# Monadic Design for Universal Systems 

Nick Rossiter<br>Visiting Fellow<br>Computing Science and Digital Technologies<br>Northumbria University

ANPA 37 (August 2016, modified August 2017)

## Outline of Presentation

- Basic categorical facilities identified for the Universe
- The Topos (structural data-type)
- The Monad (process)
- Applying the monad to a topos
- Alternative Techniques
- Application
- Discussion


## The Topos - Structural Data-type

- Based on Cartesian Closed Category (CCC)
- Products; Closure at top; Connectivity (exponentials); Internal Logic; Identity; Interchangeability of levels
- If we add:
- Subobject classifier
- Internal logic of Heyting (intuitionistic)
- Reflective subtopos (query closure)
- We get a Topos


## Topos: further work identified 2years ago and now

- Data Process
- Queries within a topos - use of subobject classifier, particularly with power objects
- Examples of Heyting intuitionistic logic
- Applying process to a topos
- Database design
- Cocartesian approach
- Pasting of pullbacks
- Recursive pullbacks
- Allegories


## Progress

## Data Process

Queries within a topos

Heyting examples, internal logic

## External process on a topos

## Database Design

Cocartesian

Pasting of pullbacks
Recursive pullbacks
Allegories

ANPA 36: Subobject classifier extended to power-objects for generality

Stalled for while but now restarted
Today's topic, monads

For normalisation, not now a priority as thought to be categorification below 5NF ANPA 36: Expressed in complex, more realistic design, satisfies 5NF
ANPA 35: Represent different levels of detail ANPA 36: Explored, not useful in natural IS but significant for interoperability

## Normalization

- Match in data design between logical and physical world.
- Many stages of normal forms in set-theoretic relational model:1NF, 2NF, 3NF, BCNF, 4NF, 5NF.
- Only last need concern us here.
- 5NF is also known as Project-Join Normal Form


## 5NF (PJNF) is a Pullback Diagram

- Structure is in 5 NF if its projections can be joined to return the original structure.
- Projection is decomposition of a product
- Join is $\Delta$, diagonal from coproduct to product
- Mark Levene \& Millist W Vincent evidently consider pullbacks with normalisation
- Simple pullback (two projections, one join) is trivial
- More complex (realistic) examples are handled by pasted pullbacks


## Examples

- Student Marks
- Simple PJ/NF (single pullback)
- Bank Transactions
- Simple PJ/NF (single pullback)
- Simple pasted PJ/NF (2 pasted squares, 3 pullbacks)
- Complex PJ/NF (5 pasted squares, 10 pullbacks)
- Complex structure (5 pasted squares, not valid pullback)


## Pullback - Single Relationship Student Marks



## Pullback - Single Relationship Constraints

- $\mathrm{SX}_{\mathrm{R}} \mathrm{M}$ (Student $X_{\text {Result }}$ Mark)
- Logic of adjointness: $\exists \dashv \Delta \dagger \forall$
- $\Delta$ selects pairs of $S$ and $M$ in a relationship in context of R
- Such that $\exists \dagger \Delta$ and $\Delta \dagger \forall$
- Termed by Lawvere as a hyperdoctrine
- Projections $\pi$ are from product, left and right (dual $\pi^{*}$ )
- Inclusions I are into sum $\mathrm{S}+\mathrm{M}+\mathrm{R}$, left and right (dual $\mathrm{I}^{-1}$ )
- S, M, R are categories, with internal pullback structure, giving recursive pullbacks


## Recursive Pullbacks

A node of a pullback may itself
be a pullback


Figure 13: Internal Structure of Categories: a) The Pullback in S. $S_{X}$ is id $\times_{S+}$ id, $S^{+}$ is name $+_{\mathrm{id}}$ address. b) The Pullback in M. $M_{X}$ is no $\times_{M+}$ no, $M^{+}$is title + no grade, c) The Pullback in R . $R_{X}$ is id $\times_{O+}$ no, $R^{+}$is mark $+_{\mathrm{id}+\text { no }}$ decision.

