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Understanding Visualisation:
A Formal Foundation using Category Theory
and Semiotics

Paul Vickers, Member, IET Joe Faith, and Nick Rossiter.

Abstract—This article combines the vocabulary of semiotics and category theory to provide a formal analysis of information
visualisation. It shows how familiar processes of information visualisation fit the semiotic frameworks of both Saussure and Peirce,
and extends these structures using the tools of category theory to provide a general framework for understanding information
visualisation in practice, including: relationships between systems, data collected from those systems, renderings of those data in
the form of representations, the reading of those representations to create visualisations, and the use of those visualisations to create
knowledge and understanding of the system under inspection. The resulting framework is validated by demonstrating how many familiar
concepts used in visualisation arise naturally from it; and used to identify some less intuitive distinctions which are useful in comparing
visualisation methods. Finally, some suggestions are made regarding further uses to which this framework might be put, particularly as

regards the study of multi- and cross-modal representations.

Index Terms—Visualization, category theory, semiotics

1 INTRODUCTION

NFORMATION visualisation is a catch-all term that

embraces a wide range of activities that are all con-
cerned with representing, or making visible (that is,
perceptible), aspects or features of a given set of data
or system. It is classically defined as “the process of
forming a mental image of some scene as described”
[20, p. 320]. Visualisation embraces a wide variety of
activity, from the graphical analysis of scientific data,
through the ‘infographics” used to communicate in the
popular media, to data art. It has recently grown in
scale, popular currency, and theoretical discussion due
to a combination of factors including the growth in the
importance of data mining and processing in industry
and science, and the availability of popular and powerful
computer visualisation tools, such as Processing.!

Information visualisation in practice combines a range
of skills and disciplines, including statistics, aesthetics,
HCI, and computer science. And, perhaps because of
this diversity, there has been relatively little discussion
of the theoretical basis of the practice. Purchase et al. [19]
remarked that information visualisation “suffers from
not being based on a clearly defined underlying theory”,
and that “formal foundations are at a nascent stage”. The
danger of neglecting the theoretical foundations is that
the discipline will fragment into isolated communities of
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practice that fail to learn from one another and replicate
work unnecessarily. One of the few exceptions to this
has been the work of Robert Kosara [15], [28] who
has combined an understanding of the major strands
within information visualisation with a critical theoreti-
cal awareness. In this article we contribute to this process
of developing theoretical foundations for information
visualisation by employing two existing tools.

The first is semiotics, the study of signs. As devised
by Saussure and Peirce, semiotics has developed into a
powerful theoretical framework for understanding the
relationships between signs, sign systems, the consumers
of those signs, and the systems they represent (though
this is a point of contention discussed in section 2).
Information visualisations are signs par excellence, and
thus seem obvious candidates for semiotic analysis. In
section 2 we provide an extremely brief introduction
to the frameworks used by semiotics to analyse sign
systems, and discuss how this applies to information
visualisation. The result is to show how information
visualisation can be understood using a series of rela-
tionships, or mappings, from one domain to another,
summarised in a semiotic triad.

The second tool is category theory, the mathematical
study of systems of structures and their mappings in
terms of their formal relationships. This theory is intro-
duced in section 3, and applied to information visualisa-
tion in section 4. The most powerful weapon in category
theory is the notion of commutativity, which forces one
to try to extend and construct structures in such a way
as to reach algebraic closure by considering the conse-
quences and implications of a structural description of
a system. By applying the criterion of commutativity to
our semiotic triad in sections 4.2 and 4.3 we extend our
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framework in a natural way to cover (or uncover) some
aspects which are already familiar to practitioners of
information visualisation, and some other aspects which
are less obvious. The end result, or closure, is the general
description of information visualisation given in section
44.

2 SEMIOTICS AND INFORMATION VISUALISA-
TION

Semiotics is the study of the creation and interpretation
of signs. Signs are words, images, sounds, smells, objects,
etc. that have no intrinsic meaning and which become
signs when we attribute meaning to them [4]. Signs stand
for or represent something beyond themselves. Mod-
ern semiotics is based upon the work of two principal
thinkers, the Swiss linguist Ferdinand de Saussure and
the American philosopher and logician Charles Sanders
Peirce. In Saussure’s semiology the sign is a dyadic
relationship between the signifier and the signified.? In
Saussure’s linguistic system a sign is a link between the
signified (a concept) and the signifier (a sound pattern)
both of which are psychological constructs having non-
material form rather than material substance [4]. For
example, /tree/ is a signifier for the concept of the
thing we know as a tree. The sign thus formed is a link
between the sound pattern and the concept. However,
modern applications admit material form for the sig-
nifier (e.g., road signs, printed words, etc.). Saussure’s
scheme explicitly excludes reference to objects existing
in the real world. The signified is not directly associated
with an object but with a mental concept.

Peirce’s semiotics is based upon a triadic relationship
comprising:

o The object: the thing to be represented (note, this

need not have a material form);
o The representamen: the form the sign takes (word,
image, sound, etc.,) and which represents the object;
o The interpretant: the sense we make of the sign.

So, Peirce admits the referent that Saussure brackets.
Fig. 4 shows two Peircean triads drawn as ‘meaning tri-
angles’.3 It should be noted that the Saussurean signifier
and signified correspond only approximately to Peirce’s
representamen and interpretant; unlike Saussure’s signi-
fied, Peirce’s interpretant itself becomes a sign vehicle
in the mind of the interpreter. Fig. 1(a) shows the basic
structure of a Peircean sign and Fig. 1(b) shows the sign
formed by the name Agamemnon which represents a
specific individual cat with that name.

To relate this to visualisation consider Fig. 2 which
shows a semiotic relationship that exists between a set

2. Saussure used the term semiology. This word has become associ-
ated with the European school whilst semiotics is more associated with
the American school of Peirce et al. For the sake of simplicity we will
use semiotics throughout this article.

3. In 1923 Ogden and Richards [18] gave this visual interpretation of
Peirce’s triad since when it has become the conventional representation
(see also Eco [7] and Sowa [23]).

of student marks and an external representation. Using a
spreadsheet program we take a data set which has been
collected from the real world system of a cohort of stu-
dents studying a course. These data are then presented
to the user via a chart representation. It should be noted
that this visual representation is not the data set, but
a particular representation of it. So, we have a sign (in
the Peircean sense) in which the data set is the referent
object, the chart view serves as the representamen of the
data set, and the interpretant is the sense we make of
the student marks by looking at the chart.

