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Outline of Presentation

● Basic categorical facilities identified for the 
Universe
– The Topos (structural data-type)

– The Monad (process)

● Applying the monad to a topos
– Alternative Techniques

– Application

● Discussion



  

The Topos – Structural Data-type

● Based on Cartesian Closed Category (CCC)
– Products; Closure at top; Connectivity (exponentials); Internal Logic; 

Identity; Interchangeability of levels 

● If we add:
– Subobject classifier

– Internal logic of Heyting (intuitionistic)

– Reflective subtopos (query closure)

● We get a Topos



  

Topos: further work identified 2-
years ago and now

● Data Process
– Queries within a topos – use of subobject classifier, 

particularly with power objects

– Examples of Heyting intuitionistic logic

– Applying process to a topos 

● Database design
– Co-cartesian approach

– Pasting of pullbacks

– Recursive pullbacks

– Allegories



  

Progress
Data Process

Queries within a topos Subobject classifier extended to power-
objects for generality 

Heyting examples, internal logic

External process on a topos

Stalled for while but now restarted

Today’s topic, monads

Database Design

Co-cartesian For normalisation, not now a priority as 
thought to be categorification below 5NF

Pasting of pullbacks Expressed in complex, more realistic design, 
satisfies 5NF

Recursive pullbacks In progress

Allegories Explored, not useful in natural IS but 
significant for interoperability



  

Pullback - Single Relationship



  

Pullback – x6 Multiple Relationship

A pasted pullback
Is only a valid pullback
If all inner and outer
diagrams are pullbacks 



  

Pullback – x6 with Logic



  

Pullback – x7 Not Natural



  

Pullback – x10 Natural



  

Subobject Classifier – Searching 
within a Topos - Boolean example

U

S Ω {0,1}

1
topos

truej

X
j

Simple database query in 
category theory style

Ω {0,1} is subobject classifier; subobjects classified as either 0 or 1
X

j
 characteristic function is query mapping from object S to {0,1), false or true

1
topos

 is terminal object of topos (handle on topos) 

j is mapping from subtopos U (result of query) to object S

Diagram is actually a pullback of true along X
j.
 

U is 1
topos

 X
Ω{0,1}

 S

U is the identity of the subtopos, giving query closure 



  

External Process

● Metaphysics (Whitehead)
● Transaction (universe, information system)
● Activity

– Can be very complex but the whole is viewed as 
atomic – binary outcome – succeed or fail

– Before and after states must be consistent in terms 
of rules

– Intermediate results are not revealed to others

– Results persist after end



  

Transaction is standard way of defining a 
Process

● Principles of ACID

– Atomicity, Consistency, Isolation, Durability
● Logical technique for controlling the physical world 

– e.g. banking transaction
● Requires three cycles of adjointness between initial 

and target state

● First two for atomicity, consistency and isolation

– First makes changes; second reviews changes
● Third for durability



  

Transaction in Category Theory

● In earlier work (ANPA 2010) we used 
adjointness to represent a transaction
– Employing multiple cycles to capture ACID

● The aim now is to abstract this work using the 
monad, which we earlier described as the way 
forward

● The monad is an extension of the monoid to 
multiple levels
– Monoid: M X M → M, 1 → M (binary multiplication, 

unit)



  

Multiple 'Cycles' to represent 
adjointness

● Three ‘cycles’ GFGFGF: 

– Assessing unit η in L and counit ε in R to ensure overall 
consistency 

– 'Cycles' are performed simultaneously (a snap, not each 
cycle in turn)

η: 1L  GF(L) ε: FG(R)  1R

η

ε

F -| G



  

Promising Technique - Monad
● The monad is used in pure mathematics for 

representing process
– Has 3 'cycles' of iteration to give consistency

● The monad is also used in functional 
programming to formulate the process in an 
abstract data-type
– In the Haskell language the monad is a first-class 

construction
● Haskell B. Curry transformed functions through currying 

in the λ-calculus
● The Blockchain transaction system for Bitcoin and more 

recently other finance houses uses monads via Haskell
– Reason quoted is it's a simple and clean technique 

 



  

Monad/Comonad Overview

● Functionality:
– Monad

● T3 → T2 → T (multiplication)
● 3 'cycles' of T, looking back 

– Comonad (dual of monad)
● S → S2 → S3 (comultiplication)
● 3 'cycles' of S, looking forward 

● Objects:
– An endofunctor on a category X 



  

Using the Monad Approach

● A monad is a 4-cell <1,2,3,4>
– 1 is a category X

– 2 is an endofunctor (T: X → X, functor with same 
source and target)

– 3 is the unit of adjunction η: 1
X
 → T (change, looking 

forward) 

– 4 is the multiplication μ: T X T → T (change, looking 
back)

● A monad is therefore <X, T, η, μ>



  

The Monad as a 'triple'

● A monad is sometimes called a triple as by Barr & Wells. Term 
disliked by some as too set theoretic, e.g. Mac Lane

● Why a triple when 4 terms above?

