

Abstract Relations as Allegorical
Categories

Nick Rossiter
Visiting Fellow

Computing Science and Digital Technologies
Northumbria University

ANPA 36 (August 2015)

Outline of Presentation

● Relationships versus Process
● Set theoretic approaches to relations
● Categorial translation from sets
● Allegories as enhanced categorial relations
● Findings
● Discussion on way forward

Relationships are Key

● Representing relationships is a key activity in
the physical sciences
– Entanglement in quantum theory

– Interactions between particles

– Connections between entities

● Intertwined with process
– Relationships are often an abstract (partial) view of

a process

● Capturing relationships in detail
– Suitability for implementation in computer system

increases credibility of approach

Relation versus Process 1

● Process:
– Registration: a student registers for a module on a

particular course
● Physical activity
● Written contract
● Usually not stand-alone

– Linked to other processes
– Part of another process
– Comprises other processes

– Registration linked to other processes:
● monitoring activity, determining outcome

– Each process has rules – transaction

Relation versus Process 2

● Relation is often the information side of process
● Recording the facts
● Relatively static versus dynamism of process

In set theoretic terms 1

● Relation is the data structure
● sMt where

– s, t are sets; M is relationship between sets

– s is male partner, t is female partner, M is marriage

● But note that this is a surrogate for a process,
the act of marriage

In set theoretic terms 2

● General form for relation R is: sRt
– s, t are sets; R is mapping between them

● R has various interpretations, either:
– R ⊆ S X T (subset of product)

– R ∈ (S, T) (member of ordered pairs)

– R = (S X T)⊕ (disjoint union of product
members)

● Last is revealing, structure of R is disjoint union,
not a product, although may be expressed as
one

What does Category Theory say?

● Category Rel is:
– Either a mapping (a functor) between sets:

● Rel: Set → Set
– where Rel ⊆ (Set X Set)

– Or a disjoint union, that is a coproduct category
● Rel: (A X B)⊕

– where Rel is a coproduct diagram over objects A, B

Rel as a Coproduct

● The category Rel with A B as relation over ∪
objects A, B

A B disjoint union∪
i,j inclusions
(f,g): A B ∪ → Q is unique
 morphism such that diagram
 commutes:
(f,g) o I = f
(f,g) o j = g
Q quotient with (f,g) as coequaliser

We like Cartesian Closed Category
(CCC)

● Why?
● Vital properties

– Cartesian for products (basis for relationships)

– Closed at terminal object (closure at top)

– Exponentiation for connectivity (eval property)

– Internal logic from adjointness (-| Δ -|)∃ ∀
– Identity functor

– Categories and objects interchangeable

● Implementable
– CCC can be implemented on λ-calculus machines

Is Rel a CCC?

● Far from it!
● No terminal object if take Rel: Set → Set

– initial and terminal objects are the same

● No product if take basis of Rel as coproduct
● So Rel is not, in our view, a viable construction

for relationships or process
● Rel is categorification (translation) of the set

theoretic concept

Way forward

● Set theoretic concept of relation is inadequate
as basis for representing relations in category
theory

● What about Allegories? (Freyd & Scedrov 1990)

“Allegories are to binary relationships between
sets as categories are to functions between
sets.” (p.195, section 2.1)

● We next explore allegories and this claim

Allegories Defined (Freyd 2.1 p.195)

● An allegory is a category with unary operation
R0 and binary product operation R ∩ S
– R0 reciprocation

● R : X → Y
● xR0y iff yRx

– R ∩ S intersection
● R, S : X → Y
● xR ∩ Sy iff xRy and xSy
● Intersections are idempotent, commutative, associative
● Composing intersections composes relations
● Necessity for 2 relations in category theory to provide

mapping; one relation could be the universal relation U

Operations on an Allegory

● Constant 1
– x1y iff x=y

● Reciprocation unary R0
– xR0y iff yRx

● Composition binary RS (relational join)
– xRSy iff there exists z such that xRz and zSy

● Intersection binary R ∩ S
– xR ∩ Sy iff xRy and xSy

Underlying Regular Category

● Allegories are 'best' based on regular
categories

● A regular category is Cartesian: a pullback with
some 'nice' properties
– stable factorization, with preservation of