Evocation: inferred beliefs about
the world of the student marks

Chart: External representation

Student
marks data

Fig. 2. A chart is an external representation of the underlying data. The
interpretant is the concept that is formed in our mind when we view the
chart representation.

It is important to note that, contrary to Saussure’s
original structuralist view, sign systems exist within a
social and cultural context which, the post-structuralists
would argue, needs to be taken into account. Peirce’s
semiotics, through the notion of a ground, admits con-
text. It is important because visualisation requires the
producer (the addresser in semiotic terminology) and
the consumer (the addressee) to share some contextual
knowledge in order for successful meaning making to
take place. In Peirce’s semiotics meaning is mediated
such that the “meaning of a sign is not contained within
it, but arises in its interpretation” [4]. Hjelmslev [13]
recognised that no sign can properly be interpreted with-
out first contextualising it so that in addition to a sign’s
denotative meaning its context also lends it connotative
meaning. For instance, in the example of a student marks
system the ground would include knowledge about
what constitutes a pass mark in this assessment scheme,
where the grade boundaries lie, and so on.

Note that this semiotic framework would exclude
some examples of what is popularly regarded as ‘in-
formation visualisation’. For instance, take Radiohead’s
“House of Cards” video [21]. The video was shot without
any cameras being derived solely from data obtained
from 3D images produced by Geometric Informatics for
close proximity objects and Velodyne Lidar for land-
scapes. The data sets used to make the video are avail-
able for anyone to download from the project’s web
site where we are encouraged “to create your own
visualizations” [21]. The problem with this concept is
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Interpretant
(=signified)

Representamen

Object (=signifier)

(a) A Peircean semiotic triad (after Sowa
[23]). Approximations to Saussure’s semiotic
terminology given in parentheses.

Fig. 1. Two semiotic ‘meaning triangles’

that the video, whilst unarguably data-driven, ought not
be considered a visualisation as it provides no insight
into the data, it is pure spectacle [1]. As Card, Mackinlay,
and Shneiderman put it: “The purpose of visualization is
insight, not pictures” [3].4 Visualisation, then, is a process
that begins with the real world, or more narrowly, a
system in the real world about which we are interested.
The system could be a mechanical system or it could be
something like a cohort of students on a degree course.
From the system we gather data which are then mapped
via some transformation rules to an external representa-
tion (a graph or chart, an interactive 3D model, statistical
box plots, etc.) and this representation is then ‘read’ by
the person who wants to gain insight into the system.

This reading of the representation evokes concepts and
ideas in the mind and inferences are drawn leading to
understanding of the system and, as we shall see later,
knowledge of the truth as it pertains to that system. This
process is encapsulated in Fig. 3.

2.1 Data

At the heart of the visualisation process lies the real
world with its events, entities, concepts, etc. Contrary to
what some current advertisers would have us believe,
the real world is not data and clouds of data do not fol-
low us around in any ontological sense.® Rather, the data
that are used in computer systems, visualisations, and
so on have been generated and collected by instruments
with a specific purpose in mind. For example, census
data are collected using a specially designed instrument
(the census questionnaire) and the data gathered allow
governments to plan spending priorities and the future
provision of services. Engineers collect performance data
from machines; banks create transaction data to enable

4. This was itself a recasting of R. W. Hamming’s 1962 insistence
that “the purpose of computation is insight, not numbers” [12].

5.See Mitchell Whitelaw’s blog at http://teemingvoid.
blogspot.com/2010/05/this-is-data-arguing-with-data-baby.
html?showComment=1282871974120. Here is the ‘This is data’
example he mentions (the link is broken on his blog) —
http:/ /www.youtube.com/watch?v=8Ctv-5n9b6U.

Interpretant/concept
") "Agamemnon"
Object Representamen
or symbol

(b) Example: A real individual cat is the ob-
ject. It is signified by the symbol “Agamem-
non” which brings into our mind the concept
of Agamemnon the cat.

them to keep bank accounts accurate and up-to-date. The
main point here is that data have no a priori existence,
they have to be created by collection instruments and
stored as a data set in an appropriate storage medium
(account ledgers, computer hard drives, optical discs,
etc.).® This means that data always have a context (a
ground), a scenario in which they were intended for use.
These data are abstractions of the real world from which
they were collected.

3 CATEGORY THEORY

In this section we introduce the main concepts of cat-
egory theory and briefly examine one initial attempt
to apply it to information visualisation. The Stanford
Encyclopedia of Philosophy [17] describes the potential
of the theory:

Category theory has come to occupy a central
position in contemporary mathematics and the-
oretical computer science, and is also applied to
mathematical physics. Roughly, it is a general
mathematical theory of structures and of sys-
tems of structures. As category theory is still
evolving, its functions are correspondingly de-
veloping, expanding and multiplying. At mini-
mum, it is a powerful language, or conceptual
framework, allowing us to see the universal
components of a family of structures of a given
kind, and how structures of different kinds
are interrelated. Category theory is both an
interesting object of philosophical study, and a
potentially powerful formal tool for philosoph-
ical investigations of concepts such as space,
system, and even truth.

Category Theory (CT) is a branch of mathematics de-
veloped to analyse systems of structures, and mappings
between those structures, in their most general form.
This level of generality means that category theory is

6. By this we mean they have no a priori material existence. Whether
or not they exist in some ideal Platonic sense is outside the scope of
this discussion.



4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, MONTH YEAR

EXTERNAL REPRESENTATIONS

EVOCATION

Used for meaning making & inference drawing

Real World

Data collection
(purposeful)

o (%]
O

The process of visualisation

6
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3
2
1

Fig. 3. Understanding the real world through visualisation: Data are collected with purpose from the real world and mappings are used to produce
external representations. These representations are then used for meaning making and drawing inferences about the data. The visualisation

process encompasses cognition in the mind of the observer.

capable of demonstrating similarities between disparate
fields of mathematical enquiry — from set theory to
theoretical computer science — in such a way that
allows insights from one to be translated to another.
It can thus act as a Grand Unified Theory in math-
ematics. The corresponding weakness, and a common
complaint about category theory, is that it can appear
as just a theoretical or descriptive superstructure atop
the actual domain of study, in which the insight comes
from understanding of the domain base rather than the
theoretical superstructure. However, as described below,
through building upon the underlying concept of an
arrow or morphism any construction can be developed
in principle to any level of detail. In this article we argue
that the ‘cash value’ of applying CT concepts to the
process of information visualisation is that:

o By considering intuitive concepts (such as ‘visuali-
sation’) from a formal point of view it can enforce
conceptual hygiene by exposing unclear definitions.

o By understanding the universal properties of the
resulting structure (rather than our day-to-day expe-
rience of these kinds of phenomena as practitioners)
then it can force us to step back and consider aspects
or possibilities that might otherwise be neglected.

