XML Schema-driven Generation of Architecture
Components

Ali El bekat!, Nick Rossitet

1School of Informatics, Northumbria University,
Newcastle upon Tyne, UK
Email: ali.elbekai@unn.ac.ukjck.rossiter@unn.ac.uk

Abstract. It is possible to code by hand an XSL stylesheet thatlate an
XML document against some or all constraints of an XMhesea. But the
main goal of this paper introduces general techniquesteshaology solution
for different problems such as (a) generation of SQL schdrom
XMLSchema, (b) generating XSL stylesheet from XMLScheraad (c)
XQuery interpreter generating. Each of the techniques peapmn this paper
works by XMLSchema-driven generation of architecture compsneith XSL
stylesheet. As can be seen the input is XMLSchema andskf&sheet and the
output is generic stylesheets. These stylesheets can besisetrpreter for
generating other types of data such as SQL queries fromréQu8QL data,
SQL schema and HTML format. Using XSL stylesheets weemtealgorithms
showing how we can generate these components automatically.

1 Introduction

XML is fast emerging as the dominant standard riggresenting and exchanging
information over the Internet [4,2]. If data is storedl aepresented as XML docu-
ments, then it should be possible to query the contentesé tdocuments in order to
extract, synthesize and analyze their contents. Al$s,possible to transform theses
data to another format and to generate a componenttfrerXML data. Originally,
XML was created to meet the challengesdatia exchange in Web applications or
between applications and users, not for data pregenfairposes. To deal with pres-
entation issues, XML needs to be used in conjunction wilesheets to be easily
viewed on the web. For this reason, eXtensible StgletsLanguage was created.
XSL (Extensible Stylesheet Language) is being developeghasts of the W3C
stylesheets activity [13,14]. It has evolved from the C8f®uage to provide even
richer stylistic control, and to ensure consistemfyimplementations. It also has
document manipulation capabilities beyond styling. Of seudesigning “traditional”
software transformation tools for that purpose canexehsuch a task. However, the
power of having a cross-platform and XML independent lagguaould be lost.
Precisely, isolating content from formatting neenl$é considered, especially when
dealing with Web based documents. Therefore, any mathachnsforming XML
documents into different formats such as XML, HTML, SQlat files or WML
needs to be tailored so that it can be used with diffgplatforms/languages.

mailto:nick.rossiter@unn.ac.uk

This paper introduces the technological solutions for diffeproblems such as (a)
SQL schema generation, (b) XSL stylesheet generadioth,(c) XQuery interpreter
generation automatically by transforming an XMLSchelmaugh an XSLT.2.

2 Related Work

Bourret [2] noted that XML and its surrounding technolodiase many facilities in
common with real databases such as storage (XML documentemas (DTDs,
XML schema languages), query languages (XQuery, XPath, X®IL-QL, QUILT,
etc.), and programming interfaces (SAX, DOM, JDOK the other hand, XML
lacks efficient storage, indexes, security, transactamts data integrity, multi-user
access, triggers, queries across multiple documents, anal gboulnagaet al [1]
started a discussion in the XML community about charaoterand generating XML
data. Provost [10] considered the most common patterndofarment content con-
straints, and finds that XML Schema validation is only finst of several necessary
layers. Bourret [3] summarized two different mappings. flitsé part of the process,
generally known aXML data binding, maps the W3C's XML Schemas to object
schemas. The second known daloect-relational mapping, maps object schemas to
relational database schemas. In [6,11] techniques aseryiegl for querying XML
documents using a relational database system, which srthblsame query proces-
sor to be used with most relational schema generaibmigues. Norton [8] presents
an XSL as validation to validate XML document. W3C ana&Ren describe a query
processor that works for different schema generatidmiques [12, 9]. Their work is
done in the context of data integration, and the tablesrafedleby each relational
schema generation technique are specified as materigieags over a virtual global
schema. In [5] a translation is presented of XQueryesgion drawn from a compre-
hensive subset of XQuery to a single equivalent SQL quéng @snovel dynamic
interval encoding of a collection of XML documents. In [fA]agorithm is presented
that translates simple path expression queries to 8@hieipresences of recursion in
the schema in the context of schema-based XML statagelding of XML relations.

As a result none of the approaches described abteduce an algorithm to
generate a generic XSL stylesheet for transforming XMISQL statements or an
XSL stylesheet for transforming XQueries to SQL querde for generating SQL
schema by using XSL. We will next introduce general algorit to generate these
components automatically.

