
i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 369 — #247 i
i

i
i

i
i

M O N A D I C D E S I G N F O R U N I V E R S A L S Y S T E M S

N I C K R O S S I T E R , M I C H A E L H E AT H E R
M I C H A E L B R O C K WAY

Department of Computer Science and Digital Technologies
Northumbria University, NE1 8ST, UK

nick.rossiter1@btinternet.com; michael.heather@trinity.cantab.net;
michael.brockway@unn.ac.uk

http://www.nickrossiter.org/process/

Abstract: The work described here builds on recent work pre-
sented at ANPA on structure and process in the universe. The
internal structure of the topos is explored further with particu-
lar emphasis on the nature of the pasted pullback, including the
conditions for a pasting to be valid and the inherent recursive
nature of pullback structures. Dolittle diagrams are employed for
representing the intension/extension relationships. A banking ex-
ample is explored, leading to the nature of the external processes
acting upon the topos such as transactions. These processes are
represented by monads, giving a three-level closure on the ac-
tivity. The nature of monads is explored. The T-algebra enables
changes to be made in the monad structure, giving the poten-
tial for adaptability. Monads, that have been strengthened by the
Kleisli lift to the Cartesian form, can be composed naturally, facil-
itating the construction of large-scale information systems with
reliability, as required for transactions in the banking world.

1 introduction

The fundamental categorical facilities identified for a Universe, whether from
any Universe of Discourse up to the Universe, is primarily the Topos as a
structural data-type including the Monad for process. The application of the
monad to a topos gives the operation of a process on data at the highest level,
defined as a unique solution up to natural isomorphism. We will demonstrate
such an application, explore how its performance relates to alternative tech-
niques and discuss further work required.



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 370 — #248 i
i

i
i

i
i

370 monadic design for universal systems

Succinctly the topos is a fundamental Cartesian Closed Category (CCC),
a category with limits and exponentials subobjects. A CCC has an internal
logic of the typed λ-calculus, an identity functor and the interchangeability of
levels, with nodes being either objects or categories. A topos has additional
properties beyond a CCC ([19], at p.106) including a subobject classifier, the
internal logic of Heyting, that is intuitionistic logic, and a reflective subtopos
as a category for recursive query closure. A topos is closed at the top but
open at the bottom. An important issue is the flavour of category theory that
is being employed. The starting point is what might be termed Eilenberg/-
Mac Lane category theory (EML) as set out in pure mathematical terms by
Saunders Mac Lane in his book Categories for the Working Mathematician [19].
The employment of category theory in metaphysics and the implementation
of the theory in programming languages has shown some limitations to EML,
in particular with the distributive law, resulting from a restricted view of nat-
urality. Many of these points are discussed in detail later.

The application of the topos to data was established in papers at ANPA
35 [29], introducing the topos/monad approach, and ANPA 36 [30], bringing
out the interoperable use of allegories for legacy relational systems. Structures
developed as a topos include pasted pullbacks, to represent relatedness, and
recursion in which any juncture in the structure is a pullback in its own right.
The exact nature of the match, in the pasting operation, is discussed later in
Section 4.2. The relationship of the topos structures to Fifth Normal Form
(5NF) [12], also known as PJNF (Project-Join Normal Form), is of relevance.
A working definition of PJNF is that a table T satisfies the normal form if it
cannot have a lossless decomposition into any number of smaller tables. The
decomposition is a projection into tables with smaller numbers of columns;
lossless implies that the join of the resulting tables returns the original table
T unchanged. The pullback structure has an inherent feature for handling
PJNF: the adjointness between the projections π from the product onto the
coproduct and the diagonal join ∆ from the coproduct onto the product. This
indicates the strength of the topos data structuring method for handling a
challenging ultimate stage in relational database design. Other less powerful
normalisation techniques are considered to be so set-based that any categorial
approach would be categorification. The Cocartesian dual to the topos may
offer further insights into the data structuring process: the mapping from PRE
to POS is effectively the data normalisation process in relational databases,
where PRE is the preorder with no initial object and POS is the partial order
with no cycles and both an initial and a terminal object, satisfying the closed
world assumption (CWA). It should be emphasised though that the topos is a



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 371 — #249 i
i

i
i

i
i

rossiter , heather & brockway 371

more general data structure than a relational database, which while closed at
the top is open at the bottom, thus not restricted by the CWA.

The use of the allegories of Freyd [7] as a basis for data structures was
attempted [30] but rejected because of their lack of naturality as set-based
relations; the allegories will have use though in interoperability as a wrapper
for legacy relational databases. Internal queries on a topos are handled by the
subobject classifier, which may be Boolean (0 or 1) or the more general double
powerobject. Both forms were illustrated in the two ANPA papers cited above.
The provision of examples of Heyting intuitionistic logic for an application
remains an objective. Internal queries are more akin to data searches, such as
through Google, but do not provide a well-defined process capability.

The application used was of grading for students by modules in a uni-
versity context, which was adequate from the data structure viewpoint but
limited from a data process angle. A more interesting application from the
process perspective is banking, including the handling of transactions. This
was first studied by us in ANPA 27 [28].

Monadic design is a novel technique for handling the dynamic aspects of
an application. Aspects to be investigated are the adjointness, inherent in the
approach, the flavours of monad which are most suited to process applica-
tions and the T-algebra for modifying the adjunction.

The intention in this paper is therefore to introduce a new application,
banking, which provides a more suitable test for an external process of a
monad on a topos data structure. The mechanism of pasting is to be investi-
gated in detail and the relationship of the topos to database normalisation is
to be clarified. Monadic design will be developed for the topos.

2 pullback : single relationship for student grad-
ing

The topos has limits and the pullback is a limit. Figure 11.1 shows for the
student application, studied in the ANPA 35/36 papers, a simple pullback
of assessment: with limit S×G M, the product of Student and Module in the
context of Grading. The relationship between the product S×G M and G is
adjoint, with the following logic condition holding: ∃ a ∆ a ∀. The functor
∆ selects pairs of S and M in a relationship in the context of G, such that ∃
is left adjoint to ∆ and ∀ is right adjoint to ∆, with a consequential facility
for consistent logical operation. The arrows can be interpreted as follows: πl



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 372 — #250 i
i

i
i

i
i

372 monadic design for universal systems

Figure 11.1: Pullback for a Single Relationship S×G M: Grading by Student
and Module; categories are S Student, M Module, G Grading

identifies the participating students, πr the modules taken, ιl is candidature,
and ιr is marking.

A diagram with such adjointness was termed by Lawvere a hyperdoctrine
in the early days of EML category theory [14]. The existential functor ∃ records
the decision for each student (under the free functor F) of a grade for a specific
module. The diagonal ∆ sorts student and modules as a component of the
underlying functor G. Thr universal functor ∀ produces the final grading list
generated by F. This shows the fine structure of the adjointness F a G.

