Monadic Design for Universal Systems

Nick Rossiter Visiting Fellow Computing Science and Digital Technologies Northumbria University

ANPA 37 (August 2016)

Outline of Presentation

- Basic categorical facilities identified for the Universe
 - The Topos (structural data-type)
 - The Monad (process)
- Applying the monad to a topos
 - Alternative Techniques
 - Application
- Discussion

The Topos – Structural Data-type

- Based on Cartesian Closed Category (CCC)
 - Products; Closure at top; Connectivity (exponentials); Internal Logic;
 Identity; Interchangeability of levels
- If we add:
 - Subobject classifier
 - Internal logic of Heyting (intuitionistic)
 - Reflective subtopos (query closure)
- We get a Topos

Topos: further work identified 2years ago and now

- Data Process
 - Queries within a topos use of subobject classifier, particularly with power objects
 - Examples of Heyting intuitionistic logic
 - Applying process to a topos
- Database design
 - Co-cartesian approach
 - Pasting of pullbacks
 - Recursive pullbacks
 - Allegories

Progress

Data Process

Queries within a topos

Heyting examples, internal logic

External process on a topos

Database Design

Co-cartesian

Pasting of pullbacks

Recursive pullbacks Allegories Subobject classifier extended to powerobjects for generality Stalled for while but now restarted

Today's topic, monads

For normalisation, not now a priority as thought to be categorification below 5NF

Expressed in complex, more realistic design, satisfies 5NF

In progress

Explored, not useful in natural IS but significant for interoperability

Pullback - Single Relationship

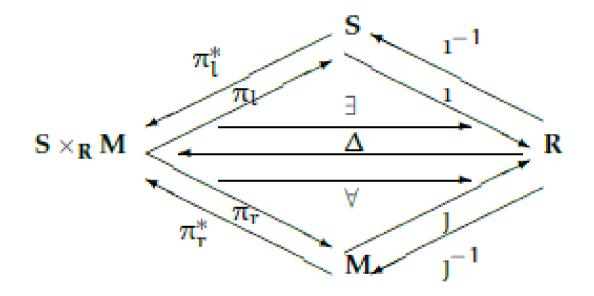
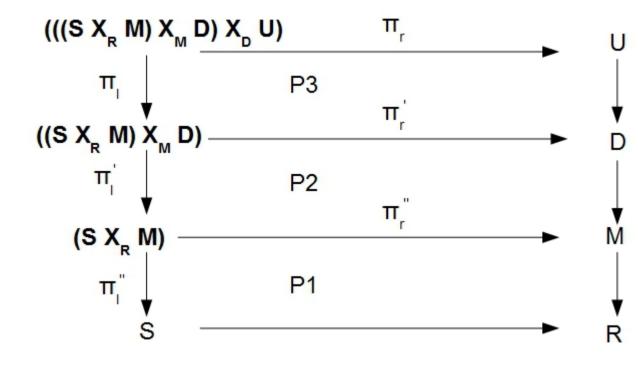
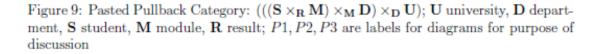


Figure 8: Single Pullback: S × R M; S student, M module, R result

Pullback – x6 Multiple Relationship



A pasted pullback Is only a valid pullback If all inner and outer diagrams are pullbacks



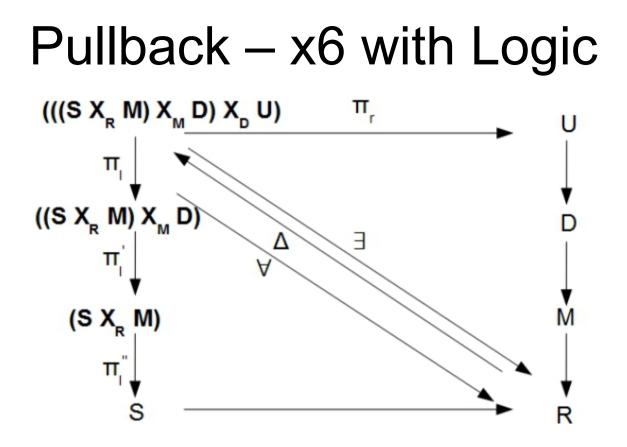


Figure 10: Pasted Pullback Category ((($S \times_R M$) $\times_M D$) $\times_D U$); U university, D department, S student, M module, R result; intuitionistic logic $\exists \neg \Delta \neg \forall$ for the outer pullback diagram