Each node in the pullback for Student over Marks in context of Result is itself a pullback, giving a recursive structure

## Pullback - Single Relationship: Bank Transactions by Account and Procedure



## Pullback - Single Relationship Details

- $P X_{T} A$ (Procedure $X_{\text {Transaction }}$ Account)
- Procedure is type of transaction: e.g. standing order, direct debit, ATM cash withdrawal
- Account can belong to many users
- Transaction is item for transfer of funds according to ACID requirements
- P, A, T are categories, with internal pullback structure, giving recursive pullbacks


## Pullback - Two Pasted Relationships: Bank Transactions bv User/Account

Three
Pullbacks Pb1, Pb2, Pb2 X Pb1


U is user A is account
T is transaction

Usually written in horizontal (landscape) form. Vertical layout enables deep nested structures to be represented more readily


Pasting condition for Pb2 X Pb1: $\left.\right|_{\mathrm{I}}=\pi_{\mathrm{r}}$ after Freyd's Pasting Lemma
For our purposes, a pasted pullback is only a valid pullback if all inner and outer diagrams are pullbacks
Pasting is associative (order of evaluation is immaterial) but not commutative (relationship $A: B 1: N$ is not same as $A: B N: 1$ )

## Pullback - x10 Natural Bank Account Transactions



C company, B branch, U user, A account, P procedure, T transaction

10 pullbacks: $\mathrm{Pb} 1, \mathrm{~Pb} 2, \mathrm{~Pb} 3, \mathrm{~Pb} 4$
$\mathrm{Pb} 2 \times \mathrm{Pb} 1, \mathrm{~Pb} 3 \times \mathrm{Pb} 2, \mathrm{~Pb} 4 \times \mathrm{Pb} 3$
Pb3 X Pb2 X Pb1, Pb4 X Pb3 X Pb2 $\mathrm{Pb} 4 \times \mathrm{Pb} 3 \times \mathrm{Pb} 2 \times \mathrm{Pb} 1$

For our purposes, a pasted pullback is only a valid pullback if all inner and outer diagrams are pullbacks

## Invalid Pullback

Invalid as not all squares are pullbacks

For instance $\mathrm{Pb} 4 \times \mathrm{Pb} 2$ is not a pullback


## Adjointness Holds for all Pullbacks

$\exists \dashv \Delta \upharpoonleft \forall$ for this outer pullback and all other 9 inner pullbacks


## Pasting Pullbacks - Discussion 1

- All diagrams commute
- All diagrams, inner or outer, are pullbacks
- In pure maths, the condition is relaxed a little
- Not appropriate for applied
- Structure is recursive
- A pullback node may be a pullback structure in its own right
- No limit to recursion


## Pasting Pullbacks - Discussion 2

- Meets all Information System requirements as in 5NF (Project-Join)
- Pullback is project-join through $\Pi$ and $\Delta$
- Not categorification of set-theoretic approach
- 5 NF was a belated move by set-theoretic adherents to find a viable approach, which happened to follow category theory principles
- Pasting condition appears to be:
- $I_{1}^{i}=\pi_{r}$ (left-inclusion of outer square $=$ right projection of inner square)
- Discussed further later


## Pasting Pullbacks - Discussion 3

- Pasted structure
- is a Cartesian Closed Category (CCC) with products, terminal object and exponentials
- is a topos as a CCC with subobject classifier and internal Heyting Logic
- The subobject classifier provides an internal query language


## The Pasting Condition 1

- $I_{1}^{\prime}=\pi_{r} \quad$ (left-inclusion of outer square $=$ rightprojection of inner square
- Looks rather set theoretic
- But any pullback can be represented as an equalizer (ncatlab)


## Equalizer for Pullback



Maps relation onto product onto context via 2 paths through pullback

## The Pasting Condition 2

## Similarly for a pasted pullback, the equaliser is

$$
\left(P X_{T} A\right) X_{A} U \quad \longrightarrow\left(P X_{T} A\right) X U
$$



Equals in sets is undefined as context is not defined
Equaliser in categories, as a limit, is fully defined up to natural isomorphism

## Subobject Classifier - Searching within a Topos - Boolean example



Simple database query in category theory style
$\Omega\{0,1\}$ is subobject classifier; subobjects classified as either 0 or 1
$X_{j}$ characteristic function is query mapping from object $S$ to $\{0,1\}$, false or true
$1_{\text {topos }}$ is terminal object of topos (handle on topos)
$j$ is mapping from subtopos $U$ (result of query) to object $S$
Diagram is actually a pullback of true along $\mathrm{X}_{\mathrm{j}}$.
U is $1_{\text {topos }} \mathrm{X}_{\Omega\{0,1\}} \mathrm{S}$
$U$ is the identity of the subtopos, giving query closure

