

Monadic Design for Universal
Systems

Nick Rossiter
Visiting Fellow

Computing Science and Digital Technologies
Northumbria University

ANPA 37 (August 2016)

Outline of Presentation

● Basic categorical facilities identified for the
Universe
– The Topos (structural data-type)

– The Monad (process)

● Applying the monad to a topos
– Alternative Techniques

– Application

● Discussion

The Topos – Structural Data-type

● Based on Cartesian Closed Category (CCC)
– Products; Closure at top; Connectivity (exponentials); Internal Logic;

Identity; Interchangeability of levels

● If we add:
– Subobject classifier

– Internal logic of Heyting (intuitionistic)

– Reflective subtopos (query closure)

● We get a Topos

Topos: further work identified 2-
years ago and now

● Data Process
– Queries within a topos – use of subobject classifier,

particularly with power objects

– Examples of Heyting intuitionistic logic

– Applying process to a topos

● Database design
– Co-cartesian approach

– Pasting of pullbacks

– Recursive pullbacks

– Allegories

Progress
Data Process

Queries within a topos Subobject classifier extended to power-
objects for generality

Heyting examples, internal logic

External process on a topos

Stalled for while but now restarted

Today’s topic, monads

Database Design

Co-cartesian For normalisation, not now a priority as
thought to be categorification below 5NF

Pasting of pullbacks Expressed in complex, more realistic design,
satisfies 5NF

Recursive pullbacks In progress

Allegories Explored, not useful in natural IS but
significant for interoperability

Pullback - Single Relationship

Pullback – x6 Multiple Relationship

A pasted pullback
Is only a valid pullback
If all inner and outer
diagrams are pullbacks

Pullback – x6 with Logic

Pullback – x7 Not Natural

Pullback – x10 Natural

Subobject Classifier – Searching
within a Topos - Boolean example

U

S Ω {0,1}

1
topos

truej

X
j

Simple database query in
category theory style

Ω {0,1} is subobject classifier; subobjects classified as either 0 or 1
X

j
 characteristic function is query mapping from object S to {0,1), false or true

1
topos

 is terminal object of topos (handle on topos)

j is mapping from subtopos U (result of query) to object S

Diagram is actually a pullback of true along X
j.

U is 1
topos

 X
Ω{0,1}

 S

U is the identity of the subtopos, giving query closure

External Process

● Metaphysics (Whitehead)
● Transaction (universe, information system)
● Activity

– Can be very complex but the whole is viewed as
atomic – binary outcome – succeed or fail

– Before and after states must be consistent in terms
of rules

– Intermediate results are not revealed to others

– Results persist after end

Transaction is standard way of defining a
Process

● Principles of ACID

– Atomicity, Consistency, Isolation, Durability
● Logical technique for controlling the physical world

– e.g. banking transaction
● Requires three cycles of adjointness between initial

and target state

● First two for atomicity, consistency and isolation

– First makes changes; second reviews changes
● Third for durability

Transaction in Category Theory

● In earlier work (ANPA 2010) we used
adjointness to represent a transaction
– Employing multiple cycles to capture ACID

● The aim now is to abstract this work using the
monad, which we earlier described as the way
forward

● The monad is an extension of the monoid to
multiple levels
– Monoid: M X M → M, 1 → M (binary multiplication,

unit)

Multiple 'Cycles' to represent
adjointness

● Three ‘cycles’ GFGFGF:

– Assessing unit η in L and counit ε in R to ensure overall
consistency

– 'Cycles' are performed simultaneously (a snap, not each
cycle in turn)

η: 1L GF(L) ε: FG(R) 1R

η

ε

F -| G

Promising Technique - Monad
● The monad is used in pure mathematics for

representing process
– Has 3 'cycles' of iteration to give consistency

● The monad is also used in functional
programming to formulate the process in an
abstract data-type
– In the Haskell language the monad is a first-class

construction
● Haskell B. Curry transformed functions through currying

in the λ-calculus
● The Blockchain transaction system for Bitcoin and more

recently other finance houses uses monads via Haskell
– Reason quoted is it's a simple and clean technique

Monad/Comonad Overview

● Functionality:
– Monad

● T3 → T2 → T (multiplication)
● 3 'cycles' of T, looking back

– Comonad (dual of monad)
● S → S2 → S3 (comultiplication)
● 3 'cycles' of S, looking forward

● Objects:
– An endofunctor on a category X

Using the Monad Approach

● A monad is a 4-cell <1,2,3,4>
– 1 is a category X

– 2 is an endofunctor (T: X → X, functor with same
source and target)

– 3 is the unit of adjunction η: 1
X
 → T (change, looking

forward)

– 4 is the multiplication μ: T X T → T (change, looking
back)

● A monad is therefore <X, T, η, μ>

The Monad as a 'triple'

● A monad is sometimes called a triple as by Barr & Wells. Term
disliked by some as too set theoretic, e.g. Mac Lane

● Why a triple when 4 terms above?