Other arrows are interpreted as follows. Projections π are from the prod-
uct onto its constituents, left πl and right πr, with dual arrows left π∗l for stu-
dent capability, achievement and creativity and right π∗r for quality of work,
respectively. Inclusions ι are into the sum S + G + M from its constituents,
left ιl and right ιr, providing type checks on the values for students and mod-
ules, respectively, participating in the relationship. The dual arrows, ι−1l and
ι−1r , indicate the participation of students and modules, respectively, in the
relationship.

2.1 closure to recursion : dolittle diagrams for intension/
extension

S, M, G are each categories, with an optional internal pullback structure, giv-
ing a recursive pullback structure with potential unlimited depth. The closure
to recursion is that the diagrams at the bottom level are of the Dolittle1 type

1 named after The Story of Doctor Dolittle by Hugh Lofting (1920), involving the mythical
Pushmi-pullyu creature.



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 373 — #251 i
i

i
i

i
i

rossiter , heather & brockway 373

Figure 11.2: a) Dolittle diagram for category S for Student with outer diagram
Pb7 of limit ID× and colimit ID+ (Identifier); inner diagrams of
Pb1 with limit N× and colimit N+ (Name), Pb2 with limit A×
and colimit A+ (Address), Pb3 with limit B× and colimit B+

(Birthdate).
b) Dolittle diagram for category M for Module with outer dia-
gram Pb8 of limit NO× and colimit NO+ (Number); inner dia-
grams of Pb4 with limit C× and colimit C+ (Course), Pb5 with
limit T× and colimit T+ (Title), Pb6 with limit L× and colimit L+

(Level).



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 374 — #252 i
i

i
i

i
i

374 monadic design for universal systems

Figure 11.3: Dolittle Diagram for a Single Relationship: Student Names with
limit NX = N×N+NX N N, colimit N+ = N×N×N+N N, top object
N of type 1-category, bottom object N of type 0-category, F0 maps
1-category to 0-category.

with a mapping from the data in the left-hand pullback object, a qualified
product or ×, to equivalent data in the right-hand pushout object, a qualified
coproduct or + [9]. Such diagrams are also called Bicartesian squares [2] or
pulation squares ([1] pp.205-206). Bicartesian squares as defined by Banach
are regular relations, a particular type of pullback in which there is a N:1 rela-
tionship between the objects at the top and the bottom, rather than the N:M in
the more general case. The special case of a 1:1 relationship would also satisfy
the Bicartesian requirement. We agree with Lambek & Scott ([13] pp.65-68)
that the two objects are different in purpose, with for instance the top object,
the independent variable, being the intension (definition) and the bottom ob-
ject, the extension (values). There is a functional relationship between the top
and bottom objects in a Dolittle diagram, resulting in an ordered product as a
string. A helpful view from n-categories is that the top object is a 1-category,
defining the data structure in terms of objects and arrows, and the bottom
object is a 0-category, holding data values as discrete objects. The arrow from
the 1-category to the 0-category is then a 0-functor [25], written as F0, map-
ping intension to extension. Everything is related implicitly in a + context; the
relationship in a × context is stronger with explicit connections. Relatedness
in Heyting logic is expressed by the condition: C×A 6 B is isomorphic with
C 6 A⇒ B. Such a view of relatedness is not available in set theory.

The Dolittle categories S and M are shown in Figures 11.2(a) and (b) re-
spectively. Each of these categories comprises a number of further Dolittle di-
agrams, one for each type of data. Each category has a key or identifier, which
provides unique identification of other data properties. The key for the cate-
gory for student S is ID (identifier) and the data properties are N (name), A
(address), B (birthdate). Each data property is a Dolittle diagram representing



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 375 — #253 i
i

i
i

i
i

rossiter , heather & brockway 375

Figure 11.4: a) Dolittle diagram for category G with outer diagram Pb11 of
limit Pb14× and colimit Pb14+; inner diagrams of Pb9 with limit
D× and colimit D+ (Date of decision), Pb10 with limit E× and
colimit E+ (Exam board);
b) Pasted pullback diagram for internal key structure for G; Pb12

is outer Dolittle Pb8 in Figure 11.2(b); Pb13 is pasting of outer
Dolittle in Figure 11.2(a) onto Pb12; Pb14 is composition of Pb13

with Pb12.



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 376 — #254 i
i

i
i

i
i

376 monadic design for universal systems

the intension-extension relationship as in the diagram shown in Figure 11.3
for the property Name of Students labelled Pb1 in Figures 11.2(a). The limit of
this diagram N×N+ N, written shorthand as N×, is a product of the intension
N of 1-category type and extension N of 0-category type in the context of the
colimit N +NX N, written shorthand as N+. These shorthand abbreviations are
used throughout the paper to improve readability. The 0-functor F0 maps the
1-category intension to the 0-category extension. The colimit identifies, for a
pair of intension/extension values in the limit, the values for the names as a
sum in the colimit.

Simple diagrams such as Figure 11.3 are the building blocks at the bottom
level for the two categories shown in Figures 11.2. The data properties are de-
termined by the key through the functional dependency arrows. For instance
the functional dependency fd1 : ID −→ N indicates that for each ID, there
is a unique N. The dependency is actually defined in the diagram with more
detail as the arrow fd1 from an intension/extension pair for ID, ID×, to an
intension/extension pair for N, N×. There are two further functional depen-
dencies fd2 : ID× −→ A× and fd3 : ID× −→ B× in our diagram. The inner
Dolittle diagrams Pb1, Pb2 and Pb3 represent the data properties N, A and B
respectively. Completing Figure 11.2(a), there is an outer Dolittle diagram Pb7

with limit of ID× and colimit of ID+, representing the intension/extension
for the key ID. The internal structure of the data properties Name, Address
and Birthdate, may be complex, with for instance a name being subdivided
into title, first name, middle name, last name. Further there is no obligation
for a value in the extension to be an atomic value as in the relational model
[12]; the value could be a structured set or a complex object, as in the nested
relational and object-oriented approaches respectively.

Figure 11.2(b) is another example of a Dolittle diagram with a 0-functor.
The key is NO (module number), forming the outer pullback Pb8 with limit
NO× and colimit NO+. The data properties, represented by the inner pull-
backs, labelled Pb4, Pb5 and Pb6, are C (Course), T (Title of module) and
L (Level), respectively. The functional dependencies are fd4 : NO× −→ C×;
fd5 : NO× −→ T×; fd6 : NO× −→ L×.

The category for student grading by module G is more complex in that
its identifier is a combination of the student identifier ID and the module
number NO, necessary to define uniquely a grading. That is the key cannot
be described simply as an unqualified product: it needs to be factored through
the grading to represent the pairs that actually occur. This requires a pasted2

2 pasting is described further in Section 3.2 and discussed in Section 4.