● epimorphisms (onto, all objects in colimit assigned)
● coequalisers (pairs of parallel arrows converge onto one

arrow as a sum)

● As a pullback, regular categories are CCC
(Locally CCC in fact)

Logic of Pullback

From our ANPA 2014
paper

In regular category context, the classical relational calculus

Use of Allegories 1

● Past work developing the categorial concept:
– Freyd & Scedrov (1990)

– Johnstone in Elephant (2002-)

– Freyd is main worker

– Very little development since the early 1990s

Use of Allegories 2

● Theory of logic
● First-order unification using variable-free relational

algebra, Arias et al, Logic Journal of IGPL (2010)
● Logic Programming in Tabular Allegories, Arias et al,

Leibniz International Proceedings in Informatics (2009)
● Logic programming in tau categories, Finkelstein, Freyd

& Lipton, Computer Science Logic (1995)
● Partial Horn logic and cartesian categories, Palmgren &

Vickers, Annals of Pure and Applied Logic (2007)
● Categories, allegories and circuit design, Brown &

Hutton, Logic in Computer Science (1994)
● Structural induction and coinduction in a fibrational

setting, Hermida & Jacobs, Information and Computation
(1998)

Use of Allegories 3

● Since 2014
● Modalities for an Allegorical Conceptual Data Model,

Zieliński et al, Axioms (2014)
● Declarative Compilation for Constraint Logic

Programming, Arias et al, Logic-Based Program
Synthesis and Transformation (2014)

● Unifying exact completions, Maietti & Rosolini, Applied
Categorical Structures (2015)

● Weak n-Ary Relational Products in Allegories, Zieliński &
Maślanka (2014)

Use of Allegories 4

● Quotes:
● “the theory of allegories is a generalization of relation

algebra to relations between different sorts” (Wikipedia)
● “an allegory is a category with properties meant to reflect

properties that hold in a category Rel of relations” (nLab)
● “Freyd and Scedrov's work on Allegories (replace

functions in categories with relations) would be more
suitable for relational databases” (Hacker News)

● “With the definition of category, it is easy to have an idea
of what is a category, but with allegories I'm totally lost”
(Maths Stack Exchange)

Usage Suggests

● That
– Allegories have been used mainly for relational

systems with 1st order logic

– Take up of the concept is far from spectacular and
is not increasing in rate

– Maybe the concept has not been found to be readily
comprehensible

● Look at further facility before producing pros
and cons

● Freyd's use of term allegory is more as a
transformation than as an abstraction (correct!)

Allegories – the Table Category

● Allegories have a tabulation view
● Some correspondence here to the relational

database model which is defined popularly in
terms of tables

● Hints of categorification

Table Defined

● T: x
1
, x

2
, x

3
, x

4
, … is a table name with column

names
– T is the name of the table

– x
i
 is a column (name)

● A
1
, A

2
, A

3
, A

4
, … are the feet of the table

– A
i
 correspond to the values for a particular column

– FEET = collection of A

● Table is x
i
: T → FEET

Mapping between tables gives
closure

● Another table (universal table?):

– X'
i
: T' → FEET'

● Natural closure:

– Θ: T ≈ T'

– Θ is a RELATION
● REL(A

1
, A

2
, A

3
, A

4
, …)

– “The usual extensional notion of relations on
sets coincides with the categorical notion as
applied to this case [of a table]” (Freyd 1.415
p.39)

Allegories: further views

● Further constructions possibly as allegories:
– Hyperdoctrine

– Bicategory

● Need to satisfy definition and properties given
earlier

● Reduce cohesion of approach

Allegories: Pros

● More in spirit of category theory than Rel
– Based 'best' on regular category (pullbacks)

● Unital property with terminal object (identity for CCC)

● Not categorification with regular category basis
● Internal logic of 1st order relational calculus
● Can represent relational databases (>90% of

commercial data)
● Has tabular, hyperdoctrine, bicategory views

Allegories: Cons
● Closed world assumption, Boolean logic

– But division allegories are claimed to be Heyting

● No higher-order logic
● Not natural, no basis for metaphysics
● Number of views reduces cohesion