An introduction to the use of category theory in

practice can be found in Mac Lane’s text for the working
mathematician [16]. Category theory is built from just
two classes of entity: objects and morphisms (we follow
the convention that Objects are Capitalised and mor-
phisms are italicised). Almost anything can be considered
as an Object: physical objects, abstract objects, or entire
systems. Indeed, a large part of the power of category
theory comes from its recursive ability to treat ever more
complicated systems as building blocks in the next level
of abstraction. All that is required for an entity to qualify
as an Object is that it can be individuated, that is, we
have some method for determining whether two objects
are identical. This method is represented as a morphism
from the object to itself, known as the identity morphism.

Morphisms are mappings between objects. They are
represented diagrammatically by, and often described
as, arrows. (Indeed, in some notations objects are rep-
resented by their identity morphisms, meaning that
the arrow can be used to represent both objects and
transformations.) All that is required for a mapping to
qualify as a morphism is that there is a unique target
for each domain object: i.e., one object at the base of the
arrow and one at the head. Ontologically, a morphism
is understood as a generalisation of a mathematical
function, in other words as an association between its
source object and the target. Morphisms may represent
physical, causal, or temporal processes, or purely formal
relationships.

Objects and morphisms can be combined into dia-
grams, the simplest of which, and the most basic tool
in category theory, is a triangle, as in Fig. 4.

A *f> B A *f> B
g g
\ l 9& i
C C
(a) The basic tri- (b) Atriangle that
angle commutes

Fig. 4. Category theory triangles

Given objects A, B, and C and morphisms f: A — B
and g : B — C, the first question a category theorist
would ask, looking at Fig. 4(a), is whether there is
another morphism, h A — C, that completes the
triangle. This morphism is described as the composition
of f and g, or g o f. Note the ordering: compositions
are read right to left as the morphism g is applied to
the result of f. If there is such a morphism £ then the
triangle is said to commute, the objects and morphisms
together form a category and we can write the equation
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h=gof?

Consider an informal example, that of the category of
familial relations. Suppose A, B, and C are persons, f is
the mapping of ‘motherhood’, and g is ‘sisterhood’; then
go f corresponds to ‘aunthood’, the diagram commutes,
and we have a category. But now suppose that g is
‘friendship’. We do not have a well defined mapping
for g o f in this case (other than just ‘the relationship I
have with a friend of my mother’, a circular definition in
which the definiendum invokes the definiens). Hence we
cannot form a commuting triangle or create a category. In
order to form a category that encompasses both kinship
and friendship then we must enrich our vocabulary
of morphisms to describe those relationships. Societies
that are based on communal kin-groups rather than
atomic families will tend to develop richer vocabularies
to capture these composite relationships; hence their set
of morphisms will tend to form well-defined categories.
This is an example of how category theory can be used
in practice: no one would suggest that kin-groups form
vocabularies because of their category-theoretic proper-
ties, but the category-theoretic perspective suggests a set
of questions that could be asked of that vocabulary, and
a conceptual framework for analysing it.

Objects in a category must have an identity morphism.
This means that for an object A there is an identity
morphism 15 : A — A (also written as ida) such that
for every f: A — B we can state lgo f = f = folax. We
can represent this diagramatically thus:

A8
The final requirement for a category to be valid is
that where three or more morphisms (e.g., f, g, h) are
composed together, the overall operation is associative.
That is, the order in which the evaluation is made is

immaterial: (f og) oh = f o (goh). This is trivially true
in the case of familial relations.

3.1

Morphisms are of several types, viz monomorphic, epi-
morphic, endomorphic, isomorphic, and automorphic.
A morphism can be monomorphic (monic) or epimor-
phic (epic) depending on whether it is left- or right-
cancellative, that is, how it exposes differences in mor-
phisms with which it is composed. For example, consider
the category F of female relations with objects X. The
relation r : X — X where X is a female and r is moth-
erhood is not monic (that is into, 1:1, injective in sets,
see Fig. 5(a)) as there are potentially many paths from
each female to the female mother, one for each child, so
the left component is therefore not cancellative.A relation
that would be monic is first-born as this is 1:1 and the
left component is cancellative. The relation motherhood

Types of Morphism

7. A characteristic activity of category theorists, and the basis of
many of the resulting proofs, is known as ‘diagram chasing’, that is,
tracing the arrows of morphisms around such diagrams, checking for
commutativity.

may though be epic (that is onto, surjective in sets, see
Fig. 5(b)) if all females in the category F are mothers,
that is, the right component is cancellative. The tentative
results here illustrate how sensitive the properties of
monomorphism and epimorphism are to the definitions
employed for the underlying types.

In sets a morphism that is both injective and surjective
is said to be bijective (see Fig. 5(c)). Bijection may also be
used as a term in category theory in the same way as in
set theory but a term more often used is isomorphism,
which is a stronger concept as it additionally involves
identities. For example, for the relation s : C — D
(C is an object containing females, s is marriage, D is
male), where there exists an inverse s~ : D — C then
if both s'os = 1g and sos™' = 1p, s is said to
be isomorphic to s~!. A morphism that is both monic
and epic is said to be isomorphic if both identities hold.
Note that these relations will only be isomorphic if C and
D respectively are the collections of females and males
actually married at any given point in time and the laws
governing marriage permit only one partner each.?

The mapping r described earlier is an endomorphism
in that it maps an object X to itself in a recursive manner.
If an inverse 7! can be defined such that r is isomorphic
to 7~! then the relationship between r and r~! is said
to be an automorphism.

