when defined within a monad T
• They were developed in work by Eilenberg & Moore published in 1965
T-algebra defined

- For a category X, not necessarily a topos, in the monad $<X, T, \eta, \mu>$, the effect is to obtain:
 - $<G^T F^T, \eta^T, G^T \varepsilon^T F^T>: X \to X^T$
- That is a new monad adjunction $F^T \dashv G^T$ is defined to accommodate the changed category X^T
- For a topos E, this is equivalent to a change to E^T
 - $<G^T F^T, \eta^T, G^T \varepsilon^T F^T>: E \to E^T$
The T-algebra

- For a monad $<T, \eta, \mu>$ in X
- A T-algebra is:
 - $<x, h>$
- Where x is an object in X
- And $h: Tx \rightarrow x$ is the structure map of the algebra
- Such that the following diagrams commute
T-algebra: Associative/Unitary Laws

Both diagrams must commute for T to be a monad
Other Monadic features

- **Kleisli Category of a Monad**
 - Transforms a monad into a form more suitable for implementation in a functional language
 - Used in Haskell rather than the pure mathematics form of Mac Lane

- **Beck's Theorem**
 - Provides rules on which categorial transformations in the T-algebra $X \rightarrow X^T$ are valid.
 - Sometimes called PTT (Precise Tripleability Theorem)
Cartesian Monads

• If underlying categories are pullbacks
 - AND T preserves pullbacks
 - AND μ and η are Cartesian

• Then the monad is Cartesian
 - Facilitates its use in transformations where a Cartesian type is expected
Summary of Progress

- Topos has been established as data-type of choice
- Monad shows potential for processing the topos and for transforming the topos

Areas for attention:
- Intension/extension in topos, including pullbacks, subobject classifier and operations by the monad
- Exploring usefulness of additional work on monads including those mentioned here: T-algebra, Kleisli, Beck and Cartesian monad