Journal of Computing and Information Technology - CIT 14, 2006, 2, 91-110 91

Trandating XML Update L anguage

Into SQL

Pensri Amornsinlaphachai*, Nick Rossiter and M. Akhtar Ali

School of Computing, Engineering & Information Sciences, Northumbria University, Newcastle upon Tyne, UK

Several techniquesfor translating XML query languages
into SQL have been proposed, but no work to date trans-
lates XML update languages into SQL since XQuery
has not provided any update statements. However, there
is a suggestion from W3C indicating that an update
version of XQuery will be proposed in the near future.
Furthermore, one major advantage of updating XML
documents via a relational database is that the preser-
vation of constraints can be transferred to the database
engine; thus our main contributions are trandating the
XML update language, extending XQuery into SQL
and trandlating recursive updates into PL /SQL. XQuery
is a functional language whereas SQL is a declarative
language; therefore, trandation cannot be performed
directly, so several techniquessuch asrewriting rulesand
graph mapping are used in our work.

Keywords: XML update language, SQL, XQuery, trans-
lation, recursive function.

1. Introduction

Theemergence of XML asan effective standard
for representation of (semi-)structured data on
the Web has motivated a host of researches
in the area related to XML such as storing
[6, 15, 22|, querying [24, 25, 3] and updating
[13, 19, 31] XML documents. In the area of
querying XML documents, several query lan-
guages such as Lorel [1], XPath [32], XML-
QL [5], XQL [23] and XQuery [33] have been
proposed while several trandation techniques
have been presented for trandating these lan-
guages into SQL. For example, [28] trandlates
Lorel, [16] trandates XPath, [12, 35] trandate
XML-QL, [29, 10] trandate XQL and [9, 7, 27]
trandate XQuery. In the area of updating XML
documents, several researchers pay attention to

designing XML update languages such as X Up-
date [34], SXDML [26], XML-RL Update L an-
guage [19] and XML Update Extension [30], but
none of the published work has proposed trans-
lating these languages into SQL.

Our motivation comes from three reasons as
follows. Firstly, none of the published work
has presented the tranglation of XML update
language into SQL although many researchers
have proposed a number of XML update lan-
guages. Secondly, trandlating recursive query-
ing in XQuery is still an open problem. How-
ever, in our research we focus on trandating
the update language. Thus, instead of trangdlat-
ing recursive querying, we trandate recursive
updating in the XML update language, an ex-
tension to XQuery. Nevertheless, it is still pos-
sible to apply our technique to trandate recur-
sivequerying in XQuery. Finally, if updating is
performed directly on an XML document in the
manner of the native XML database, much work
must be handled such as preserving constraints,
whileupdating XML documentsviaarelational
database hasthe advantage of using the database
engine to preserve constraints. Thisis because
before updating XML documents, both struc-
ture and constraints of XML will be mapped to
the schema of the relational database, while the
XML update language will be translated into
SQL and this SQL is used to update data in the
database.

In this paper, we will express how to tranglate
the XML update language into SQL, including
trandlating a recursive function into PL /SQL
since XQuery has not provided statements for

*Thiswork was supported by the Royal Thai Government via Nakhonratchasima Rajabhat University.

92

Translating XML Update Language into SQL

querying data recursively. For thistask, there-
cursive function is needed. In order to demon-
strate our tranglation techniques, adatabase rep-
resenting XML documents and an update lan-
guagearenecessary. |nthisrespect weadapt ex-
isting researches to our work because our main
contribution is elsewhere.

The rest of this paper is organized as follows.
Related work is discussed in section 2. A
database and a language for updating are de-
scribed in section 3. Section 4 presents tech-
niques for translating XML update language
into SQL commands and section 5 presents how
totranslatetherecursivefunctioninto PL /SQL.
Finally, conclusion and further work are dis-
cussed in section 6.

2. Related Work

Severa techniques [8, 11, 20| for translating
XML query languages have been proposed and
these techniques may be classified according
to the method for representing XML in the
database. There are three methods for repre-
senting XML to the database: by the edge ap-
proach, by the shredding approach and asaview
created from the database.

There are several ways in which XML query
languages are trandated into SQL ; however, we
will describe only the general approach of trans-
lating XPath into SOL based on representing
XML by the edge and shredding approaches
since XPath is used as a part of other XML
query languages. Until now, for tranglation
based on representing XML asview, weseeonly
the trandation of XQuery into SQL. Because
XQuery is afunctional language whereas SQL
Is a declarative language, translation cannot be
performed straightforwardly: there is no gen-
eral approach for trandating it and thus we will
describe each technique for transating XQuery
that we have found.

The general approach [35, 14| for trandating
XPath into SQL based on representing XML
by the edge approach is as follows. In storing
XML by the edge approach, elements and paths
of elements are kept in one table and attributes
and path of attributes are kept in another table.
Thus, to translate X Path to SQL, PathIDs from

XPath are created and then an SQL statement
is used to retrieve rows in tables, based on the
condition that the PathlDs derived from XPath
are the same as the path-1Ds kept in the tables.
The path-1Ds are used to join the tables.

Thegeneral approach [16] for trandating X Path
into SQL by the shredding approach is as fol-
lows. In storing XML by the shredding ap-
proach, complex elements are converted to ta-
bles while simple elements and attributes are
converted to fields; thus, to tranglate X Path into
SQL, relations and fields can be identified from
their path expressions and the relations are then
joined together.