Categories themselves can be considered as objects in
higher-level categories. For example, consider two sets
of individuals, each comprising a mother, daughter and
aunt. There is a natural morphism between the individ-
uals: from daughter to daughter, from mother to mother,
and from aunt to aunt. But this morphism can also be
defined between the morphisms: from the motherhood
relationship in the first set to that in the second, etc. A
morphism between categories that preserves structure
in this way is known as a functor, and most practical
applications of category theory come from studying the
structure preserving properties of such mappings. We
could, for example, study possible functors between
languages, including how they describe familial relation-
ships, revealing which languages are structurally similar
and in what ways.

3.2

Both Peirce and Saussure understand signs in terms
of relationships and mappings between signs and sign
systems; thus they seem natural candidates for the cate-
gory theory treatment. The first effort to apply category
theory to semiotics was that of Goguen and Harrel [11],
in which they attempted a formalist treatment of the
semiotics concerned with information visualisation and
user interface design, an attempt that they described as
‘algebraic semiotics’.

The objects in Goguen’s algebraic semiotics are sign
systems. The actual definition of a sign system in

‘Structuralist’ Algebraic Semiotics

8. s71, the right inverse of s, is sometimes called a section of s. s,
the left inverse of s—1, is sometimes called a retraction of s~ 1.
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X Y

(a) Injection (into, or 1:1)

(b) Surjection (onto)

X Y

(c) Bijection (1:1 onto)

Fig. 5. Types of mapping. In an injection each element of the co-domain is mapped to by at most one element of the domain. In a surjection each
element of the co-domain is mapped to by at least one element in the domain. In a bijection each element of the co-domain is a mapping of only

one element in the domain

Goguen’s sense is complex, involving much theoretical
apparatus taken from mathematical algebra but, for our
purposes, the key elements are signs, constructors, and
axioms. The signs form the vocabulary, or set of all
possible signs. The constructors provide a systematic
way of generating those signs. And the axioms constrain
those signs. For example, consider Goguen’s example of
a simple time of day sign system which just shows the
number of minutes past midnight. The signs are the set
of natural numbers generated using two constructors:
the constant 0 (representing midnight) and a successor
operation, s, where for a time ¢, s(t) is the next minute.
The only axiom, which constrains the set of generated
signs to a 24 hour day, is that s(1439) = 0. Goguen thus
defines signs in terms of generalised structures, from
which the validity of any particular sign is derived. In
the vocabulary of first-order logic, the sign system is a
theory of which any particular sign is a model.

Having defined sign systems, Goguen then considers
mappings between them, which he describes as semiotic
morphisms. For example, if we had a very slow, regular,
sand glass containing 1440 grains of sand, in which
precisely one grain of sand fell every minute, and which
is turned when the last grain falls, then we can define a
mapping to this from the time of day sign system defined
above, in which the elements of the former (constant 0,
the s constructor, the set of numbers, the s(1439) = 0
axiom) are mapped respectively to elements of the latter
(empty lower glass, the falling of a grain of sand, the
possible piles of sand, turning the glass).

Goguen’s is a strongly structuralist theory, in two
senses. The first is that signs are defined as such in
virtue of their membership of, and role within, a sign
system. It is the structure of the sign system that defines
its constituents as signs. The second is that the only
relationships considered — the semiotic morphisms —
are between sign systems rather than between sign sys-
tems and either external or mental states. It all happens
within the ‘third order’ [6]. In particular, there is no
distinction in this framework between a set of data and
a visualisation of that data. Data is just another sign
system.

3.3

We find Goguen’s structuralism problematic. For exam-
ple, how can this framework be used to discuss the
quality of a visualisation? Goguen attempts an answer to
this ‘narrowly’ by characterising how well his semiotic
morphisms preserve the structure of a sign system.We
argue that the solution is a richer characterisation of
the visualisation process, to expand the use of category
theory to explicitly incorporate other elements of the
visualisation process, including the context of the visual-
isation, and how the visualisation is used in practice. The
end result of this process can be seen in the commutative
diagram in Fig. 13 but, as is usual with category theory,
we proceed by constructing the diagram in stages, check-
ing for commutativity at each step.

‘Post Structuralist’ Algebraic Semiotics

4 CATEGORY THEORY APPLIED TO INFORMA-
TION VISUALISATION

Peircean semiotics is based on a triadic relationship
between object, representamen, and interpretant. We can
draw our semiotic triad as the commutative diagram in
Fig. 6 (where O, R, and I stand for object, representamen,
and interpretant respectively):

f

O——R

g
N
I

Fig. 6. The Peircean semiotic triad as a commutative diagram

We say that the object in visualisation is the data
that has been collected from a given system, the rep-
resentamen is the representation, and the interpretant
is the mental state evoked by the representation in the
mind of the interpreter. So, we will call the objects
of our commutative diagram Data, Representation, and
Evocation respectively. The morphisms between them
we define as follows:
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o The transformation from Data to Representation is
a morphism called render because the data are
rendered in a given way so as to represent the Data
whilst maintaining structure and content (this is a
partial ordering).”

o The morphism between Representation and Evoca-
tion is called read because the interpreter reads the
Representation.

o To the composition read o render we assign the
name understanding for a proper Representation
will lead to the reader understanding some aspect
of the Data.

Thus, Fig. 7 shows us the Peircean semiotic triad
presented as a commutative diagram which forms the
core of the visualisation process.

render

Data Representation

understanding read

Evocation

Fig. 7. Visualisation as a semiotic triad

However, in the particular case of information visu-
alisation the object can be further decomposed into a
set of data and a system which that data measures in
some way. So, the starting point for the visualisation
process is not data but the system from which the data
have been gathered. Furthermore, the interpretation of
the representation leads not only to understanding the
data but also to beliefs and inferences about the system,
the truth of which can be tested. In other words, if we
combine Figs 3 and 7 we get Fig. 8. So, a prototypical
visualisation process consists of the following entities
and processes, which we will describe using the category
theoretic terms of objects and morphisms:

o System: a real world system, object, or phe-
nomenon, such as a class of students.

« Data: a set of data that describes some aspect of that
System, produced by a measure, such as test scores
for those students.

o Representation: some visual, aural, haptic, or literal
artefact of that Data, produced by a process of
rendering, such as a bar chart of their performance.

o Evocation: what that Representation evokes in the
mind of the user, produced by the user’s reading of
that Representation, such as the teacher’s viewing
of that bar chart.

o And that Evocation is thus an understanding of the
original data (understanding = read o render).