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 377 — #255 i
i

i
i

i
i

rossiter , heather & brockway 377

pullback as shown in Figure 11.4(b). The inner pullback Pb12 is the same as
the outer Dolittle Pb8, representing the key structure in category M in Figure
11.2(b). The outer pullback Pb13 is a pasting of the key structure in category S,
in Figure 11.2(a), on to Pb12. The pasted key structure is not a Dolittle diagram
in itself but is employed in the top and bottom nodes of the outer Dolittle
diagram Pb11 in Figure 11.4(a). Pb14 is the overall result from composing
Pb12 with Pb13, that is the whole diagram in Figure 11.4(b). The Dolittle
diagram for the category G is shown in Figure 11.4(a). For the outer Dolittle
diagram Pb11 the top object is the intension for the key Pb14 and the bottom
object the extension for the key Pb14. The inner Dolittle diagrams, labelled
Pb9 and Pb10, represent D (Date of decision) and E (Exam board) respectively
with functional dependencies fd7 : Pb14× −→ D× and fd8 : Pb14× −→ E×
respectively.

3 banking examples

We now introduce the Banking example, which is a more suitable subject for
illustrating the action of process on a topos as a core feature of banking is the
use of transactions for handling changes in a secure manner. We commence
with a simple data example, gradually making it more realistic.

3.1 pullback : single relationship

The simple pullback is shown in Figure 11.5, defined as P×T A, that is the
product of Procedure and Account in the context of Transaction, with P the
category Procedure, A the category Account, and T the category Transactions.
An Account can belong to many users; the Procedure is the type of the trans-
action, for example: standing order, direct debit, ATM cash withdrawal; the
transaction is a transfer of funds according to data processing requirements.
P, A, T are categories, with internal pullback structure, giving in general a re-
cursive structure with closure at the Dolittle level, as in Figures 11.2, 11.4 for
the student example.

3.2 pullback : two pasted relationships

In pasted pullbacks two relations are joined together to form a square. An
additional category is introduced for User (customer) of U. Each user may



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 378 — #256 i
i

i
i

i
i

378 monadic design for universal systems

Figure 11.5: Pullback - Single Relationship P×T A: Bank Transactions by Pro-
cedure and Account; categories are P Procedure, A Account, T
Transaction

have multiple accounts across the banking network: there is a many-to-many
(N:M) relationship between U and A. The second pullback is the product of
the subproduct of the first pullback P×T A with U in the context of A, as
shown in Figure 11.6. The resulting relationship is of account transactions by
users. For the purpose of discussion, the pullbacks can be labelled Pb1 for the
first square P×T A and Pb2 for the second square (P×T A)×A U). By EML
category theory ([19] pp.71-72) if the squares Pb1 and Pb2 are valid pullbacks,
then the whole outer square is also a pullback Pb2× Pb1. We therefore have
three pullback diagrams in a valid pasted relationship.

Figure 11.6: Pullback: Two Pasted Relationships: Bank Transactions by Ac-
count by User, in Portrait Layout

The vertical stacking of the pasted pullbacks, one above the other, in por-
trait form is suited to practical applications which could involve 5-10 relation-



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 379 — #257 i
i

i
i

i
i

rossiter , heather & brockway 379

ships in a deep nested structure. In EML category theory text books, pasted
structures are usually written in horizontal (landscape) form as in Figure 11.7,
which is logically identical to that in Figure 11.6.

The aim of pasting in topology is to ‘glue together’ two continuous func-
tions to create another continuous function. The specific pasting condition for
the pullback Pb2× Pb1 is that ι′l = πr after Freyd’s Pasting Lemma [7].

Figure 11.7: Pullback: Two Pasted Relationships: Bank Transactions by Ac-
count by User, in Conventional Landscape Layout

To make the application more realistic we add two further categories,
those of B for Branch and C for (banking) Company. Branch:User is also a
N:M relationship as each Branch has many Users and each User has many
Branches but Company:Branch is a 1:N relationship: each Company has many
Branches, each Branch is within one Company. The overall relationship is
(((P×T A)×A U)×U B) with C in the context of B giving the pullback dia-
gram shown in Figure 11.8. The representation of N:M and 1:N relationships
is the same in terms of pullback structures, giving a useful symmetry in data
design.

Figure 11.8 involves six categories: C company, B branch, U user, A ac-
count, P procedure, T transaction, and ten pullbacks: Pb4,Pb3,Pb2,Pb1; Pb4×
Pb3,Pb3 × Pb2,Pb2 × Pb1; Pb4 × Pb3 × Pb2,Pb3 × Pb2 × Pb1, Pb4 × Pb3 ×
Pb2× Pb1. The relations within a banking system are shown in more conven-
tional form in Figure 11.9(a) where each single-headed arrow represents a 1:N
(one-to-many) relationship and each double-headed arrow represents a N:M
(many-to-many) relationship.

For our purposes, a pasted pullback is only a valid pullback if all inner
and outer diagrams are pullbacks. There are some theorems in EML category
theory ([19] pp.71-72) which enable some deductions to be made based on
partial knowledge: for example, with the diagram in Figure 11.7, if the inner



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 380 — #258 i
i

i
i

i
i

380 monadic design for universal systems

Figure 11.8: Pullback: Four Pasted Relationships: Bank Transactions by Ac-
count by User by Branch by Company

diagrams are pullbacks then the outer diagram is a pullback, as stated ear-
lier, and if the outer diagram and the right-hand diagram are pullbacks then
the left-hand diagram is a pullback. Such deductions could be facilitated in
any practical system but are a distraction from developing a simple robust
solution.

As an example of an invalid pullback, consider the diagram in Figure
11.10 where the relationship diagram has been modified to that in Figure
11.9(b). There are seven valid pullbacks in the diagram: Pb4,Pb3, Pb2,Pb1;
Pb3× Pb2,Pb2× Pb1; Pb3× Pb2× Pb1, but not all squares are pullbacks, for
example Pb4× Pb2. Therefore the whole diagram is not a valid pullback.

For any valid pullback, the logic of adjointness holds for the outer square
and all inner squares. Therefore for Figure 11.8 with its six valid pullback
diagrams, the logic ∃ a ∆ a ∀ holds across every diagram. An example of this
logic is shown in Figure 11.11 for the outer square.

3.3 subobject classifier

As a pullback the pasted structure is a Cartesian Closed Category (CCC) with
products, terminal object and exponentials. Further it is a topos as a CCC
with subobject classifier and internal Heyting Logic. The subobject classifier
provides an internal query language for which a Boolean example is shown
in Figure 11.12.



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 381 — #259 i
i

i
i

i
i

rossiter , heather & brockway 381

Figure 11.9: Relations within a Banking System corresponding to (a) Figure
11.8 and (b) to Figure 11.10. C is Company, B branch, U user, A
account, P procedure, T transaction.

The subobject classifier facilitates simple database or information retrieval
queries:

• Ω{0, 1} is the subobject classifier with subobjects classified as either 0 or
1

• χj is the characteristic function, a query mapping from the object S to
{0, 1}, false or true

• 1topos is the terminal object of the topos, giving a handle on the topos

•  is the mapping from the subtopos U, the result of the query, to the
object S

• U is the identity of the subtopos, giving query closure

The diagram may be viewed as a pullback of true along χj, with U as
1topos ×Ω{0,1} S.