## External Process

- Metaphysics (Whitehead)
- Transaction (universe, information system)
- Activity
- Can be very complex but the whole is viewed as atomic - binary outcome - succeed or fail
- Before and after states must be consistent in terms of rules
- Intermediate results are not revealed to others
- Results persist after end


## Transaction is standard way of defining a Process

- Principles of ACID
- Atomicity, Consistency, Isolation, Durability
- Logical technique for controlling the physical world
- e.g. banking transaction
- Requires three cycles of adjointness between initial and target state
- First two for atomicity, consistency and isolation
- First makes changes; second reviews changes
- Third for durability


## Transaction in Category Theory

- In earlier work (ANPA 2010) we used adjointness to represent a transaction
- Employing multiple cycles to capture ACID
- The aim now is to abstract this work using the monad, which we earlier described as the way forward
- The monad is an extension of the monoid to multiple levels
- Monoid: $\mathrm{M} \mathrm{X} \mathrm{M} \rightarrow \mathrm{M}, 1 \rightarrow \mathrm{M}$ (binary multiplication, unit)


## Multiple 'Cycles' to represent adjointness

- Three 'cycles’ GFGFGF:
- Assessing unit $\eta$ in $L$ and counit $\varepsilon$ in $R$ to ensure overall consistency
- 'Cycles' are performed simultaneously (a snap, not each cycle in turn)


F-| G

$$
\eta: 1_{\mathrm{L}} \rightarrow \mathrm{GF}(\mathrm{~L})
$$

$\varepsilon: \mathrm{FG}(\mathrm{R}) \rightarrow 1_{\mathrm{R}}$

## Promising Technique - Monad

- The monad is used in pure mathematics for representing process
- Has 3 'cycles' of iteration to give consistency
- The monad is also used in functional programming to formulate the process in an abstract data-type
- In the Haskell language the monad is a first-class construction
- Haskell B. Curry transformed functions through currying in the $\lambda$-calculus
- The Blockchain transaction system for Bitcoin and more recently other finance houses uses monads via Haskell
- Reason quoted is it's a simple and clean technique


## Monad/Comonad Overview

- Functionality:
- Monad
- $\mathrm{T}^{3} \rightarrow \mathrm{~T}^{2} \rightarrow \mathrm{~T}$ (multiplication)
- 3 'cycles' of T, looking back
- Comonad (dual of monad)
- $S \rightarrow S^{2} \rightarrow S^{3}$ (comultiplication)
- 3 'cycles' of S, looking forward
- Objects:
- An endofunctor on a category X


## Using the Monad Approach

- A monad is a 4-cell <1,2,3,4>
- 1 is a category $X$
- 2 is an endofunctor ( $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$, functor with same source and target)
- 3 is the unit of adjunction $\eta: 1_{x} \rightarrow T$ (change, looking forward)
- 4 is the multiplication $\mu: \mathrm{TXT} \rightarrow \mathrm{T}$ (change, looking back)
- A monad is therefore $<X, T, \eta, \mu>$


## The Monad as a 'triple'

- A monad is sometimes called a triple as by Barr \& Wells. Term disliked by some as too set theoretic, e.g. Mac Lane
- Why a triple when 4 terms above?
- <X, T, $\eta, \mu>$ is reduced to
- < T, $\eta, \mu>$ as category $X$ is implicit in T
- True to the spirit of category theory a monad works over 3 levels, as 3 levels gives naturality
- So the laws we are going to see involve T (endofunctor performed once), $\mathrm{T}^{2}$ (performed twice) and $\mathrm{T}^{3}$ (performed 3 times)
- Note this multiple performance matches our transaction approach, outlined earlier with GF performed 3 times