Fig. 8 shows this expansion, though it should be noted
that this diagram is incomplete and is to be read only as
a stepping stone on the way to Fig. 13.

9. It is partial because not all structure and content is necessarily
carried over.

measure rendm‘ .
System Data Representation
understanding read
Evocation

Fig. 8. System, Data, Representation, Evocation and the morphisms
between them

4.1 The Visualisation Process is a Category

In order for these objects and morphisms to form a
category certain conditions must apply.

1) Object Identity: each of {System, Data, Represen-
tation, Visualisation} must have an identity opera-
tion defined, and the kernel of this identity function
will, in turn, identify an equivalence class of objects
that are considered identical under this mapping.*®
In particular this requires that we are able to decide
unequivocally if two instances of the same System,
Data, Representation, and Visualisation are identi-
cal. This simple requirement forces a great deal of
conceptual hygiene. Unless we are able to answer
the following questions then we are vulnerable to
the accusation that we do not have a well-defined
visualisation process.

a) lgystem: The problem of identifying systems is
a common and urgent one in most empirical
science, especially biology and medicine. How
else can we talk about replicating results un-
less we are doing the same things to the same
systems? Unlike a data set which captures a
snapshot of a system and is static, a System
may experience change over time. For exam-
ple, in a System of a class of students the
individual students age and mature, change
their clothes and their hairstyles, and some
may even drop out of the course. How then do
we know when two System objects have the
same denotation? Whitehead talked in terms
of continuants and occurrents. A continuant is
an object that persists over time whilst an
occurrent is an event or a process, something
that does not persist. Whitehead [27] argued
that whether we consider something to be a
continuant that retains its identity over time
or an occurrent in a constant state of flux
depends, as Sowa puts it “more on the viewer
than on the thing itself” [23]. Therefore, agreed
criteria are needed for establishing System
identity which will allow a System to ex-
perience change over time whilst still being
considered to be the same System.

10. In category theory it is strictly not possible to show that things
are the same or identical. The strongest statement possible is that two
sets are naturally isomorphic (unique up to natural isomorphism), that
is, indistinguishable.
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b) 1pata: When do we say that two sets of data,
such as test scores, are the same? Do the abso-
lute scores matter or is it the same set of scores
when expressed as a percentage? What degree
of precision is required? If we had a very large
set of scores (for example if we are choosing
to understand the changes in national exam
performance) then identity might be defined
in cases where there is no statistically signifi-
cant difference between samples or aggregate
distributions.

€) lRepresentation: When are two representations
the same? Is a printed version the same rep-
resentation as an on-screen version? Do the
rendering resolution or particularities of the
hardware matter?

d) lEvocation: What does it mean to say that two
users form the same mental picture of the
data? The obvious problems in determining
internal psychological states mean that this
issue is usually operationalised in terms of
the ability to answer questions about the data
(‘which student performed best?” ‘Has average
performance declined or improved’), where
the same answer implies the same under-
standing.

2) Morphisms are Maps: the target object of each
morphism is determined by the source object. In
the case of representation this requires that a single
set of data (to within 1p,:,) generates a single
Representation. In particular, where the represen-
tational tool can be manipulated, steered, or inter-
acted with then it is the tool, bound to that Data,
that is considered to be the Representation rather
than any particular state or view that it produces.

3) Commutativity of Morphisms: Given a triangle
of objects and morphisms, such as that formed by
(Data, Representation, Visualisation, rendering, read-
ing, and understanding) the first question posed by
category theory is whether the diagram commutes,
i.e., readorender = understanding. That is, whether
the result of reading the Representation produced
by rendering the Data is an understanding of the
Data. If the Data is rendered and then read, but as
a result the reader does not understand the data
then the process of visualisation has failed.

4) Morphism Associativity: where three or more mor-
phisms are composed together, the order of eval-
uation is immaterial. This is a trivial constraint in
this context.

Visualisation processes for which conditions 1-4 are
satisfied can be considered as valid categories, satisfying
the axioms of category theory.

4.2 Category-Theoretic Properties of the represen-
tation Morphism

Once we have constructed a category corresponding to
our visualisation process, then we can start to use the
concepts of CT to consider its properties. First we will
consider what it means, in visualisation terms, for the
morphism representation to have each of the following
category-theoretic properties. In each case we take a
standard definition from category theory and apply it to
the Visualisation Process category (or rather, that subset
of it shown in Fig. 8). In each case we find that the
formally defined property yields a property or issue that
is important when considering visualisation.

4.2.1  Monomorphism Corresponds to Sensitivity

A representation morphism is monic iff for all
measurey, measures : System — Data : representation o
measure; = representationomeasures => measure; =
measures.

In other words, if the same System is measured in
two different ways then the resulting Representations
will necessarily be different. For example, suppose we
are to measure the performance of our students us-
ing two different tests (measure; and measures), and
represent them in two different ways: a simple textual
description (for example “John was the best student”),
and a bar chart showing the relative performance of
each. The differences in the test would not make any
difference to the textual description but it would to
the bar chart (assuming that identity morphisms on the
Representations and Data are well-defined). We would
normally describe this in terms of the sensitivity of the
visualisation. Sensitivity is normally assumed a desirable
property of a representation — and this assumption may
often be valid — but the point here is to show that this
important property corresponds to a category-theoretic
property of the Visualisation Process.

4.2.2 Epimorphism Corresponds to Non-Redundancy

A representation morphism is epic iff for all read,, reads :
Representation — Evocation : read; o representation =
reads o representation —> read; = reads.

