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Outline of Presentation

● Relationships versus Process
● Set theoretic approaches to relations
● Categorial translation from sets
● Allegories as enhanced categorial relations
● Findings
● Discussion on way forward



  

Relationships are Key

● Representing relationships is a key activity in 
the physical sciences
– Entanglement in quantum theory

– Interactions between particles

– Connections between entities

● Intertwined with process
– Relationships are often an abstract (partial) view of 

a process

● Capturing relationships in detail
– Suitability for implementation in computer system 

increases credibility of approach



  

Relation versus Process 1

● Process:
– Registration: a student registers for a module on a 

particular course
● Physical activity 
● Written contract
● Usually not stand-alone

– Linked to other processes
– Part of another process
– Comprises other processes

– Registration linked to other processes:
● monitoring activity, determining outcome

– Each process has rules – transaction 



  

Relation versus Process 2

● Relation is often the information side of process
● Recording the facts
● Relatively static versus dynamism of process



  

In set theoretic terms 1

● Relation is the data structure
● sMt where

– s, t are sets; M is relationship between sets

– s is male partner, t is female partner, M is marriage

● But note that this is a surrogate for a process, 
the act of marriage



  

In set theoretic terms 2

● General form for relation R is: sRt
– s, t are sets; R is mapping between them

● R has various interpretations, either:
– R ⊆ S X T (subset of product)

– R ∈ (S, T) (member of ordered pairs)

– R = (S X T)⊕ (disjoint union of product 
members)

● Last is revealing, structure of R is disjoint union, 
not a product, although may be expressed as 
one



  

What does Category Theory say?

● Category Rel is: 
– Either a mapping (a functor) between sets:

● Rel: Set → Set
– where Rel  ⊆ (Set X Set)

– Or a disjoint union, that is a coproduct category
● Rel: (A X B)⊕

– where Rel is a coproduct diagram over objects A, B 



  

Rel as a Coproduct

● The category Rel with A  B as relation over ∪
objects A, B

A  B disjoint union∪
i,j inclusions
(f,g): A  B ∪ → Q is unique
   morphism such that diagram
   commutes:
(f,g) o I = f
(f,g) o j = g
Q quotient with (f,g) as coequaliser



  

We like Cartesian Closed Category 
(CCC)

● Why?
● Vital properties

– Cartesian for products (basis for relationships)

– Closed at terminal object (closure at top)

– Exponentiation for connectivity (eval property)

– Internal logic from adjointness  (  -| Δ -| )∃ ∀
– Identity functor

– Categories and objects interchangeable

● Implementable
– CCC can be implemented on λ-calculus machines



  

Is Rel a CCC?

● Far from it!
● No terminal object if take Rel: Set → Set 

– initial and terminal objects are the same

● No product if take basis of Rel as coproduct
● So Rel is not, in our view, a viable construction 

for relationships or process
● Rel is categorification (translation) of the set 

theoretic concept



  

Way forward

● Set theoretic concept of relation is inadequate 
as basis for representing relations in category 
theory

● What about Allegories? (Freyd & Scedrov 1990)

“Allegories are to binary relationships between 
sets as categories are to functions between 
sets.” (p.195, section 2.1)

● We next explore allegories and this claim



  

Allegories Defined (Freyd 2.1 p.195)

● An allegory is a category with unary operation 
R0 and binary product operation R ∩ S
– R0 reciprocation

● R : X → Y 
● xR0y iff yRx

– R ∩ S intersection
● R, S : X → Y 
● xR ∩ Sy iff xRy and xSy
● Intersections are idempotent, commutative, associative
● Composing intersections composes relations
● Necessity for 2 relations in category theory to provide 

mapping; one relation could be the universal relation U

  



  

Operations on an Allegory

● Constant 1 
– x1y iff x=y

● Reciprocation unary R0 
– xR0y iff yRx

● Composition binary RS (relational join) 
– xRSy iff there exists z such that xRz and zSy

● Intersection binary R ∩ S 
– xR ∩ Sy iff xRy and xSy



  

Underlying Regular Category

● Allegories are 'best' based on regular 
categories

● A regular category is Cartesian: a pullback with 
some 'nice' properties
– stable factorization, with preservation of 