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 382 — #260 i
i

i
i

i
i

382 monadic design for universal systems

Figure 11.10: Invalid Pullback Diagram, corresponding to Relations in Figure
11.9(b)

Figure 11.11: Adjointness Holds for all Pullbacks: ∃ a ∆ a ∀

4 pasting pullbacks : discussion

To summarise, in a pasted diagram, all pullbacks as inner or outer squares
must commute for the diagram to be a valid pullback as a whole. The struc-
ture is recursive in that a pullback node may itself be a pullback diagram.
Two aspects are worthy of further discussion: how does the pullback diagram
relate to data normalisation in conventional data structuring and can the past-
ing condition be expressed in other forms, drawing out the nature of the ’=’
condition?



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 383 — #261 i
i

i
i

i
i

rossiter , heather & brockway 383

U

S
χj



1topos

Ω{0, 1}

true

-

-
? ?

Figure 11.12: Pullback Square for Boolean Subobject Classifier: Definition of
Characteristic Function χj : S −→ Ω{0, 1}

4.1 normalisation

Normalisation is the standard technique for evaluating a data design, in par-
ticular to determine how closely the logical design matches the physical world.
A number of stages have been developed for the set-theoretic relational model:
1NF (First Normal Form), 2NF, 3NF, BCNF, 4NF, 5NF. The last and most de-
manding stage 5NF concerns us here, not just for its rigour but for its defini-
tion in category theory terms, indicated by its alternative name of Project-Join
Normal Form (PJNF).

In set theoretic terms, the definition of 5NF is that the structures resulting
from the projections can be joined together to return the original structure
without loss or gain of information [12]. Looking at the simple pullback di-
agram, as in Figure 11.5, the projections are the π arrows, πl and πr, and
the join arrow is the diagonal ∆. PJNF holds through the adjointness in every
pullback: ∃ a ∆ a ∀. The arrows ∃ and ∀ involve the projections through the
compositions: ∃ = ι ◦ π and ∀ = ι ◦ π. In more complex data structures, the
same logic applies. For instance in Figure 11.11 with ten pullback squares (in-
cluding undrawn inner ones), PJNF will hold if the whole structure and all
inner squares are pullbacks with the logic: ∃ a ∆ a ∀. Surprisingly pullbacks
have rarely been used in normalisation studies, an exception being the work
of Levene & Vincent [17] who briefly mention the pullback inference rule, fol-
lowing from the interaction between functional dependencies ∃ and inclusion
dependencies ι.

It should be emphasised that the pullback is not categorification of the set-
theoretic approach to normalisation of 5NF, as in earlier work with category
theory and databases [11]. The form 5NF was a belated move by set-theoretic



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 384 — #262 i
i

i
i

i
i

384 monadic design for universal systems

adherents to find a viable approach to normalisation after many earlier at-
tempts had been only partially successful. The pullback follows basic category
theory principles and is a natural choice for an effective data structure.

4.2 the pasting condition

The Pasting Condition is ι′l = πr, that is the left-inclusion of the outer square
equals the right-projection of the inner square. On the surface this looks rather
set theoretic, where the ’=’ would be without context, but in EML category the-
ory the ’=’ is defined naturally as unique up to natural isomorphism, through
the adjointness inherent in the pullback category.

Moreover any pullback can be represented as an equalizer [26], as in Fig-
ure 11.13, which is equivalent to Figure 11.5. In the equalizer diagram the
product of P and A in the context of T, P×T A, maps onto the product P×A
which in turn maps onto T where the two paths, ιl ◦ πl and ιr ◦ πr, converge.

P×T A P×A
ιl ◦ πl

ιr ◦ πr
T-

-
-

Figure 11.13: Pullback in Figure 11.5 Represented as an Equalizer

Equalizer diagrams can also be constructed for pasted pullbacks, as in
Figure 11.14, which is equivalent to Figure 11.6. In the equalizer diagram
the product of P×T A and U in the context of A, (P×T A)×A U, maps onto
the product (P×T A)×U which in turn maps onto T where the two paths,
ιl ◦ πl ◦ π′l and ιr ◦ ι′r ◦ π′r, converge.

(P×T A)×A U (P×T A)×U
ιl ◦ πl ◦ π′l

ιr ◦ ι′r ◦ π′r
T-

-
-

Figure 11.14: Pasted Pullback in Figure 11.6 Represented as an Equalizer



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 385 — #263 i
i

i
i

i
i

rossiter , heather & brockway 385

5 external process

The concept of process is underpinned by metaphysics, as defined in the writ-
ing of authors such as Alfred North Whitehead, in his book Process and Reality
[31]. For any entity in the universe, the actions possible upon it and the rules
for such actions are a critical part of the whole system. First we look at the
technical features within category theory for representing process. We next
look at the requirements for the real world and review the facilities of the
theory that appear to be most relevant.

5.1 process in category theory

An internal process is a morphism (arrow) within a topos, such as p : A −→ B,
where the process p takes object A to object B in the same topos. Such arrows
play a natural role in the category construction. An external process is activity
on a topos E, taking it to another topos E′, such as provided by a functor F
with F : E −→ E′. Both E, E′ must conform to the natural rules for topos
construction. Constraints on the transition between E and E′ are enforced
through adjointness between F (E −→ E′) and its dual G (E′ −→ E), such that
F a G and the 4-tuple < F,G,η, ε > exists where η is the unit of adjunction
η : 1E −→ GFE, ε is the counit of adjunction ε : FGE′ −→ 1E′ and E, E′ are
objects in categories E and E′ respectively. The pair of adjoint functors F a G
may be written as T and the dual G a F as S.

Figure 11.15: Multiple ’Cycles’ GFGFGF(T3) for adjointness < F,G,η, ε >

The cycle T can be enhanced by performing it three times, T3, to achieve
closure. Such a construction is termed a monad, with its dual S3 a comonad.
The functors and their constraints are illustrated in Figure 11.15. The monad



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 386 — #264 i
i

i
i

i
i

386 monadic design for universal systems

is a generalisation of the single-level monoid, which has a single operation,
binary multiplication M×M −→ M, and the identity 1 −→ M, for an object
M.

5.2 real-world requirements

The process is represented in information systems by the transaction, which
has been the subject of intense study because of its criticality to applications
such as banking and internet-based commerce. However, the concept is a very
general one, applying for instance to drafting where a transaction may last
several days as a technical drawing is modified from one consistent state to
another, or maybe months, as a legal document is modified similarly. The
notion of transaction in a categorial context was developed in earlier ANPA
papers, more generally at ANPA 31 [10], and in considerable detail at ANPA
27 [28]. The principles of the transaction are summarised as ACID: Atomicity,
Consistency, Isolation, Durability. Atomicity ensures that the process, how-
ever complicated, is viewed as a single arrow. Consistency ensures that all
rules have to be satisfied before the transition is made. Isolation ensures that
any intermediate results in the process are not revealed. Durability ensures
that once a transaction is performed, the results persist until changed by an-
other transaction. The transaction is a logical technique for controlling the real
world.