In other words, if two individuals read the same
Representation in different ways then they will reach
different understandings of the Data. Although this may
seem tautological, there are important cases when it is
not true. Consider a set of data in which three attributes
are measured for each sample (for example, student
performance on three different tests). This data could be
represented using a conventional scatter plot in which
the z-coordinate corresponds to test 1, y to test 2, and
both the size and shade of each point correspond to test
3 (see Fig. 9). One individual may notice the position
and size of each point, whereas another may notice the
shade. They would draw identical conclusions about the
data, but they have read the representation in different
ways. The representation in this case is redundant in
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the sense that the same information is represented in
two different ways; hence there is more than one way
of gaining an understanding of that information from a
single representation. Redundancy is usually considered
to be an undesirable property of a Representation, but,
again, that is not the issue here.

height | weight | strength () O
34 18 56 S
2% | 21 77 2 O @)
weight
(a) The data set (b) A redundant
representation in which

the strength dimension
is mapped to both shade
and size

Fig. 9. Redundancy in representations

4.2.3 Endomorphism Corresponds to Literalness

A representation morphism is endomorphic iff Data =
Representation. Now, there are issues about the meta-
physical status of logical Data compared to that of
a physical representation, and hence whether such an
identity is ontologically valid; but if we bracket those
issues then the concept that the category theoretic prop-
erty of endomorphism encapsulates is that of literalness.
Contrast this with the notion that visualisations are
always metaphorical, as Cox argues [5]. Cox suggests
that there is a direct relationship between visualisation
and the mapping process (cognitive and creative) in
metaphor theory. She says:

Linguistic and visual metaphors are defined

as mappings from one domain of information

(the source) into another domain (the target).

Likewise, data-viz maps numbers into pictures,

resulting in visaphors, digital visual metaphors

(5]
According to Cox then, visualisation may be explained
in terms of a mapping process in which some features of
the source domain are mapped onto certain features of
the target domain (n.b., these mappings do not produce a
one-to-one correspondence: some characteristics may be
mapped, others not). However, some Representations of
a data set consist of simply presenting the data set, for
example, in a spreadsheet or printed table. These seem to
be valid representations, but they lack the metaphorical
nature posited by Cox.

4.24

A representation morphism is an isomorphism iff there
is an inverse morphism (which we will call decode) such
that decodeorepresentation = 1pgt, and representationo

Isomorphism Corresponds to Non-ambiguity

decode = lRgepresentation Thus the decode morphism al-
lows us to recover the original Data from a Repre-
sentation generated from it (to within the degree of
accuracy determined by 1pg.,). Representations that are
not isomorphic are thus ambiguous in the sense that two
different data sets may generate the same representation.
In some situations this is a valuable property, for exam-
ple in representations that aggregate or filter large or
complex data sets into simpler forms. In other situations
it is less desirable.!!

4.3 The Intension of the Visualisation Process Cate-
gory
Fig. 8 represents the process of visualisation as a cate-
gory; however it is important to note that this represents
a single concrete instance of this process. It could rep-
resent, for example, the production and consumption of
a single particular scatter plot from a single particular
set of data. We now need to generalise this notion to
describe, for example, the properties of scatter plots in
general. In the case of the Data we have the familiar
notion of a Schema, which refers to the structure of
data as opposed to its particular values. For example,
a relational database of tables and attributes is defined
using a database schema, which is then filled with
values during its lifetime of use. The Schema is the
intension (the constant conditions that capture the set
of all possible values for that data set) while the Data is
the extension (the variable set of actual values).'> We can
also generalise the notion of a particular Representation
to that of a Layout, that is, the way in which Data belong-
ing to a Schema are represented. For example, the two
scatter plots in Fig. 11(a) are different Representations,
but share a Layout. The notion of Layout is familiar
from data visualisation tools (such as the charting feature
in spreadsheet programs) that allow the user to choose
which of many options are used to graphically represent
a selection of data.

We then have a set of rules that allow us to map from
a data Schema to a representational Layout, which is
a generalisation of a particular Representation. Fig. 10
shows the Data, Representation, and Evocation objects
from our visualisation category at the extensional level
and Schema and Layout as the generalisations, or in-
tensions, of the Data and Representation objects respec-
tively.

4.3.1 Layouts Require Schemata

Not all Data has a corresponding Schema. Data that does
not is generally known as unstructured data. Examples

11. A representation morphism for which the first condition holds
is a section. A representation for which the second holds is a retraction.
There are categories and morphisms for which only one of these
conditions holds, but it does not seem possible in the case of a
visualisation process category.

12. In philosophy a distinction is drawn between a term’s intrinsic
meaning or its intension and its denotation, or extension. Frege gave
the example of the morning star and evening star. The two terms have
different meanings (intensions) but both have the same denotation
(extension), the planet Venus [23].
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rules

Intension Schema ———————— Layout

generalisations generalisationr,

Extension Data Representation ————— Evocation

render read

Fig. 10. Introducing the intensional level of the category

include natural language text which can certainly be
Represented using, for example, pictorial illustrations.
However there can be no rules governing the Layout
of this Representation: there may be a set of Represen-
tations of a similar style — for example several illustra-
tions in a single book — but each is individually inspired
by the text it is designed to Represent. Unless the Data
being represented can be generalised into a Schema,
then there can be no corresponding generalisation of the
Representation into a Layout. This criterion also helps
to distinguish between visualisations that are data- or
data-driven art.

4.3.2 Non-surjectivity of Layout Corresponds to Chart
Junk

(b) Arbitrary  chart
junk
¢
*
.. ©
P .
*® ® o
*
* M *

(c) Schema-derived chart junk

Fig. 11. Chart Junk

In the scatter plots in Fig. 11(a) every element of the
Layout was derived from some element of the Schema.
If we write these objects as sets, then we can say that
the morphism between them is a surjection:

Schema = {Instances, Attributes}

Layout = {Points, Azes}
rules(Instances) = Points
rules(Attributes) = Axes

However, this is not always the case. For example, sup-
pose we decorate one of our scatter plots with a figure
as in Fig. 11(b). What is the Layout in this case? If the
Layout is a generalisation of this particular Representation
then it will include the decoration. But this decoration is
not derived using a rule from any part of the Schema —
it is an arbitrary addition (perhaps inspired from some
property of the System not captured in the Data). It is
‘chart junk’.

The following aspects of this definition of chart junk
should be noted.

1) This use of the term is not intended to be per-
jorative: chart junk can be useful in aiding un-
derstanding of the system [2]. The purpose of
this category-theoretic definition is to highlight the
difference between decorative elements in Layouts
that communicate Data (those that are derived
from a Schema), and those that do not.

2) It is a much narrower use of the term than Tufte’s
original definition [24] which defined chart junk
as all unnecessary, redundant, or non-data ink.
Consider the example in Fig. 11(c) in which scat-
ter plots are decorated with faces indicating the
movement of the data. The decoration is redundant
chart junk in Tufte’s sense, but not in ours since
it communicates something about the data. There
is a rule for deriving this element of the Layout
from the Schema which thus ensures that Fig. 10
commutes.