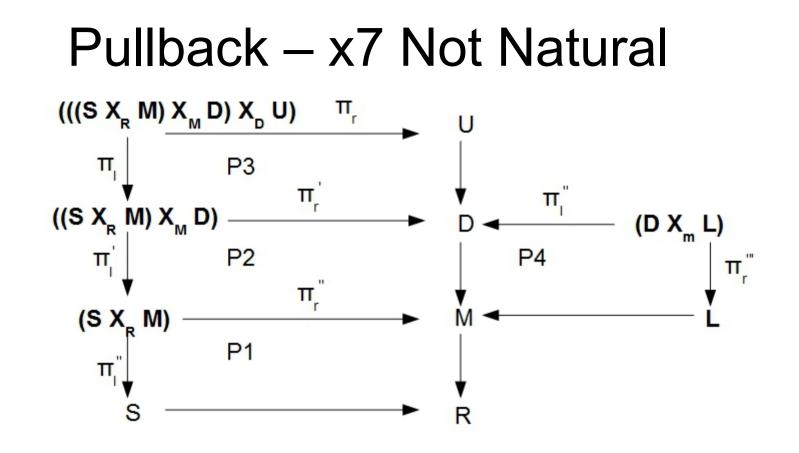
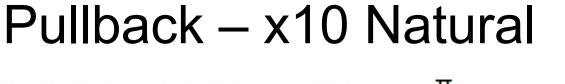


Figure 11: Pasted Construction (((S×_R M)×_M D)×_D U); U university, D department, L lecturer, S student, M module, R result; P1, P2, P3, P4 are labels for diagrams for purpose of discussion; not a valid pull-back category as not natural



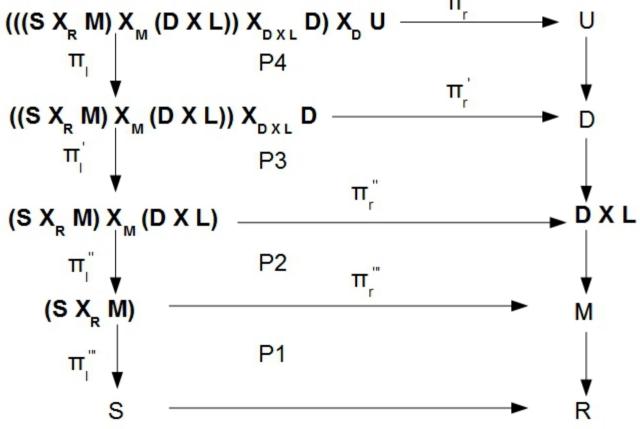
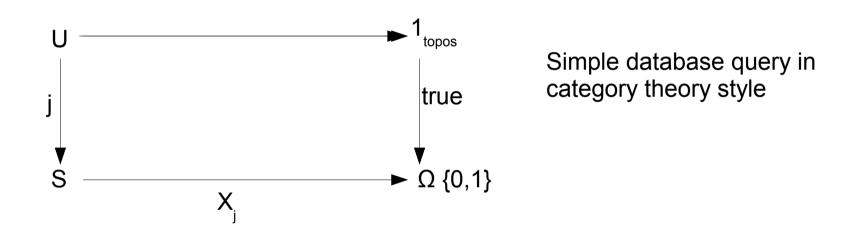


Figure 12: Pasted Pullback Category (((S×_R M)×_M (D×L))×_{D×L} D)X_DU; U university, D department, L lecturer, S student, M module, R result; P1, P2, P3, P4 are labels for diagrams for purpose of discussion