● <X, T, η, μ> is reduced to

– < T, η, μ> as category X is implicit in T
● True to the spirit of category theory a monad works over 3

levels, as 3 levels gives naturality

● So the laws we are going to see involve T (endofunctor
performed once), T2 (performed twice) and T3 (performed 3
times)

● Note this multiple performance matches our transaction
approach, outlined earlier with GF perfomed 3 times

The Comonad

● The dual of the monad
● A comonad is a 4-cell <1,2,3,4>

– 1 is a category X

– 2 is an endofunctor (S: X → X, functor with same
source and target, S is dual of T)

– 3 is the counit of adjunction ε: S → 1
X
 (change,

looking back)

– 4 is the comultiplication δ: S → S X S (change,
looking forward)

● A comonad is therefore <X, S, ε, δ> or <S, ε, δ>

Laws for the Monad

● Book-keeping
● Associative Law
● Unit Law

Associative Law for Monad

● The laws involve T3 (3 ‘cycles’) with the
Associative law:

Unitary Law for Monads

● The diagram commutes

Monad can be based on an
adjunction

● The transaction involves GF, a pair of adjoint
functors F -| G
– F: X → Y

– G: Y → X

● GF is an endofunctor as category X is both
source and target

● So T is GF (for monad)
● And S is FG (for comonad)

3-cell descriptors with adjoints

● The 3-cell monad < T, η, μ>

– is written <GF, η, GεF> (last up a level for
multiplication)

● The 3-cell comonad <S, ε, δ>

– is written <FG, ε, FηG> (last up a level for
comultiplication)

Terminology

● A monad is often simply addressed by its
endofunctor.

– So < T, η, μ> is called the monad T
● Similarly for the comonad

– <S, ε, δ> is called the comonad S
● It's a synecdoche

Operating on a Topos

● The operation is simple:
– T: E → E

● where T is the monad <GF, η, GεF> in E, the
topos, with input and output types the same

● The extension (data values) will vary but the
intension (definition of type) remains the same

● Closure is achieved as the type is preserved

The T-algebras – Changing the
Definition

● More fundamental change to the operand (X or
E)

● Produces a new consistent state of adjunction
with modified intension

● The T-algebras manipulate the category X,
when defined within a monad T

● They were developed in work by Eilenberg &
Moore published in 1965.

T-algebra defined

● For a category X, not necessarily a topos, in
the monad <X, T, η, μ>, the effect is to obtain:

– <GTFT, ηT, GTεTFT>: X → XT

● That is a new monad adjunction FT -| GT is
defined to accommodate the changed category
XT

● For a topos E, this is equivalent to a change to
ET

– <GTFT, ηT, GTεTFT>: E → ET

The T-algebra

● For a monad <T, η, μ> in X
● A T-algebra is:

– <x, h>

● Where x is an an object in X
● And h: Tx → x is the structure map of the

algebra
● Such that the following diagrams commute.

T-algebra: Associative/Unitary Laws

T2x

Tx

Tx

xh

hμ
xAssociative

 x Tx

x

1
h

η
x

Th

Unitary

Both diagrams must commute for T to be a monad

Other Monadic features

● Kleisli Category of a Monad
– Transforms a monad into a form more suitable for

implementation in a functional language
● Used in Haskell rather than the pure mathematics form of

Mac Lane

● Beck's Theorem
– Provides rules on which categorial transformations

in the T-algebra X → XT are valid.
● Sometimes called PTT (Precise Tripleability Theorem)

Cartesian Monads

● If underlying categories are pullbacks
– AND T preserves pullbacks

– AND μ and η are Cartesian

● Then the monad is Cartesian
– Facilitates its use in transformations where a

Cartesian type is expected

Summary of Progress

● Topos has been established as data-type of
choice

● Monad shows potential for processing the topos
and for transforming the topos

● Areas for attention:
– Intension/extension in topos, including pullbacks,

subobject classifier and operations by the monad

– Exploring usefulness of additional work on monads
including those mentioned here: T-algebra, Kleisli,
Beck and Cartesian monad

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