3) There is a difference between redundancy at the
extensional level of the Data and Representation
introduced in Fig. 10 and arbitrary chart junk at
the intensional level of the Schema and Layout.
A Representation may include some redundancy
even though there is no chart junk. In the example
of the scatter plot in which a single Data attribute is
represented using two retinal attributes such as in
Fig. 9(b) — or, indeed, the example in Fig. 11(c) of a
scatter plot decorated with a face representing the
polarity of the correlation — we have redundancy
in the Representation, but the Layout rules are
not surjective: every element of the Layout is the
product of some aspect of the Schema. Redundancy
at the level of Data and Representation may not be
arbitrary at the level of Schema and Layout. Con-
versely, chart junk is not (necessarily) redundant, it
is arbitrary.

4.4 Closure of the Information Visualisation Cate-
gory

Combining our partial diagrams (Figs. 8 and 10) we get
the diagram in Fig. 12.

From a category-theoretic point of view, that is, by
considering its formal structural properties, this diagram
is incomplete; it is not closed in the mathematical sense.
Seeking closure suggests the following questions:
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rules

Schema Layout
generalisationg generalisationy,
System — "™ . Data render Representation
understanding read
Evocation

Fig. 12. Intermediate, mathematically un-closed visualisation category

1) Is there an equivalent of Evocation at the inten-
sional level? If so, does this form a category with
Schema and Layout, so that we can form a functor
from the extension of the visualisation process to
its intension?

2) Are there initial and terminal objects? That is, can
the diagram be completed such that all arrows
originate from a single object and terminate at a
single object?!3

We may now answer these questions.

4.4.1 Questions are the Generalisation of Evocation

Generalisation is the process of splitting the extension
into an unsaturated (or incomplete) and a saturated
(complete) part (in Frege’s sense of the terms [9]). It is the
former that constitutes the intension. Data, for example,
may be associated with a Schema, such as a table, and
the values that can fill the empty spaces. Representations
can be split into a Layout, such as a set of axes, and
the markers that are placed in the space that those axes
define. In the case of the contents of the mental states
evoked by reading a Representation, the equivalent is to
split the proposition describing that mental state into a
property for which there may be some object of which it
can be truthfully predicated. To put it simply: if reading
a Representation, such as a bar chart of student exam
results, evokes the thought that ‘Alan got the best mark’
(or best_mark(Alan)), then the generalisation of this is
the question “Who got the best mark?’ (or best_mark(_)).
In other words, Questions are system predicates at the
intensional level whilst Evocation involves the extension
of those predicates for specific cases. Evaluation of these
extensional predicates allows truth statements about the
System to be tested.

Completing the generalisation functor, from extension
to intension, thus provides a salutory reminder of the
importance of the underlying Question in visualisation;
“From Killer Questions Come Powerful Visualisations”
as Johnstone puts it [14]. In software development terms,
answering a question is the requirement of the Repre-
sentation. This is even true in the case of exploratory
data analysis (the terminology is due to Tukey [25]),

13. Most well-behaved categories in mathematics have initial and
terminal objects.

where the purpose of the data analysis process is not
to answer a specific prior Question or hypothesis, but
to discover hypotheses worth subsequent testing using
conventional confirmatory data analysis. Exploratory data
analysis is what happens when you don’t know what
question you're trying to answer. Confirmatory data
analysis starts with Data and a Question and then seeks
an answer using a Representation. Exploratory data
analysis starts with Data and a Representation, and then
seeks a Question worth asking.

4.4.2 Knowledge is the Terminal Object of Visualisation

Data is not the start of the visualisation process, and nor
is the ability to answer Questions about that Data the
end. What we are looking for is Knowledge of the Sys-
tem. Visualisation starts with a System that we measure
in various ways in order to generate Data. That Data
will always be partial (in both senses of the word) but
it’s all we’ve got. Similarly the only Knowledge we can
gain is what we can deduce from the evidence presented
in the Representation, and the Questions define what
Knowledge we can gain from the visualisation process.
That is, Knowledge operationalises the Questions by
allowing the abstract nature of the Questions to be
practically measured or assessed. It is by answering
questions that one gains knowledge. This relationship is
also analytic: Knowledge is not well-defined unless it is
capable of answering questions, and those questions are
epistemologically prior to the knowledge of the answers.
(To see this, one can imagine a question to which there
is no answer; but not an answer for which there is no
question.)

The ultimate purpose of the visualisation process is
to gain Knowledge of the original System. When this
succeeds (when the diagram commutes) then the result
is a fruth relationship between the Knowledge and the
System. When this process breaks down and we fail to
deduce correct conclusions then the diagram does not
commute.'*

4.4.3 The Completed Category

The full diagram describing the visualisation process in
general is shown in Fig. 13 and a version showing a
specific example is shown in Fig. 14 (the positions of the
Layout and Representation objects have been changed
but otherwise the commutative diagram in Fig. 14 is the
same as that in Fig. 13). In this example we start with
students in a Maths class (System). We want to know
how well they are performing, overall and individually,
(Knowledge) so we determine that we will have to
gather data about their performance in a test (Schema).
This Schema, as well as being a generalisation of the
Data is also a time-invariant descriptive abstraction of

14. Note, that although this is a strongly realist and representational
use of terms such as truth and knowledge it does not necessarily imply
a commitment to objectivism about the status of that knowledge. See,
for example, Faith [8].
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defines .
Schema, Question
describe Op
Layout
truth
System Knowledge
Gengr
Genp Geng
Representation
measure infers
Data Evocation

understanding

Fig. 13. The visualisation process as a category

the System.!> Having gathered the results (Data) we
then choose a bar chart (Layout) that will be capable of
showing the distribution of their overall, and individual
marks (Questions). The Schema acts as a frame and
determines, or de fines what Questions can be answered
by the Layout. For example, by seeing we have a table
with two columns labelled ‘Grade” and ‘Name” we can
tell that the Data denoted by this Schema will enable us
to answer questions like “What was the average mark?”,
but not questions like “Who was the tallest?”.

The Layout, in turn, is used to answer the Questions,
but only some Layouts derived from the Schema are
capable of answering the Questions. For example, a bar
chart will enable us to spot the best student; but a pie
chart would not.