3 SQL Schema Generations

Basically, the DOM [12,16] is a specification that corapsi a set of interfaces that
allow XML documents to be parsed and manipulated in menibry.main interfaces
for an application with DOM are: Node: the base tymgmreésenting a node in the
DOM tree; Document: representing the entire XML documerd &ree of Nodes (the
DOM parser will return Document as a result of parsiregXML); Element: to repre-
sent the elements of the XML document; Attribute, espnting an attribute of some
XML element; Interface enabling setting/getting the vaitithat attribute; and Text:

representing the text content of an element (i.e. tktebtween tags that is not part
of any child element). The DOM tree is composed of nogash of which represents
a parsed document. Based on these interfaces, we wihe&iséMLSchema parse file
(DOM) as input in our algorithm to generate the componauttsmatically. Now we
will introduce an algorithm that can be used automaticallygénerate the SQL
schema as output of an arbitrary XMLSchema. In particularpresent a translation
algorithm that takes as input an XMLSchema and XSL stytgsirel produces a SQL
schema as the output.

Algorithm generate SQL Schema (XMLSchema (DOM), XSL stylesheet)
Il Input XMLSchema, XSL stylesheet // Output SQL Schema (SQL DDL)
1. start
2. ifthe input arguments of the algorithm (XMLSchema, XSL stylesheet) exist
2.1 Building DOM and parsing it
2.2 if parsing XMLSchema is done then DOM will build dynamically
3.2.1 perform XSL stylesheet transformation
3.2.2 if transformation is done
3.2.2.1 transformation processing (XMLSchema, XSLT)
3.2.2.2 the XSL template adds SQL clause CREATE TABLE and matches the complexType
name node of DOM
3.2.2.3 for each complexType name create a separate SQL table
3.2.2.3.1 create a primary key to each SQL table as table name followed by the string “_id”
3.2.23.2 create aforeign key is also table name followed by the string “_fk” or identify
child nodes and map them as foreign key to the SQL table as in our example
3.2.2.3.3 Ifthe root node (complexType) has parent/child nodes
3.2.2.33.1 the XSL template matches and maps all child nodes as column names
to created SQL tables
3.2.2.33.2 the XSL stylesheet templates walk through DOM and matches all child
nodes, attribute nodes data types and maps as column names to SQL
3.2.2.3.3.3 report no parent /child node and terminate
3.2.2.4 finishing the execution, SQL schema is generated (SQL DDL)
3.2.3 report transformation errors and terminate
3.3 report parsing errors and terminate
4. reportreading errors and terminate
5. end/terminate

Fig.1. An algorithm for generating SQL schema from XMLSchema.

4 XSL Generations

Basically, it is possible to code by hand an XSL styéet that validates an XML
document against some or all constraints of an XML sehdunt in this section we
introduce an algorithm as shown in Fig. 3 for generating &h 3tylesheet from an
XMLSchema parse file (DOM) and as mentioned befaeDOM tree is composed
of nodes, each of which represents a parsed documenhenwetrds this algorithm
is the technology solution to the problem of genegatim XSL automatically by
transforming an XMLSchema through an XSLT. The result igeaeric XSL
stylesheet providing the mechanism to transform aadipulate XML data. Also the
generated XSL stylesheet can be used to transform an dddument into another
format such as XML to SQL statements and XML to HTdticument.

5 The XQuery Interpreter Generation

Basically, the XQuery [15] is a language containing one arengjuery expressions.
XQuery supports conditional expressions, element constedt@R, LET, WHERE,
RETURN (FLWR) expressions, expressions involving opesaand function calls

and quantifiers, type checking and path expressions. So@wger¥ expressions
evaluate to simple node values such as elements anditatritr atomic values such
as strings and numbers. The syntax for retrievirigrifig, and transforming records
uses FOR, LET, WHERE and RETURN clauses. A FLWR exmpnesseates some
bindings, applies a predicate and produces a result seter@oes not conform to
the same conventions as SQL. XQuery and SQL share sionilar concepts. Both

languages provide keywords for projection and transftomaoperations (SQL

SELECT or XQuery RETURN). SQL supports joins betweenleta and XQuery

supports joins between multiple documents.