● epimorphisms (onto, all objects in colimit assigned) 
● coequalisers (pairs of parallel arrows converge onto one 

arrow as a sum)

● As a pullback, regular categories are CCC 
(Locally CCC in fact)



  

Logic of Pullback

From our ANPA 2014
paper

In regular category context, the classical relational calculus



  

Use of Allegories 1

● Past work developing the categorial concept:
– Freyd & Scedrov (1990)

– Johnstone in Elephant (2002-)

– Freyd is main worker

– Very little development since the early 1990s



  

Use of Allegories 2

● Theory of logic
● First-order unification using variable-free relational 

algebra, Arias et al, Logic Journal of IGPL (2010)
● Logic Programming in Tabular Allegories, Arias et al, 

Leibniz International Proceedings in Informatics (2009)
● Logic programming in tau categories, Finkelstein, Freyd 

& Lipton, Computer Science Logic (1995)
● Partial Horn logic and cartesian categories, Palmgren & 

Vickers, Annals of Pure and Applied Logic (2007)
● Categories, allegories and circuit design, Brown & 

Hutton, Logic in Computer Science (1994)
● Structural induction and coinduction in a fibrational 

setting, Hermida & Jacobs, Information and Computation 
(1998)



  

Use of Allegories 3

● Since 2014
● Modalities for an Allegorical Conceptual Data Model, 

Zieliński et al, Axioms (2014)
● Declarative Compilation for Constraint Logic 

Programming, Arias et al, Logic-Based Program 
Synthesis and Transformation (2014)

● Unifying exact completions, Maietti & Rosolini, Applied 
Categorical Structures (2015)

● Weak n-Ary Relational Products in Allegories, Zieliński & 
Maślanka (2014)



  

Use of Allegories 4

● Quotes:
● “the theory of allegories is a generalization of relation 

algebra to relations between different sorts” (Wikipedia)
● “an allegory is a category with properties meant to reflect 

properties that hold in a category Rel of relations” (nLab)
● “Freyd and Scedrov's work on Allegories (replace 

functions in categories with relations) would be more 
suitable for relational databases” (Hacker News)

● “With the definition of category, it is easy to have an idea 
of what is a category, but with allegories I'm totally lost” 
(Maths Stack Exchange) 



  

Usage Suggests

● That
– Allegories have been used mainly for relational 

systems with 1st order logic

– Take up of the concept is far from spectacular and 
is not increasing in rate

– Maybe the concept has not been found to be readily 
comprehensible

● Look at further facility before producing pros 
and cons

● Freyd's use of term allegory is more as a 
transformation than as an abstraction (correct!) 



  

Allegories – the Table Category

● Allegories have a tabulation view
● Some correspondence here to the relational 

database model which is defined popularly in 
terms of tables

● Hints of categorification



  

Table Defined

● T: x
1
, x

2
, x

3
, x

4
, … is a table name with column 

names
– T is the name of the table

– x
i 
 is a column (name)

● A
1
, A

2
, A

3
, A

4
, … are the feet of the table

– A
i
 correspond to  the values for a particular column

– FEET = collection of A

● Table is x
i
: T → FEET



  

Mapping between tables gives 
closure

● Another table (universal table?):

– X'
i
: T' → FEET'

● Natural closure:

– Θ: T ≈ T'

– Θ is a RELATION
● REL(A

1
, A

2
, A

3
, A

4
, …)

– “The usual extensional notion of relations on 
sets coincides with the categorical notion as 
applied to this case [of a table]” (Freyd 1.415 
p.39)



  

Allegories: further views

● Further constructions possibly as allegories:
– Hyperdoctrine

– Bicategory

● Need to satisfy definition and properties given 
earlier

● Reduce cohesion of approach



  

Allegories: Pros

● More in spirit of category theory than Rel
– Based 'best' on regular category (pullbacks)

● Unital property with terminal object (identity for CCC)

● Not categorification with regular category basis
● Internal logic of 1st order relational calculus
● Can represent relational databases (>90% of 

commercial data)
● Has tabular, hyperdoctrine, bicategory views



  

Allegories: Cons
● Closed world assumption, Boolean logic

– But division allegories are claimed to be Heyting

● No higher-order logic
● Not natural, no basis for metaphysics
● Number of views reduces cohesion