## The Comonad

- The dual of the monad
- A comonad is a 4-cell <1,2,3,4>
- 1 is a category $X$
- 2 is an endofunctor ( $\mathrm{S}: \mathrm{X} \rightarrow \mathrm{X}$, functor with same source and target, S is dual of T )
- 3 is the counit of adjunction $\varepsilon: S \rightarrow 1_{x}$ (change, looking back)
- 4 is the comultiplication $\delta: S \rightarrow S \times S$ (change, looking forward)
- A comonad is therefore <X, S, $\varepsilon, \delta>$ or <S, $\varepsilon, \delta>$


## Laws for the Monad

- Book-keeping
- Associative Law
- Unit Law


## Associative Law for Monad

- The laws involve $\mathrm{T}^{3}$ (3 'cycles') with the Associative law:


a) Associative law for monad $<T, \eta, \mu>$; b) Associative law for comonad $<S, \varepsilon, \bar{\delta}>$


## Unitary Law for Monads

- The diagram commutes


Figure 13: Left and Right Unitary Laws for Monad $T=<T, \eta, \mu>$

## Monad can be based on an adjunction

- The transaction involves GF, a pair of adjoint functors $F$-| G
- $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{Y}$
- G: $Y \rightarrow X$
- GF is an endofunctor as category X is both source and target
- So T is GF (for monad)
- And S is FG (for comonad)


## 3-cell descriptors with adjoints

- The 3-cell monad < T, $\eta, \mu>$
- is written <GF, $\eta, G \varepsilon F>$ (last up a level for multiplication)
- The 3-cell comonad <S, $\varepsilon, \delta>$
- is written <FG, $\varepsilon$, FףG> (last up a level for comultiplication)


## Terminology

- A monad is often simply addressed by its endofunctor.
- So < T, $\eta, \mu>$ is called the monad $T$
- Similarly for the comonad
- $\langle S, \varepsilon, \delta>$ is called the comonad $S$
- It's a synecdoche


## Operating on a Topos

- The operation is simple:
- T: E $\rightarrow$ E'
- where $T$ is the monad $<G F, \eta, G \varepsilon F>$ in $E$, the topos, with input and output types the same
- The extension (data values) will vary but the intension (definition of type) remains the same
- Closure is achieved as the type is preserved


## The T-algebras - Changing the Definition

- More fundamental change to the operand (X or E)
- Produces a new consistent state of adjunction with modified intension
- The T-algebras manipulate the category X, when defined within a monad $T$
- They were developed in work by Eilenberg \& Moore published in 1965


## T-algebra defined

- For a category $X$, not necessarily a topos, in the monad <X, T, $\eta, \mu>$, the effect is to obtain:
$-<G^{\top} F^{\top}, \eta^{\top}, G^{\top} \varepsilon^{\top} F^{\top}>: X \rightarrow X^{\top}$
- That is a new monad adjunction $F^{\top}-\mid G^{\top}$ is defined to accommodate the changed category $X^{\top}$
- For a topos $E$, this is equivalent to a change to $E^{\top}$
$\left.-<G^{\top} F^{\top}, \eta^{\top}, G^{\top} \varepsilon^{\top} F^{\top}\right\rangle: E \rightarrow E^{\top}$


## The T-algebra

- For a monad <T, $\eta, \mu>$ in $X$
- A T-algebra is:
- <x, h>
- Where $x$ is an object in $X$
- And h: Tx $\rightarrow x$ is the structure map of the algebra
- Such that the following diagrams commute


## T-algebra: Associative/Unitary Laws



Both diagrams must commute for T to be a monad

## Other Monadic features

- Kleisli Category of a Monad
- Transforms a monad into a form more suitable for implementation in a functional language
- Used in Haskell rather than the pure mathematics form of Mac Lane
- Beck's Theorem
- Provides rules on which categorial transformations in the T-algebra $X \rightarrow X^{\top}$ are valid.
- Sometimes called PTT (Precise Tripleability Theorem)


## Cartesian Monads

- If underlying categories are pullbacks
- AND T preserves pullbacks
- AND $\mu$ and $\eta$ are Cartesian
- Then the monad is Cartesian
- Facilitates its use in transformations where a Cartesian type is expected


## Summary of Progress

- Topos has been established as data-type of choice
- Monad shows potential for processing the topos and for transforming the topos
- Areas for attention:
- Intension/extension in topos, including pullbacks, subobject classifier and operations by the monad
- Exploring usefulness of additional work on monads including those mentioned here: T-algebra, Kleisli, Beck and Cartesian monad