5.3 applicability of the three cycles

A transaction is viewed naturally as three ‘cycles’ of adjointness [28]. The first
cycle performs the actual work required; the second checks for any errors or
inconsistencies resulting from the first cycle; the third cycle consolidates the
changes made provisionally in the first cycle and checked in the second cy-
cle. The ’cycles’ are not separate stages; all three cycles are performed as a
single snap: the prehension, or grasping, of Whitehead [31]. This single snap
satisfies the atomicity and isolation requirements. The second cycle satisfies
the consistency requirement, through review against the rules. The third cy-
cle satisfies the durability requirement, through consolidating the results. If
adjointness does not hold in any cycle, the transaction is abandoned. We now
look at the application of the monad in more detail.



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 387 — #265 i
i

i
i

i
i

rossiter , heather & brockway 387

T3 T2

TT2
µ

Tµ

µT µ

(a)

-

-
??

IT T2

TT
=

ηT

= µ

TI

T

Tη

=

=

(b)

-

-
?? ?
�

�

Figure 11.16: (a) Associative Law for Monad < T ,η,µ >; (b) Left and Right
Unitary Laws for Monad < T ,η,µ >

S S2

S3S2
δS

δ

δ Sδ

-

-
??

(a)

S S

S2IS
εS

=

= δ

S

SI

=

Sε

=

(b)

�

�
?? ?

-

-

Figure 11.17: (a) Associative Law for Comonad < S, ε, δ > (b) Left and Right
Unitary Laws for Comonad < S, ε, δ >

5.4 technical details of the monad approach

For a monad, the diagrams for the associative laws and unitary laws are
shown in Figure 11.16. These diagrams provide the formal basis for the ap-
proach. Figure 11.16(a) shows the relationship between T3, T2 and T where T
is the endofunctor GF : X −→ X, X being any category. An endofunctor is a
functor with the same source and target. A pair of adjoint functors F and G is
an endofunctor as the source of F : X −→ Y is X and the target of G : Y −→ X
is also X. The unit or identity of the monad is η : 1 −→ T from Figure 11.16(b)
and the multiplication of the monad is µ : T2 −→ T from Figure 11.16(a). We
therefore write the monad T as the object < T ,η,µ >, with the category X, on
which the monad is based, omitted as it is inferred from the functors involved.
However, it is not wrong to write the monad as the object < X, T ,η,µ > where
the nature of X has a bearing on the arguments being made. Further it is often
useful to say on which category the monad is based.



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 388 — #266 i
i

i
i

i
i

388 monadic design for universal systems

For a comonad, the dual of the monad, the diagrams for the associative
laws and unitary laws are shown in Figure 11.17. Figure 11.17(a) shows the
relationship between S, S2 and S3 where S is the endofunctor FG : Y −→ Y, Y
being any category. The counit or identity of the comonad is ε : S −→ 1 from
Figure 11.17(a) and the comultiplication of the comonad is δ : S −→ S2 from
Figure 11.17(b). We therefore write the comonad S as the object < S, ε, δ > or
< Y,S, ε, δ >.

IXGF GFGF GFIX
ηGF GFη

GF

= =GεF

- �

?

@
@
@
@
@
@
@@R

�
�

�
�

�
�
��	

Figure 11.18: The Monad in the category X: Triangular Identities defining ε

Figure 11.18 shows the two triangular identities for the monad in the cat-
egory X, derived by applying the interchange law to Figure 11.16(b). Through
commutativity Figure 11.18 defines the arrow GεF : GFGF −→ GF. This arrow
is the multiplication of Figure 11.16, that is µ : T2 −→ T . Therefore we can
rewrite the monad < T ,η,µ > as < T ,η,GεF > for an alternative view, based
on the units and counits of adjunction, η and ε respectively.

5.5 historical and present usage of the monad term

According to Hippolytus (170− 235 AD), the worldview was inspired by the
Pythagoreans, who called the first thing that came into existence the monad,
from which came the dyad, triad, tetrad, etc. [4]. Gnosticism is a modern term
for a multitude of Jewish religious ideas and systems from the first and second
century AD, with the highest God, Supreme Being or the One, termed the
Monad. The Syrian-Egyptian school depicts creation as coming from a primal
monadic source, finally resulting in the creation of the material universe.

The monad entered metaphysics as the Monadology of Leibniz, written
from 1712-1714 as Principes de la nature et de la grâce fondé en raison, which
has since been published in various forms and languages [16]. Leibniz allows



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 389 — #267 i
i

i
i

i
i

rossiter , heather & brockway 389

just one type of element in the building of the universe, which is given the
name monad or entelechy, and described as a simple substance, which has
no parts, hence indivisible. Monads are elementary particles with blurred per-
ceptions of one another and have been described as eternal, indecomposable,
individual, subject to their own laws, un-interacting, each reflecting the entire
universe in a pre-established harmony; monads are centres of force; substance
is force, while space, matter, and motion are merely phenomenal. Like atoms,
monads are irreducible but differ in their complete mutual independence, and
in their following of a preprogrammed set of instructions peculiar to itself, so
that a monad ‘knows’ what to do at each moment. Each monad is like a little
mirror of the universe.

The monad term is also used in music, where it is a single note, with a
dyad being 2 notes, a triad 3 notes, etc., and in biology where it is a unicellular
organism.

In functional programming, the monad is an increasingly popular con-
struction as an abstract data type, with promising developments in the lan-
guage Haskell [8, 18], named after Haskell B Curry, who developed the trans-
formation of functions through currying in the λ−calculus. The monad in
Haskell is formally classified as an extension of the monad developed in cat-
egory theory, involving the notion of a strong monad [22, 24]. Such a monad
is defined in higher-order category theory as a bicategory construction. In
more concrete terms a strong monad is defined as a (categorial) monad with
strengthening with respect to products and idempotency. The strengthening
with products leads to the concept of a Cartesian monad where, if the underly-
ing categories are pullbacks, the monad T preserves pullbacks and µ and η are
Cartesian, then the monad is Cartesian. Such a construction facilitates the use
of T in transformations where a Cartesian type is expected. The strengthening
with idempotency provides resilience as further operations are performed. So
with the underlying category for the monad X being Cartesian with the ob-
ject A×B, there is a natural transformation τA,B from the Cartesian operation
(A× TB) to T(A×B) such that strengthening with the identity I is immaterial,
consecutive applications of strength commute, and strength commutes with
monad unit and multiplication [23]. Further details of the Cartesian monad
are found later in this paper in Section 7, in the work by Mulry [24] and in
Appendix C of Leinster’s book Higher Operads, Higher Categories [15].

Category theory is regarded as a unifying force so might be able to pro-
vide an insight into all of the above notions of the monad. The notion of unit
applies to all the various usages and this is continued into the categorial ver-
sion with the unit in the monad definition < T ,η,µ > of η : 1 −→ T and



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 390 — #268 i
i

i
i

i
i

390 monadic design for universal systems

the counit in the comonad definition < S, ε, δ > of ε : S −→ 1. The monad
of Leibniz is similar to the categorial version in respect of their following
a preprogrammed set of instructions with each monad being a little mirror
of the universe. However, there is a major difference – Leibniz’s monad is a
particle and the categorial monad is a process – emphasising the set-based
nature of Leibniz’s work. The use of the term monad in music appears to
reflect the physical reality of a single note. From a more constructive point
of view, musical units, and hence monads, might also include chords and
other logical combinations of notes. An application of the categorial monad
to music is under active consideration. The use of the term monad for a uni-
cellular organism has lapsed, maybe because the general term was confusable
with its use for specific unicellular organisms, the Monas. The comparison be-
tween the monad of functional programming and that in category theory is
the most useful: this shows that the Cartesian monad selected for functional
programming is indeed the type of monad needed for information systems as
the underlying Haskell category has products, in particular pullbacks, which
form the basis of our structural approach.