Subobject Classifier – Searching within a Topos - Boolean example



 Ω {0,1} is subobject classifier; subobjects classified as either 0 or 1 X_j characteristic function is query mapping from object S to {0,1}, false or true 1_{topos} is terminal object of topos (handle on topos) j is mapping from subtopos U (result of query) to object S Diagram is actually a pullback of *true* along X_j

U is $1_{topos} X_{\Omega\{0,1\}} S$ U is the identity of the subtopos, giving query closure

External Process

- Metaphysics (Whitehead)
- Transaction (universe, information system)
- Activity
 - Can be very complex but the whole is viewed as atomic – binary outcome – succeed or fail
 - Before and after states must be consistent in terms of rules
 - Intermediate results are not revealed to others
 - Results persist after end

Transaction is standard way of defining a Process

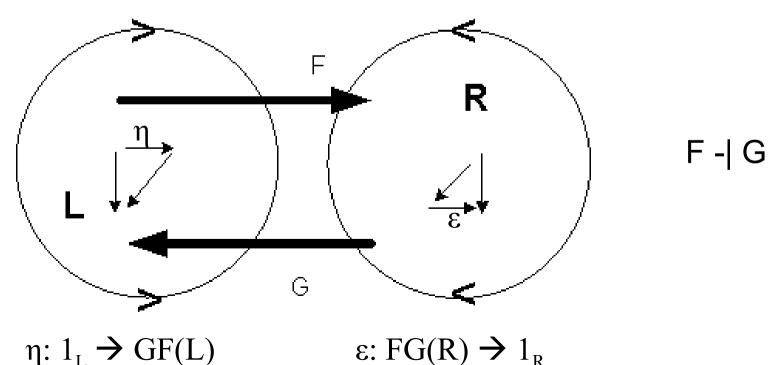
- Principles of ACID
 - Atomicity, Consistency, Isolation, Durability
- Logical technique for controlling the physical world
 - e.g. banking transaction
- Requires three cycles of adjointness between initial and target state
- First two for atomicity, consistency and isolation
 - First makes changes; second reviews changes
- Third for durability

Transaction in Category Theory

- In earlier work (ANPA 2010) we used adjointness to represent a transaction
 - Employing multiple cycles to capture ACID
- The aim now is to abstract this work using the monad, which we earlier described as the way forward
- The monad is an extension of the monoid to multiple levels
 - Monoid: M X M \rightarrow M, 1 \rightarrow M (binary multiplication, unit)

Multiple 'Cycles' to represent adjointness

- Three 'cycles' GFGFGF:
 - Assessing unit η in L and counit ε in R to ensure overall consistency
 - 'Cycles' are performed simultaneously (a snap, not each cycle in turn)



Promising Technique - Monad

- The monad is used in pure mathematics for representing process
 - Has 3 'cycles' of iteration to give consistency
- The monad is also used in functional programming to formulate the process in an abstract data-type
 - In the Haskell language the monad is a first-class construction
 - Haskell B. Curry transformed functions through currying in the $\lambda\text{-calculus}$
 - The Blockchain transaction system for Bitcoin and more recently other finance houses uses monads via Haskell
 - Reason quoted is it's a simple and clean technique

Monad/Comonad Overview

- Functionality:
 - Monad
 - $T^3 \rightarrow T^2 \rightarrow T$ (multiplication)
 - 3 'cycles' of T, looking back
 - Comonad (dual of monad)
 - $S \rightarrow S^2 \rightarrow S^3$ (comultiplication)
 - 3 'cycles' of S, looking forward
- Objects:
 - An endofunctor on a category X

Using the Monad Approach

- A monad is a 4-cell <1,2,3,4>
 - 1 is a category X
 - 2 is an endofunctor (T: $X \rightarrow X$, functor with same source and target)
 - 3 is the unit of adjunction $\eta: 1_{\chi} \rightarrow T$ (change, looking forward)
 - 4 is the multiplication μ : T X T \rightarrow T (change, looking back)
- A monad is therefore <X, T, η, μ>

The Monad as a 'triple'