<?xml version="1.0" 7>
<xsl:stylesheet version ="1.0" xmins:xsl="http://www.w3.0rg/ 1999/XSL/Transform ">
<xsl:template match ="complexType">
DROP TABLE IF EXISTS <xsl:value-of select="@name" />;
CREATE TABLE <xsl:value-of select="@name" />
(<xsl:value-of select="@name" />_id INT NOT NULL,
<xsl:apply-templates select="element"mode="@name" />
PRIMARY KEY (<xsl:value-of select="@name" />_id))
</xsl:template>
<xsl:template match ="element" mode="@name">
<xsl:value-of select="@name" />
<xsl:apply-templates select="@type" mode="schematype" />
</xsl:template>
<xsl:template match ="@type" mode="schematype">
<xsl:variable name ="type" select="." />
<xsl:choose>
<xsl:when test ="$type="String' ">VARCHAR?2 (*)</xsl:when>
<xsl:when test ="$type='Date’ ">DATE NOT NULL</xsl:when>
<xsl:when test ="$type="Text' ">TEXT</xsl:when>
<xsl:when test ="$type="Integer' ">INTEGER (10,0) NOT NULL</
xsl:when>
<xsl:when test ="$type='Image’ ">IMAGE</xs|:when>
<xsl:when test ="$type="UrI">URL<ksl:when>
<xsl:when test ="$type='Char'">CHAR (1)</xsl:when>
<xsl:when test ="$type="'Sex' ">SEX </xsl:when>
<xsl:when test ="$type='BLOB' ">BLOB </xsl:when>
<xsl:when test ="$type='Country' ">SCOUNTRY</xsl:when>
<xsl:when test ="$type='ReferenceType' ">ReferenceType </xsl:when>
</xsl:choose >,
</xsl:template>
</xsl:stylesheet>

Fig. 2. The generated XSL stylesheet for generating SQL sciremaXMLSchema

Here are two simple examples: one with XPath type of a caedythe other with
FLWR expression. The single forward slash (/) signities parent-child relationship
between elements. In tracing a path through a tree thessipn starts at the root
node and follows parent node and so on.
1) X/ <collection>/<object>/<objectinfor>
2) For obj in <collection> do

Where obj = <object>

Return <object>

Finally in this section we introduce an algorithm for geriegaan XSL stylesheet

from the XMLSchema to interpret the XQuery. In othards, this is the technology
solution to the problem of generating automatically XQuery interpreter by trans-
forming an XMLSchema through an XSLT.

/I lInput XMLSchema, XSL stylesheet // Output XSL stylesheet
1. start
2. if the input arguments (XMLSchema, XSL stylesheet) exist
2.1 Build DOM and parse it
2.2 if parsing XMLSchema is done DOM will build dynamically
2.2.1 perform XSL stylesheet (each XSL stylesheet contains templates and commands to
select and manipulate structure of data)
2.2.2 if transformation is ok
2.2.2.1 invoke the root node of DOM tree
2.2.2.2 compare the root node with template rules in the stylesheet, if it matches the
first one then map to the root node of an XSL stylesheet output (as new template)
2.2.2.3 If the root node has parent/child nodes
2.2.2.3.1 the XSL walks through DOM tree and pulls nodes from DOM tree and
places them with formatting as a new template to output
2.2.2.3.2 compare and match complexType nodes of the DOM tree with the and
XSL template, and for each a complexType name create a separate table
2.2.2.3.3 map the child nodes to the table as a column names, and also the
data type of XMLSchema mapped as values to the column names
2.2.2.3.4 iterate through the DOM tree nodes and set the keyword VALUES to the
output as new template in the XSL stylesheet
2.2.2.3.5insert the required statement and then return all template (new XSL
stylesheet generated)
2.2.2.4 set null and terminate
2.2.3 report transformation errors and terminate
2.3 report parsing errors and terminate
3. report reading errors and terminate
4. terminate\end

Fig. 3. An algorithm for generating XSL from XMLSchema.

/' lnput XMLSchema, XSL stylesheet, // Output XSL stylesheet (Generic XSL stylesheet)
1. start
2. ifthe input arguments (XMLSchema, XSL stylesheet) exist
2.1 Building DOM and parsing it
2.2 if parsing XMLSchema is done, then DOM will build dynamically
2.2.1 perform XSL stylesheet transformation
2.2.2 if transformation is done
2.2.2.1 XSL templates start from the root node of DOM tree
2.2.2.2 If the root node has parent/child node
2.2.2.2.1 the XSL stylesheet template matches IN clause from DOM nodes and places it
as template name
2.2.2.2.2 the XSL template adds FROM clauses to the new template and mapped the
root node of DOM to the (new template in new XSL stylesheet)
2.2.2.2.3 the XSL stylesheet that pulls the nodes from DOM tree and places it with
formatting, into a new XSL stylesheet
22224 the XSL stylesheet teé]jlplaie walks through the DOM tree nodes and when the
template matches RETURN
2.2.2.2.5 the XSL template will add the SELECT clauses to the template
2.2.2.2.6 map the parent/child of DOM tree as new template to the new XSL stylesheet
2.2.2.2.7 lterate and walk through the DOM tree nodes and when the XSL template matches
nodes has name WHERE or IF or Else clause
2.2.2.2.8 setthe WHERE clauses as a new template into the new XSL stylesheet
2.2.2.2.9 When all the templates have been executed and placed in the output, then the new
template will be a generic XSL stylesheet generated
2.2.2.3 report no parent/child node and terminate
2.2.3 report transformation errors and terminate
2.3 report parsing errors and terminate
3. report arguments error and terminate
4. terminate/end

Fig. 4. Algorithm generating XSL from XMLSchema to transform 0é&pes to SQL queries.