6 process on a topos

The monad and comonad processes are applied to a topos, defining the struc-
ture of the data, to perform the transactions. The design of the processes ia
therefore termed Monadic Design. We write the process on a topos as:

T : E −→ E′

where T is the Cartesian monad < T ,η,µ > for a category E with end-
ofunctor T , that is GF : E −→ E, unit of adjunction η : 1 −→ T and unit of
multiplication µ : T2 −→ T .

The source topos is E and the target topos is E′, with the topos based
on pullbacks, including the pasted types, as described in Section 3. The type
(intension) of the source and target is the same but the data values (extension)
will vary. Closure is achieved as the type is preserved.

For the running bank example, the Cartesian monad T is the banking sys-
tem transaction, the source information system is E and the target information
system is E′. There may be more than one adjunction for a monad T , based on
a category E. For instance < F,G,η, ε > may be one adjunction for E −→ E′

with another of < FA,GA,ηA, εA > for A −→ E, where A is a subcategory



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 391 — #269 i
i

i
i

i
i

rossiter , heather & brockway 391

of E. So a variety of adjunctions may be handled by a single monad, over var-
ious subcategories of a particular category. This gives flexibility in handling
different data-sets with the same underlying structure.

For the process there will also be a comonad:

S : E′ −→ E

where S is the Cartesian comonad < S, ε, δ > for a category E′ with end-
ofunctor S, that is FG : E′ −→ E′, counit of adjunction ε : S −→ 1, counit of
multiplication δ : S −→ S2.

Categories of algebras can be defined over the monad and comonad. From
the algebraic perspective, there are two approaches employing the monad/-
comonad as the underlying categories. The category of algebras over a monad
is traditionally called its Eilenberg-Moore category [6] ([19] at pp. 139-142).
Dually, the Eilenberg-Moore category of a comonad is its category of coalge-
bras. The subcategory of free algebras is traditionally called the Kleisli cate-
gory of the monad, as is its dual the subcategory of co-free co-algebras of the
comonad ([19] at pp. 147-148). The Kleisli category of a monad transforms a
monad into a form more suitable for implementation in a functional language
such as Haskell. Compared to the EML form of Mac Lane, Kleisli strength gen-
eralises the notion of commutativity and guarantees that products lift to the
corresponding Kleisli categories [24]. From the point of view of products, the
monads developed to Kleisli strength are applicable in a much wider range
of computing applications. Kleisli categories are discussed in more detail in
Section 7.

6.1 the t-algebra

The T-algebras are one of the algebraic forms resulting from the work of
Eilenberg and Moore [6]. Such algebras facilitate changing the definition of
a monad and therefore permitting fundamental changes to the operand of
our process. For any category X, which in our case is a topos E, the T-algebra
produces a new consistent state of adjunction for a modified intension.

In more detail, applying the T-algebra to a topos E, in the monad with ad-
junction < GF,η,µ >, yields a new monad adjunction < GT FT , ηT ,GTεT FT >:
E −→ ET; that is a new monad adjunction FT a GT is defined to accommo-
date the changed category ET. A T-algebra is < e,h > where e is an object



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 392 — #270 i
i

i
i

i
i

392 monadic design for universal systems

in E. The structure map of the algebra is h : Te −→ e such that the diagrams
in Figure 11.19 commute. Beck’s Theorem provides rules on which categorial
transformations in the T-algebra X −→ XT are valid [3]. This is sometimes
called PTT (Precise Tripleability Theorem).

(a)

T2e

Te
h

Th

µe

Te

e

h

(b)

e
ηe

Te

1

e

h

-

-
? ?

-
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs
?

Figure 11.19: T-algebra: (a) Associative Laws, (b) Unitary Laws

7 application

The categorial monadic approach is being used for the Blockchain [20], a
transaction system, adopted by Bitcoin, for keeping hundreds or even thou-
sands of copies of each transaction record, using multiple transaction logs.
The monadic design pattern provides a broad range of transactional seman-
tics with composition the key to scaling any system. The blockchain approach
is drawing interest from the established banking industry, where a blockchain
is viewed as a shared, encrypted ‘ledger’ that cannot be manipulated, offering
promise for secure transactions [27]. Meredith indicates that compositionality
is the key to reliability but offers few details on how this is achieved in the
monad. Compositionality is a cornerstone of category theory, defined as a
minimum up to some level of isomorphism. In monad/comonad definitions
there is the choice of the Mac Lane (EML) or Kleisli algebras as introduced
above in Section 6. It is the approach owing to Heinrich Kleisli that has el-
evated compositionality to a higher level, through the Kleisli lift, described
for instance by Mulry [24]. In the diagram in Figure 11.20, H is a monad
< H,η,µ > in X and K is a monad < K,γ, ρ > in Y. The Kleisli categories, rep-
resenting the free algebras, are XH and YK. The Kleisli lift of functor F is the
functor F̄ : XH −→ YK such that the diagram in Figure 11.20 commutes. Asso-
ciated with this diagram is the definition of the lifting natural transformation
λ : FH −→ KF in Figure 11.21, derived through applying the interchange law



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 393 — #271 i
i

i
i

i
i

rossiter , heather & brockway 393

to the component functors and natural transformations in the two monads
defined above.

XH

X
F

F̄

IH

YK

Y

IK

-

-

6 6

Figure 11.20: Kleisli Lifting of Functor F : X −→ Y to F̄ : XH −→ YK

F
Fη

ρF

KF

(F̄C)
λ

FH

γF

Fµ

(F̄D)

FHH

KKF

λH

Kλ

KFH

-
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs
?

-

-

?

?

Figure 11.21: Kleisli Lifting of Functor F to F̄: the lifting natural transforma-
tion λ : FH −→ KF

So far the Kleisli lift applies to any category, giving what is termed Kleisli
prestrength. We now need to consider the Kleisli lifting of a bicategory, one in-
volving a product of two categories. This is essential if the products are to be
well defined for compositional purposes as indicated in Section 6. The lifting
gives rise to what is termed Kleisli strength, forming the basis of the Carte-
sian monad, a term introduced earlier in our overview of the Haskell pro-
gramming language in Section 5.5. The terms Cartesian monad and strong
monad encountered in the literature are for our purposes interchangeable.
The enhanced compositionality is achieved firstly by defining a natural trans-
formation τA,B : A× TB −→ T(A× B) for objects A,B,C in the category X
with monad < T ,η,µ > such that the diagram in Figure 11.22 commutes. A
further natural transformation λTA : I× TA −→ TA is also defined, as shown
in the commuting diagram in Figure 11.23, to reinforce the interchange laws
employed in Figure 11.21. Both the diagrams defining the Cartesian monad



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 394 — #272 i
i

i
i

i
i

394 monadic design for universal systems

involve the Cartesian product, the most relevant for information systems, but
the theory is actually more general covering the tensorial (outer) product
A⊗ B, which may have more relevance for studies involving vectors. Further
diagrams are required when the product is tensorial, rather than Cartesian, in-
volving multiplication through the arrow µA×B and associativity though the
arrow τA,B×C. A major advantage of Kleisli strength monads is that they can,
in general, be composed naturally, unlike monads of weaker strength. Such
composability increases reliability and scalability, both of which are vital for
large scale information systems. Kleisli strength facilitates the discovery of
distributive laws.