– Tabular view is categorification of relational
databases

● other views may not be unital (not CCC)

● Not suited to new generation of object-bases
– Will not form part of our work going forward on

natural information systems

But Allegories could still be
significant

● Allegories and topos have some commonality
– Same underlying data structure (pullbacks)

– Both can be viewed as regular categories

– Both have an internal logic

● Difference is natural topos vs allegories as sets
● Potential for interoperability, major problem in

information systems today
– Relational database as allegory (A)

– Natural database as topos (T)

– Adjointness: F: A → T; G: T → A; F -| G

Challenge to the Sketch Workers

● Very difficult to justify the elaborate work on
Entity-Relationship database models with
sketches

● Allegories 'off-the-shelf' can do everything they
want functionally in a relational database

● Simply add a graphical interface to an allegory-
based system to complete the work
– Regular category structure with pullback diagrams

makes this readily achievable

Topos: further work identified

● Data Process
– Queries – use of subobject classifier, particularly

with power objects

– Examples of Heyting intuitionistic logic

● Database design
– Co-cartesian approach

– Pasting of pullbacks

– Recursive pullbacks

– Allegories

Progress
Data Process

Queries Subobject classifier extended to power-
objects for generality

Heyting examples Stalled, as group at unn has fewer meetings

Database Design

Co-cartesian In progress

Pasting of pullbacks Expressed in complex, more realistic design

Recursive pullbacks In progress

Allegories Explored, not useful in natural IS but
significant for interoperability

The Topos going forward

● CCC
– Products; Closure at top; Connectivity; Internal Logic; Identity;

Interchangeability of levels

● Plus:
– Subobject classifier

– Internal logic of Heyting (intuitionistic)

– Reflective subtopos (query closure)

● Gives
– A Topos

More Complex Examples

● Last year's paper dealt with a single pullback as
a topos

● Developing more complex pullback structures
to show can handle realistic examples

● Here we extend the Student-Module example to
include Departments, Universities, Lecturers.

● Pullbacks are pasted together, following laws of
composition on paths
– not intersection of paths, which would be set-based

Single Pullback: S X
O
 M

Topos – Pasted Pullbacks x6

Pasted Pullback with CCC Logic

There are potentially 6 commuting squares

Hierarchical
Structure

Topos – Pasted Pullbacks x7

Network
Structure

Subobject Classifier – Boolean
example

U

S Ω {0,1}

1
topos

truej

X
j

Simple database query in
category theory style

Ω {0,1} is subobject classifier; subobjects classified as either 0 or 1
X

j
 characteristic function is query mapping from object S to {0,1), false or true

1
topos

 is terminal object of topos (handle on topos)

j is mapping from subobject U (result of query) to object S

Diagram is actually a pullback of true along X
j.

U is 1
topos

 X
Ω{0,1}

 S

U is the identity of the subtopos, giving query closure

Subobject Classifier as Power-
object

Defined by commuting pullback square:

 U

Subobject classifier Ω is non-Boolean, a power-object of some objects
Characteristic function X

j
 defines subobject U of object S from topos

 represented by 1
topos

S is of type AND (intersection)
Diagram is again a pullback of true along X

j.

U is 1
topos

 X
Ω (power-object)

 S(ΩXΩ)

U is the identity of the subtopos, giving query closure

j true

X
j

S(ΩXΩ) Ω (power-object)

1
topos

Advantages of General Subobject
Classifier

● Power-object represents all possible
combinations of all objects
– Basis for general search capability

● Object with type ΩxΩ
– Facilitates comparison of all power-objects with

each other

● So X
j
 is a general database query

● Subtopos U is result of a general query over a
general object

Summary of Progress

● Topos 'data model' established as optimum way
forward for information systems

● Recent work has confirmed the suitability of the
model for large-scale design and general
interrogation

● Next stage: provide a demonstrator project to
show how system would work from design to
implementation with a reasonably complex
application. At same time work on remaining
issues: Heyting logic, design alternatives.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