6 CONCLUSION

The contribution of this work is that it introduces gen¢eghniques for generating
SQL schema, XSL and XQuery using XMLSchema and XSL stget, which (a)
enables the use of these techniques for transforming d&th to SQL data and stor-

ing it in a relational database, (b) allows the useprissent HTML format, and (c)
interprets XQueries (transforms XQueries to SQL quesesthat we can then re-
trieve and query data from the database. A potential dauseoncern is that our
general techniques may be less overlapping in implementatisniosing some effi-
ciency.

However based on our prototype implementation in java, we faund that it is
very quick to generate XSL stylesheets as an interpi@talifferent types of trans-
formation such as SQL Schema and XQueries in to SQL guékgewe know it is
possible to code by hand an XSL stylesheet that vadidateXML document against
some or all constraints of an XML schema and to ggeean XSL stylesheet. How-
ever with our automated technique this task is easy, quidKess overlapping and
we will use these generated components to integratéotfiee and online) compo-
nents to satisfy our requirements. Also, we plan to exteese techniques to work
with Multiple XMLSchema, not just single XMLSchema.

References

1. Aboulnaga, A., Jeffrey F. Naughton, Chun Zhang. Generatingh&yc Complex-
Structured XML Data. Fourth International Workshop WebDB'2001 (2001).

2. Bourret, R, XML and Database www.rpbourret.com/xml/XMLAntE@mses.htm (2004).

3. Bourret, R, Mapping W3C Schemas to Object Schemas to i®elbtSchemas.,
www.rpbourret.com/xml/SchemaMap.htviarch (2001).

4. Chawathe S. Describing and Manipulating XML Data, Bull#EBEE Technical (1999).

5. DeHaan D, D. Toman, M. Consens, and M. T. Ozsu, A Cehgmsive XQuery to SQL

Translation using Dynamic Interval Encoding, Proc ACM IminCManagement Data
(SIGMOD'03), San Diego, 623-634 June (2003).

6. Florescu D, D. Koaamann. Storing and Querying XML Datagiah RDBMS, IEEE Data
Engineering Bulletin22 27-34 (1999)

7. Krishnamurthy R., Venkatesan T.Chakaravarthy, Raghav Kaud#ifkey F. Naughton,
Recursive XML Schemas, Recursive XML Queries, and Relat Storage: XML-to-SQL
Query Translation, ICDE (2004)

8. Norton Francis. Generating XSL for Schema validation
http://www.redrice.com/ci/generatingXslValitflay 20, (1999)

9. Peterson David, Paul V. Biron, and Ashok Malhotra XML Schdni Part 2: Datatypes.
W3C, Working Draft WD-xmlschemal1-2-20040716, July (2004)

10. Provost W, XML Validation Architecture using XML Schen¥Path, and XSLT. (2002)

11. Shanmugasundaram J., E. Shekita, J. Kiernan, R. Krishramét Viglas, J. Naughton
and Igor Tatarinov. A General Technique for Querying XMaclments using a Rela-
tional Database System. ACM SIGMOD Record, 30(3), (2001)

12. W3C, Document Object Model (DOM) Level 2 HTML Specificativersion 1.0 W3C
Recommendation 09 Januamtp://www.w3.0rg/TR/2003/REC-DOM-LevgP003).

13. W3C. Extensible Stylesheet Language (XSL) Version 1.0, Wa@idate Recommenda-
tion. http://mwww.w3.0rg/TR/2001/REC-xsl-20011015/ October 15, (2001

14. W3C XSL Working Group, W3C Recommendation on XSL Transformati(XSLT)
http://www.w3.0org/TR/xslt. (1999)

15. W3C.XQuery 1.0: An XML Query Language, W3C Working Draft 28y (2004).

16. W3C.DOM Working Group, Document Object Model, http://www.ar8/DOM/. (2004).

http://www.rpbourret.com/xml/SchemaMap.htm
http://www.redrice.com/ci/generatingXslValid
http://www.w3.org/TR/2003/REC-DOM-Level