- A monad is sometimes called a triple as by Barr & Wells. Term disliked by some as too set theoretic, e.g. Mac Lane
- Why a triple when 4 terms above?
- <X, T, η , μ > is reduced to

- < T, η , μ > as category X is implicit in T

- True to the spirit of category theory a monad works over 3 levels, as 3 levels gives naturality
- So the laws we are going to see involve T (endofunctor performed once), T² (performed twice) and T³ (performed 3 times)
- Note this multiple performance matches our transaction approach, outlined earlier with GF perfomed 3 times

The Comonad

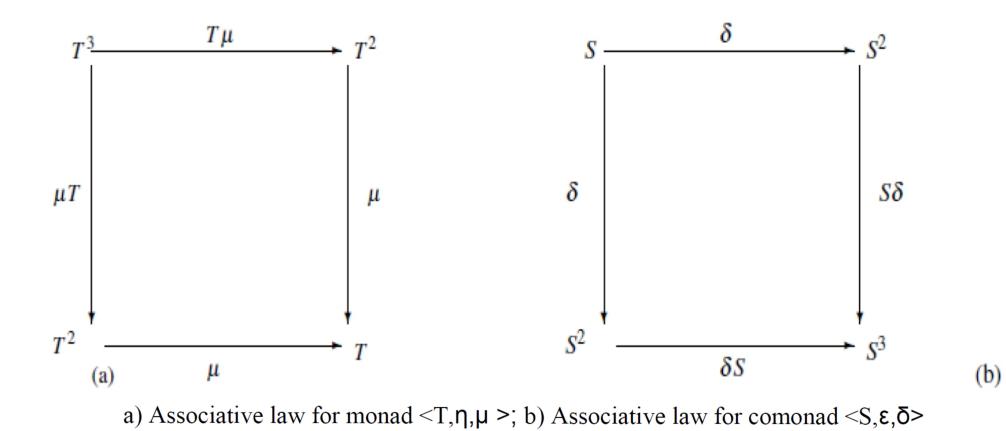
- The dual of the monad
- A comonad is a 4-cell <1,2,3,4>
 - 1 is a category X
 - 2 is an endofunctor (S: $X \rightarrow X$, functor with same source and target, S is dual of T)
 - − 3 is the counit of adjunction ε: S → 1_x (change, looking back)
 - 4 is the comultiplication $\delta: S \rightarrow S X S$ (change, looking forward)
- A comonad is therefore <X, S, ϵ , δ > or <S, ϵ , δ >

Laws for the Monad

- Book-keeping
- Associative Law
- Unit Law

Associative Law for Monad

 The laws involve T³ (3 'cycles') with the Associative law:



Unitary Law for Monads

• The diagram commutes

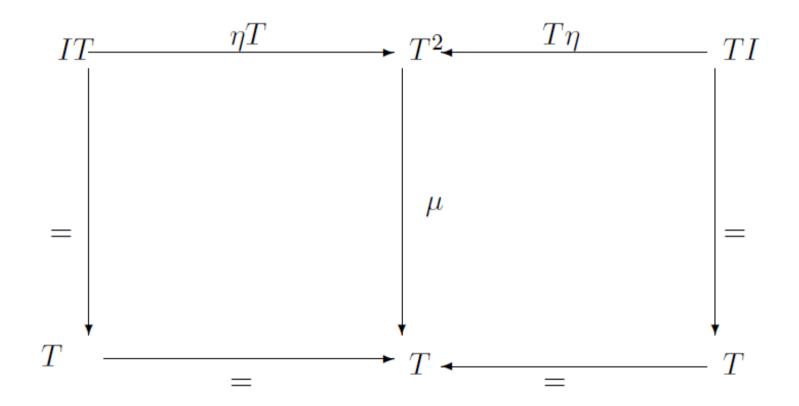


Figure 13: Left and Right Unitary Laws for Monad $T = \langle T, \eta, \mu \rangle$

Monad can be based on an adjunction

- The transaction involves GF, a pair of adjoint functors F -| G
 - $\ F \colon X \to Y$
 - $G: Y \to X$
- GF is an endofunctor as category X is both source and target
- So T is GF (for monad)
- And S is FG (for comonad)