A×B 1A × ηB A× TB

ηA×B

T(A×B)

τA,B

-
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs
?

Figure 11.22: Cartesian Monad: Diagram defining the natural transformation
τA,B

I× TA τI,A T(I×A)

λTA

TA

T(λA)

-
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs
?

Figure 11.23: Cartesian Monad: Diagram defining the natural transformation
λTA

Meredith [20] envisages that the monadic design patterns, providing a
broad range of transactional semantics, would have a front-end data sublan-
guage of the applied π−calculus, a compositional process calculus developed
for concurrent programming by Milner [21]. However, other presentational



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 395 — #273 i
i

i
i

i
i

rossiter , heather & brockway 395

techniques from category theory are available, such as bigraphs, and should
also be evaluated before a choice is made.

In the functional programming language Haskell, monadic design pat-
terns are employed. The design pattern for a category C is H =< H,η,µ >
where H is the monad with type constructor H, η is a return function, µ :

HHA −→ A is a join function. In more conventional monad terminology H
is the endofunctor, η the unit of adjunction and µ the multiplication [24]. If
the monad is of the Maybe type, there are facilities for exception handling.
To facilitate monad composition, the monad is lifted into a Kleisli category,
with the power of a strong monad or a Cartesian monad. A monad composi-
tion operator, also known as the Kleisli composition operator, is available for
composing one monad with another naturally [5].

Returning to our banking example we can see that composition of pro-
cesses is readily available if our monads are Cartesian, with the Kleisli lift. So
for two monads T =< T ,η,µ > and U =< U,γ, ρ >, we can write UT for
the composite process, where say T is the banking transaction with checks
for its feasibility and U is a task establishing remote mirror facilities, as in
distributed data recovery systems, for recording the results persistently. Such
compositionality could be enforced over large distributed systems by involv-
ing many individual monads. So monads can be used either in the small
individually in a local environment or, through composition, in the whole
universe of the information system. The efficacy of the monad approach can
be proven through category theory, thereby increasing the reliability and ro-
bustness of a system, where every transaction is critical. Further the monad
can be directly implemented in the programming language Haskell, enabling
experimental results to be derived.

8 summary

The combination of the topos, as the underlying data-type, and the monad, as
the process or transformer, appears to satisfy the requirements of information
systems. The topos is based on pullbacks, which can be nested recursively or
pasted together for complex relationships. The bottom level of Dolittle dia-
grams holds both the intension and extension for the data held. Data normal-
isation arises naturally through the rules of pullback construction. The subob-
ject classifier of a topos facilitates internal queries on the information system.
The monad is defined as three components for operations on a category: an
endofunctor that is often an adjunction, the unit of adjunction and the unit



i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 396 — #274 i
i

i
i

i
i

396 monadic design for universal systems

of multiplication. There are two main approaches for applying the monad
as an algebra: Eilenberg-Moore (EML) and Kleisli. The Kleisli approach finds
favour, with its lift to Cartesian monads handling products, providing compo-
sitionality across a succession of monads and a route for experimental imple-
mentation in Haskell.

9 bibliography

[1] Adámek, Jir̃í, Herrlich, Horst; Strecker, George E, Abstract and Concrete
Categories, John Wiley (1990). Recent edition at http://katmat.math.

uni-bremen.de/acc (2005).

[2] Banach, R, Regular Relations and Bicartesian Squares, Theoretical
Computer Science 129(1) 187-192 (1994). https://doi.org/10.1016/

0304-3975(94)90086-8

[3] Beck, Jonathan Mock, Triples, Algebras and Cohomology, Reprints in
Theory and Applications of Categories, Columbia University PhD thesis,
2 1-59, MR 1987896, originally published 1967 (2003). http://www.tac.
mta.ca/tac/reprints/articles/2/tr2abs.html

[4] Bunsen, Christian Karl Josias, Freiherr von; Hare, Julius Charles &
Bernays, Jacob, Hippolytus and his Age, published Longman, Brown,
Green, & Longmans, London 577 pp (1854).

[5] Diehl, Stephen, Monads made difficult. http://www.stephendiehl.com/
posts/monads.html

[6] Eilenberg, Samuel, & Moore, John C, Adjoint Functors and Triples, Illi-
nois J Math 9(3) 381-398 (1965). http://projecteuclid.org/euclid.ijm/
1256068141.

[7] Freyd, Peter, & Scedrov, Andre, Categories, Allegories. Mathematical Li-
brary 39 North-Holland (1990).

[8] λ−Haskell: an advanced, purely functional programming language
(2017) https://www.haskell.org/

[9] Heather, Michael, & Rossiter, Nick, Logical Monism: The Global Identity
of Applicable Logic, Advanced Studies in Mathematics and Logic 2 39-52

(2005). http://nickrossiter.org.uk/process/advstudiesmathsmonism.

pdf

http://katmat.math.uni-bremen.de/acc
http://katmat.math.uni-bremen.de/acc
https://doi.org/10.1016/0304-3975(94)90086-8
https://doi.org/10.1016/0304-3975(94)90086-8
http://www.tac.mta.ca/tac/reprints/articles/2/tr2abs.html
http://www.tac.mta.ca/tac/reprints/articles/2/tr2abs.html
http://www.stephendiehl.com/posts/monads.html
http://www.stephendiehl.com/posts/monads.html
http://projecteuclid.org/euclid.ijm/1256068141
http://projecteuclid.org/euclid.ijm/1256068141
https://www.haskell.org/
http://nickrossiter.org.uk/process/advstudiesmathsmonism.pdf
http://nickrossiter.org.uk/process/advstudiesmathsmonism.pdf


i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 397 — #275 i
i

i
i

i
i

rossiter , heather & brockway 397

[10] Heather, Michael, & Rossiter, Nick, The Process Category of Reality,
ANPA 31, Cambridge 224-262 (2011). http://nickrossiter.org.uk/

process/anpa0911.pdf

[11] Johnson, M & Rosebrugh, R, Sketch Data Models, Relational Schema and
Data Specifications. Electron Notes Theor Comput Sci 61 51-63 (2002).
http://www.mta.ca/~rrosebru/articles/sdmrsds.pdf

[12] Kent, William, A Simple Guide to Five Normal Forms in Relational
Database Theory, Communications of the ACM 26(2) 120-125 (1983).
http://www.bkent.net/Doc/simple5.htm

[13] Lambek, J, & Scott, P J, Introduction to Higher Order Categori-
cal Logic, Cambridge (1986). https://github.com/Mzk-Levi/texts/

blob/master/Lambek%20J.,%20Scott%20P.J.%20Introduction%20to%

20Higher%20Order%20Categorical%20Logic.pdf

[14] Lawvere, F W, Adjointness in Foundations, Dialectica 23 281-296 (1969).