● <X, T, η, μ> is reduced to

– < T, η, μ> as category X is implicit in T
● True to the spirit of category theory a monad works over 3 

levels, as 3 levels gives naturality

● So the laws we are going to see involve T (endofunctor 
performed once), T2 (performed twice) and T3 (performed 3 
times)

● Note this multiple performance matches our transaction 
approach, outlined earlier with GF perfomed 3 times



  

The Comonad

● The dual of the monad
● A comonad is a 4-cell <1,2,3,4>

– 1 is a category X

– 2 is an endofunctor (S: X → X, functor with same 
source and target, S is dual of T)

– 3 is the counit of adjunction ε: S → 1
X
 (change, 

looking back) 

– 4 is the comultiplication δ: S → S X S  (change, 
looking forward)

● A comonad is therefore <X, S, ε, δ> or <S, ε, δ>



  

Laws for the Monad

● Book-keeping
● Associative Law
● Unit Law



  

Associative Law for Monad

● The laws involve T3 (3 ‘cycles’) with the 
Associative law:



  

Unitary Law for Monads

● The diagram commutes



  

Monad can be based on an 
adjunction

● The transaction involves GF, a pair of adjoint 
functors F -| G
– F: X → Y

– G: Y → X

● GF is an endofunctor as category X is both 
source and target

● So T is GF (for monad)
● And S is FG (for comonad)



  

3-cell descriptors with adjoints

● The 3-cell monad < T, η, μ>

– is written <GF, η, GεF> (last up a level for 
multiplication)

●  The 3-cell comonad <S, ε, δ>

– is written <FG, ε, FηG> (last up a level for 
comultiplication)



  

Terminology

● A monad is often simply addressed by its 
endofunctor.

– So < T, η, μ> is called the monad T
● Similarly for the comonad

–  <S, ε, δ> is called the comonad S
● It's a synecdoche



  

Operating on a Topos

● The operation is simple:
– T: E → E

● where T is the monad <GF, η, GεF> in E, the 
topos, with input and output types the same

● The extension (data values) will vary but the 
intension (definition of type) remains the same

● Closure is achieved as the type is preserved



  

The T-algebras – Changing the 
Definition

● More fundamental change to the operand (X or 
E)

● Produces a new consistent state of adjunction 
with modified intension

● The T-algebras manipulate the category X, 
when defined within a monad T

● They were developed in work by Eilenberg & 
Moore published in 1965.



  

T-algebra defined

● For a  category X, not necessarily a topos,  in 
the monad <X, T, η, μ>, the effect is to obtain:

– <GTFT, ηT, GTεTFT>: X → XT

● That is a new monad adjunction FT -| GT is 
defined to accommodate the changed category 
XT

● For a topos E, this is equivalent to a change to 
ET

–  <GTFT, ηT, GTεTFT>: E → ET 



  

The T-algebra

● For a monad <T, η, μ> in X
● A T-algebra is:

– <x, h>

● Where x is an an object in X
● And h: Tx → x is the structure map of the 

algebra
● Such that the following diagrams commute. 



  

T-algebra: Associative/Unitary Laws

T2x

Tx

Tx

xh

hμ
xAssociative

 x Tx

x

1
h

η
x

Th

Unitary

Both diagrams must commute for T to be a monad



  

Other Monadic features

● Kleisli Category of a Monad
– Transforms a monad into a form more suitable for 

implementation in a functional language
● Used in Haskell rather than the pure mathematics form of 

Mac Lane

● Beck's Theorem
– Provides rules on which categorial transformations 

in the T-algebra X → XT are valid. 
● Sometimes called PTT (Precise Tripleability Theorem)



  

Cartesian Monads

● If underlying categories are pullbacks
– AND T preserves pullbacks 

– AND μ and η are Cartesian

● Then the monad is Cartesian
– Facilitates its use in transformations where a 

Cartesian type is expected



  

Summary of Progress

● Topos has been established as data-type of 
choice

● Monad shows potential for processing the topos 
and for transforming the topos

● Areas for attention:
– Intension/extension in topos, including pullbacks, 

subobject classifier and operations by the monad

– Exploring usefulness of additional work on monads 
including those mentioned here: T-algebra, Kleisli, 
Beck and Cartesian monad
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