3-cell descriptors with adjoints

- The 3-cell monad < T, η , μ >
 - is written <GF, η, GεF> (last up a level for multiplication)
- The 3-cell comonad <S, ϵ , δ >
 - is written <FG, ε, FηG> (last up a level for comultiplication)

Terminology

- A monad is often simply addressed by its endofunctor.
 - So < T, η , μ > is called the monad T
- Similarly for the comonad
 - <S, ϵ , δ > is called the comonad S
- It's a synecdoche

Operating on a Topos

- The operation is simple:
 - T: E \rightarrow E
 - where T is the monad <GF, η, GεF> in E, the topos, with input and output types the same
- The extension (data values) will vary but the intension (definition of type) remains the same
- Closure is achieved as the type is preserved

The T-algebras – Changing the Definition

- More fundamental change to the operand (X or E)
- Produces a new consistent state of adjunction with modified intension
- The T-algebras manipulate the category X, when defined within a monad T
- They were developed in work by Eilenberg & Moore published in 1965.

T-algebra defined

 For a category X, not necessarily a topos, in the monad <X, T, η, μ>, the effect is to obtain:

- That is a new monad adjunction F^{\intercal} -| G^{\intercal} is defined to accommodate the changed category X^{\intercal}
- For a topos E, this is equivalent to a change to E^T

- $\langle G^T F^T, \eta^T, G^T \epsilon^T F^T \rangle$: $E \to E^T$

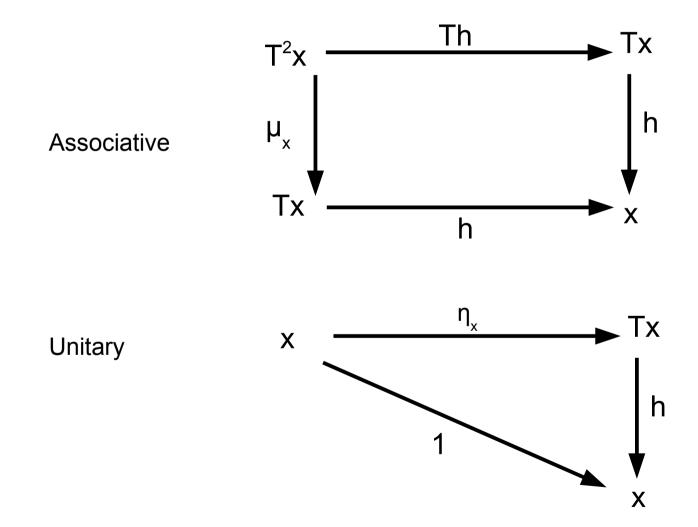
The T-algebra

- For a monad <T, η , μ > in X
- A T-algebra is:

- <x, h>

- Where x is an an object in X
- And h: $Tx \rightarrow x$ is the structure map of the algebra
- Such that the following diagrams commute.

T-algebra: Associative/Unitary Laws



Both diagrams must commute for T to be a monad

Other Monadic features

- Kleisli Category of a Monad
 - Transforms a monad into a form more suitable for implementation in a functional language
 - Used in Haskell rather than the pure mathematics form of Mac Lane
- Beck's Theorem
 - Provides rules on which categorial transformations in the T-algebra $X \to X^{\mathsf{T}}$ are valid.
 - Sometimes called PTT (Precise Tripleability Theorem)

Cartesian Monads

- If underlying categories are pullbacks
 - AND T preserves pullbacks
 - AND μ and η are Cartesian
- Then the monad is Cartesian
 - Facilitates its use in transformations where a Cartesian type is expected

Summary of Progress

- Topos has been established as data-type of choice
- Monad shows potential for processing the topos and for transforming the topos

- Areas for attention:
 - Intension/extension in topos, including pullbacks, subobject classifier and operations by the monad
 - Exploring usefulness of additional work on monads including those mentioned here: T-algebra, Kleisli, Beck and Cartesian monad