– Tabular view is categorification of relational 
databases

● other views may not be unital (not CCC)

● Not suited to new generation of object-bases
– Will not form part of our work going forward on 

natural information systems



  

But Allegories could still be 
significant

● Allegories and topos have some commonality 
– Same underlying data structure (pullbacks)

– Both can be viewed as regular categories

– Both have an internal logic

● Difference is natural topos vs allegories as sets
● Potential for interoperability, major problem in 

information systems today
– Relational database as allegory (A)

– Natural database as topos (T)

– Adjointness: F: A → T; G: T → A;  F -| G



  

Challenge to the Sketch Workers

● Very difficult to justify the elaborate work on 
Entity-Relationship database models with 
sketches

● Allegories 'off-the-shelf' can do everything they 
want functionally in a relational database

● Simply add a graphical interface to an allegory-
based system to complete the work
– Regular category structure with pullback diagrams 

makes this readily achievable



  

Topos: further work identified

● Data Process
– Queries – use of subobject classifier, particularly 

with power objects

– Examples of Heyting intuitionistic logic

● Database design
– Co-cartesian approach

– Pasting of pullbacks

– Recursive pullbacks

– Allegories



  

Progress
Data Process

Queries Subobject classifier extended to power-
objects for generality 

Heyting examples Stalled, as group at unn has fewer meetings

Database Design

Co-cartesian In progress

Pasting of pullbacks Expressed in complex, more realistic design

Recursive pullbacks In progress

Allegories Explored, not useful in natural IS but 
significant for interoperability



  

The Topos going forward

● CCC
– Products; Closure at top; Connectivity; Internal Logic; Identity; 

Interchangeability of levels 

● Plus:
– Subobject classifier

– Internal logic of Heyting (intuitionistic)

– Reflective subtopos (query closure)

● Gives
– A Topos



  

More Complex Examples

● Last year's paper dealt with a single pullback as 
a topos

● Developing more complex pullback structures 
to show can handle realistic examples

● Here we extend the Student-Module example to 
include Departments, Universities, Lecturers. 

● Pullbacks are pasted together, following laws of 
composition on paths
– not intersection of paths, which would be set-based



  

Single Pullback: S X
O
 M



  

Topos – Pasted Pullbacks x6



  

Pasted Pullback with CCC Logic

There are potentially 6 commuting squares 

Hierarchical
Structure



  

Topos – Pasted Pullbacks x7

Network
Structure



  

Subobject Classifier – Boolean 
example

U

S Ω {0,1}

1
topos

truej

X
j

Simple database query in 
category theory style

Ω {0,1} is subobject classifier; subobjects classified as either 0 or 1
X

j
 characteristic function is query mapping from object S to {0,1), false or true

1
topos

 is terminal object of topos (handle on topos) 

j is mapping from subobject U (result of query) to object S

Diagram is actually a pullback of true along X
j.
 

U is 1
topos

 X
Ω{0,1}

 S

U is the identity of the subtopos, giving query closure 



  

Subobject Classifier as Power-
object

Defined by commuting pullback square:
                                          

              U                       

Subobject classifier Ω is non-Boolean, a power-object of some objects
Characteristic function X

j
 defines subobject U of object S from topos           

                represented by 1
topos

S is of type AND (intersection) 
Diagram is again a pullback of true along X

j.
 

U is 1
topos

 X
Ω (power-object)

 S(ΩXΩ)

U is the identity of the subtopos, giving query closure 

j true

X
j

S(ΩXΩ) Ω (power-object)

1
topos



  

Advantages of General Subobject 
Classifier

● Power-object represents all possible 
combinations of all objects
– Basis for general search capability

● Object with type ΩxΩ
– Facilitates comparison of all power-objects with 

each other

● So X
j
 is a general database query

● Subtopos U is result of a general query over a 
general object



  

Summary of Progress

● Topos 'data model' established as optimum way 
forward for information systems

● Recent work has confirmed the suitability of the 
model for large-scale design and general 
interrogation

● Next stage: provide a demonstrator project to 
show how system would work from design to 
implementation with a reasonably complex 
application. At same time work on remaining 
issues: Heyting logic, design alternatives. 
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