Showing the data (Representation) in this way reveals
that the cohort achieved an average mark of more than
70, that Alan got the highest mark, etc. (Evocation). So
now we have Knowledge about our System: we know
who performed best of all, that nobody failed, the the
average mark was at a satisfactory level (this requires
prior context), etc.

5 CONCLUSIONS

In this article we have shown how the process of visual-
isation can be studied formally using the mathematical
language of category theory. By identifying the principal
objects implicated in visualisation and the morphisms
that map between the structures in these objects we are
able to define in a precise and unambiguous manner
some of the common terms and concepts used in vi-
sualisation. Prior to this many of these concepts were
undertsood intuitively or heuristically, but now we have
formal theoretical descriptions that can be used to make
principled judgements about the visualisation process
in general and about individual specific instances in

15. Formally, a Schema has “the structure of a continuant which does
not specify time or timelike relationships” [23, p. 73].

particular. The category shown in Fig. 13 defines a
well-formed visualisation process; if all the assumptions
underlying the morphisms and objects are met then
the diagram will commute and we can be confident
that the knowledge gained is reliable and reflective of
the system. This category theory description gives us
reasons for why certain attempts at visualisation are not
as successful as their designers had hoped.

5.1 Where Do We Go From Here?

This article has provided a foundation for discussing
visualisation formally and theoretically. Using these the-
oretical foundations it is now possible to explore other
properties of the visualisation process. The category
shown in Fig. 13 provides a high-level view of the
visualisation process, but there is more detail that can
be explored using category theory. For example, the
relationship between the Schema and the Layout mer-
its further investigation. More details on a multi-level
categorical architecture for the intension-extension rela-
tionship are given elsewhere [22].

5.1.1 Layout is a Cartesian Product Corresponding to
Individuation of Attributes and Instances

As an example of how the ideas presented here might
be applied, consider the following. One of the most
common types of Schema for Data is the familiar tabular
form comprising a set of instances (rows) for which we
have values of a set of attributes (columns). In category-
theoretic terms this Schema is a Cartesian product of
Instances and Attributes:

Schema = Instances x Attributes

In such cases we can also ask whether the Layout can be
considered as a product in its own terms. For example,
the Layout of a scatter plot could be considered as a
product of the points (L, representing the instances) and
axes (L4, representing the attributes), with projection
morphisms II;; and II; 4 which respectively pick out
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Fig. 14. Example of the visualisation category in practice

the points and axes from a given Layout. In category
theoretic terms, this is a valid product if for every
Schema for which we can define rules for mapping onto
the points and axes the diagram in Fig. 15 commutes.
Ly
M \
rules

Schema =1 x A > L; x L Layout

/
Ly

Fig. 15. Individuation of Attributes and Instances in the Layout

rules s

How could this fail to be the case? Consider the
following example. Suppose we have a Data set in which
two instances share the same attribute values, such as
two students with identical scores. In this case the points
representing those two instances would coincide and
the set of points picked out by II;; from the Layout
would not be the same as those constructed from the
Schema: one would be missing. In order to enforce the
condition that the Layout is a product then some way of
representing coincident points is required.®

There is also a symmetric problem of individuating
attributes. This is not apparent in most Layouts, such as
scatter plots, which treat Instances and Attributes asym-
metrically. In particular, they assume a fixed number of
attributes (normally one or two) but don't fix the number
of Instances.

16. This is a common problem when representing large or dense data
sets and a range of solutions are suggested in Unwin et al. [26]

Evocation

Alan got the best mark
The average mark was >70

Representation

n  Jim  Chiu Sarah Amir

There are some exceptions. Dimension reduction visu-
alisation techniques, such as principal component anal-
ysis (PCA) and mutlidimensional scaling (MDS) com-
press data with arbitrary numbers of data dimensions
into a two-dimensional plane, which has the effect of
obscuring the contribution of each individual attribute.
These are not cartesian products since the attributes are
not individually represented, hence there is no projec-
tion morphism IIy 4. Other techniques, such as Parallel
Coordinate Plots, on the other hand have an explicit and
separate Layout element for each attribute — though one
result of this is that they are not suited to representing
very large numbers of attributes.

5.1.2 Algebraic Semiotics

Goguen suggested the combination of algebra and semi-
otics could bring much to user interface design and
visualisation. An advantage of formalisation, he argued
is that “by forcing one to be explicit, some subtle issues
are exposed that usually get glossed over” [10]. Goguen
introduced the concept of algebraic semiotics to the
study of visualisation, but where he restricted himself to
a context-free structuralist view, there would appear to
be much to be gained from investigating how semiotic
morphisms could be used in a post-structuralist land-
scape in which context (or ground) is not just admitted
but required.

5.1.3 The Functors of Multi-Modal Perceptualisation

Another very interesting avenue deserving of further
exploration is that of multi-modal representations. If we
take visualisation to be the branch of perceptualisation
that restricts itself to visual representations there arises
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the question of how the formal treatment presented in
this article might be applied to the other modalities,
specifically, auditory display and haptic representations.
Of particular interest here would be the role category
theory and semiotics could play in discussing the rela-
tionships between representations across the modalities.
For example, much work in the field of auditory display
and sonification has been directed at trying to find
auditory equivalents of visual representations. This is
motivated by several factors, the two principal ones
being universal access (making perceptualisation avail-
able to the visually impaired, for example) and sensory
loading (transferring load to other senses such as hearing
and touch as the visual channel becomes increasingly
overloaded).

Where this category theoretic approach might be use-
ful is in identifying the functors between the categories
of perceptualisation processes. For example, it would
enable us to answer questions such as 1) “is this auditory
display equivalent to this visual representation?” or 2)
“is it possible to produce an equivalent visual repre-
sentation of this sonification?”. In the case of the first
question we are, in effect, asking whether two processes
in two modalities are isomorphic. If they are, what does
this mean in practice? Do we mean the representations
are isomorphic or that the interpretants are isomorphic,
or both, or neither? How can we know? Is it useful to
know? Does knowing about the nature of the mappings
in one modality inform what we know about the other
modality?

In the case of the second question if the answer is ‘no’
then we would be able to state why it is not possible.
Therefore, further work needs to be done to investigate
this aspect as it offers the possibility of being able to
reason about external representations across modalities
in the perceptualisation field and thus, potentially, brings
a very powerful tool kit to bear on perceptualisation
design. It is possible that Category Theory offers a
framework for deciding such issues.
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