[15] Leinster, Tom, Higher Operads, Higher Categories, London Mathemati-
cal Society Lecture Note Series 298, Cambridge (2004).

[16] Leibniz G W, Monadologie 1714; translated by Nicholas Rescher, 1991.
The Monadology: An Edition for Students. University of Pittsburgh Press.
Ariew and Garber 213, Loemker S67, Wiener III.13, Woolhouse and
Francks 19. Online translations: Jonathan Bennett’s translation; Latta’s
translation; French, Latin and Spanish edition, with facsimile of Leib-
niz’s manuscript at the Wayback Machine (archived July 4, 2012); further
editions établie par E Boutroux, Paris LGF 1991; Lamarra, A, Contexte
GènGètique et Première Réception de la Monadologie, Revue de Syn-
these 128 311-323 (2007).

[17] Levene, Mark, & Vincent, Millist W, Justification for Inclusion Depen-
dency Normal Form, IEEE Transactions on Knowledge and Data En-
gineering 12(2), pp. 281-291 (2000). http://eprints.bbk.ac.uk/196/1/
Binder1.pdf

[18] Lipovača, Miran, Learn You a Haskell for Great Good!, A Beginner’s
Guide, William Pollock, San Francisco (2011).

[19] Mac Lane, Saunders, Categories for the Working Mathematician, 2nd ed,
Springer (1998).

http://nickrossiter.org.uk/process/anpa0911.pdf
http://nickrossiter.org.uk/process/anpa0911.pdf
http://www.mta.ca/~rrosebru/articles/sdmrsds.pdf
http://www.bkent.net/Doc/simple5.htm
https://github.com/Mzk-Levi/texts/blob/master/Lambek%20J.,%20Scott%20P.J.%20Introduction%20to%20Higher%20Order%20Categorical%20Logic.pdf
https://github.com/Mzk-Levi/texts/blob/master/Lambek%20J.,%20Scott%20P.J.%20Introduction%20to%20Higher%20Order%20Categorical%20Logic.pdf
https://github.com/Mzk-Levi/texts/blob/master/Lambek%20J.,%20Scott%20P.J.%20Introduction%20to%20Higher%20Order%20Categorical%20Logic.pdf
http://eprints.bbk.ac.uk/196/1/Binder1.pdf
http://eprints.bbk.ac.uk/196/1/Binder1.pdf


i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 398 — #276 i
i

i
i

i
i

398 monadic design for universal systems

[20] Meredith, Lucius Greg, Monadic Design Patterns for the Blockchain, DE-
VCON1, Ethereum Developer Conference, Gibson Hall, London, 9-13

Nov (2015). https://www.youtube.com/watch?v=uzahKc_ukfM&feature=
youtu.be

[21] Milner, Robin, Communicating and Mobile Systems: The π−calculus,
Cambridge (1999).

[22] Moggi, Eugenio, Computational Lambda-Calculus and Monads, Pro-
ceedings of the Fourth Annual Symposium on Logic in Computer Sci-
ence 14-23 (1989).

[23] Moggi, Eugenio, Notions Of Computation And Monads, Information
And Computation 93 55-92 (1991).

[24] Mulry, Philip, Notions of Monad Strength, Banerjee, A, Danvy, O, Doh,
K-G, Hatcliff, J, (edd.) David A. Schmidt’s 60th Birthday Festschrift,
EPTCS 129 67-83, doi:10.4204/EPTCS.129.6 (2013). https://arxiv.org/
pdf/1309.5132.pdf

[25] ncatlab, 0-category https://ncatlab.org/nlab/show/0-category

[26] ncatlab, Pullback as an Equalizer https://ncatlab.org/nlab/show/

pullback

[27] Phys Org, Bitcoin’s ‘blockchain’ tech may transform banking, http://
phys.org/news/2015-12-bitcoin-blockchain-tech-banking.html

[28] Rossiter, B N, Heather, M A, & Sisiaridis, D, Process as a World
Transaction, Proceedings ANPA 27 Conceptions, 122-157 (2006). http:

//nickrossiter.org.uk/process/anpa064.pdf

[29] Rossiter, Nick, & Heather, Michael, Formal Natural Philosophy: Top-
down Design for Information & Communication Technologies with Cat-
egory Theory, ANPA 35, Explorations, Grenville J Croll, Nicky Graves
Gregory (edd.), 155-193 (2015). http://nickrossiter.org.uk/process/
anpa-2015-a5-Latex.pdf

[30] Rossiter, Nick, & Heather, Michael, Abstract Relations and Al-
legorical Categories, ANPA 36, Explorations II, Anton L. Vrba
(ed.) 103-134 (2016). http://nickrossiter.org.uk/process/

Rossiter-ANPA-PROC-36updated.pdf

https://www.youtube.com/watch?v=uzahKc_ukfM&feature=youtu.be
https://www.youtube.com/watch?v=uzahKc_ukfM&feature=youtu.be
https://arxiv.org/pdf/1309.5132.pdf
https://arxiv.org/pdf/1309.5132.pdf
https://ncatlab.org/nlab/show/0-category
https://ncatlab.org/nlab/show/pullback
https://ncatlab.org/nlab/show/pullback
http://phys.org/news/2015-12-bitcoin-blockchain-tech-banking.html
http://phys.org/news/2015-12-bitcoin-blockchain-tech-banking.html
http://nickrossiter.org.uk/process/anpa064.pdf
http://nickrossiter.org.uk/process/anpa064.pdf
http://nickrossiter.org.uk/process/anpa-2015-a5-Latex.pdf
http://nickrossiter.org.uk/process/anpa-2015-a5-Latex.pdf
http://nickrossiter.org.uk/process/Rossiter-ANPA-PROC-36updated.pdf
http://nickrossiter.org.uk/process/Rossiter-ANPA-PROC-36updated.pdf


i
i

“ANPA-PROC-37-38” — 2018/4/13 — 16:20 — page 399 — #277 i
i

i
i

i
i

rossiter , heather & brockway 399

[31] Whitehead, Alfred North, Process and Reality: An Essay in
Cosmology, Macmillan, New York (1929); corr.ed., eds. David
Ray Griffin and Donald W. Sherburne, New York: Free Press
(1978). https://monoskop.org/images/4/40/Whitehead_Alfred_North_

Process_and_Reality_corr_ed_1978.pdf

https://monoskop.org/images/4/40/Whitehead_Alfred_North_Process_and_Reality_corr_ed_1978.pdf
https://monoskop.org/images/4/40/Whitehead_Alfred_North_Process_and_Reality_corr_ed_1978.pdf