In the case of translation based on representing
XML asaview created from the database, Fer-
nandez M. et a. [8] translate X Query to SQL by
using aview forest. Semantically, aview forest
defines amapping from arelational database to
an XML document. Any XQuery expression
can be rewritten as a forest view. The SQL
fragments are stored in each node of the view
forest. The internal nodes will contain FROM
and WHERE clauses, whereas the leaf nodes
contain only SELECT clause. Another tranda-
tion method proposed by Fernandez M. et al. [7]
is trandlating XQuery into SQL by decompos-
ing an XML view definition into smaller SQL
queries and submitting the decomposed SQL
queriesto the database.

Shanmugasundaram J. et al. [27] trand ate X Que-
ry into SQL as follows. Firstly, the XQuery
query is parsed and converted to an interna
query representation called XML Query Graph
Model (XQGM). Secondly, the query is com-
posed with XML views to which it refers. Fi-
nally, optimizations are performed to elimi-
nate the construction of intermediate XML frag-
ments and predicates are pushed down.

To summarize, none of the previouswork trans-
lates XML update languagesinto SQL athough
several XML update languages, which are ex-
tensions to XQuery, have been proposed and
the official update version of XQuery may be
presented shortly; moreover, fully fledged rela-
tional technology can be exploited when XML
isupdated viatherelational database. Thevary-
ing methodsfor trand ating the XML query lan-
guageinto SQL are summarized in Table 1.

Translating XML Update Language into SQL

93

Researches Linear Non-linear | Optimisation | Represent Translated
Recursion | Recursion XML to Language
Database
Krishnamurthy R. et al. [16] Y Y N Shredding Path
Expression
Fong J.; Dillon T. [10] N N N Shredding XQL
Jain S. et al. [11] N N Y Shredding XSLT
Shanmugasundaram J. et al. [28] | Y N N Shredding Lorel
Fernandez M. et al. [7] N N Y XML view XQuery
Fernandez M. et al. [§] N N Y XML view XQuery
Shanmugasundaram J. et al. [27] | N N Y XML view XQuery
Shimura T. et al. [29] N N N Edge approach | XQL
Jensen, E.C. et al. [12] N N N Edge approach | XML-QL
Manolescu I. et al. [20] N N N Edge approach | Quilt
Manolescu I. et al. [9] N N N Edge approach | XQuery
Khan L. et al. [14] N N N Edge approach | XPath
Yoshikawa M. [35] N N N Edge approach | XPath

Table 1. Comparison of Techniquesfor Transating XML Query Languagesinto SQL.

3. A Database and a Language for
Updating

To demonstrate how to translate the XML up-
date language into SQL, a database and an up-
date language are necessary. In this section, we
apply and adapt existing work so that we can
express our trangation techniques in the next
section. In this section firstly, we will describe
representing XML in arelational database and
secondly, we will present an XML update lan-
guage used for updating.

3.1. Mapping XML to Relational Database

To map XML to arelational database, we fol-
low the technique presented in work [16] since
it is compact and easy to understand. The re-
searchers of this work represent mapping via
annotations on the DTD schema graph; how-
ever, we adjust therulesin the part for mapping
the recursive form and naming key fields. The
DTD schemagraph is shown in Figure 1.

The annotations on the graph correspond to the
following decomposition. Each non-leaf node
is mapped to atable name and each leaf nodeis
mapped to a column name. Each table has an
id asthe primary key, while each tablewhichis
not the root has parent-id as a foreign key for
preserving document structure. The name of
the primary key is the table-name followed by
‘id"” whilethe name of aforeign key isthe same
as the name of the primary key of the parent-
table. When an element has an attribute whose
typeisID, this ID will be used as the primary
key. For IDREF(s) and the recursive structure,
a separate table is created to hold the primary
keysof tablesof thereferencing element and the
referenced element. The name of the separate
tableisthe name of thereferencing element fol -
lowed by the name of the referenced element.
The database derived from mapping the graph
shown in Figure 1 is given in Figure 2 in the
form of a database schema graph. In the graph,
the symbol (T) standsfor table while the arrow
with a dashed-line stands for recursion.

94 Translating XML Update Language into SQL

Publication *

A =t

@PublicationID Title Author+ PubType?

2\

@AuthorID Name EMail

Year Reference?

/

@ReflD RefType

Tel? @RefPub

Fig. 1. DTD schemagraph.

Publication (

///\\

[
[
PublicationID Title Author (T)+ PubType? Year Reference (|
[
[

AuthorID// \ // \\

PublicationID RefID RefType PublicationID (@RefPub)
EMail Tel? ReferencePublication (T)

Name

RefID PublicationID

Fig. 2. Database schema graph.

(ForClause |LetClause)+
WhereUpdateClause |IfUpdateClause

where each clause is:

ForClause

LetClause
WhereUpdateClause
WhereClause
UpdateClause
DeleteClause
ReplaceClause

For $var in XPathExp(,$var in XPathExp)*

Let $var := XPathExp(,$var := XPathExp)*

WhereClause? UpdateClause

Where Condition

DeleteClause | ReplaceClause | InsertClause

Delete node WhereClause? (,Delete node WhereClause?)*

Replace node with content WhereClause?

(, Replace node with content WhereClause?)*

Insert content Into node (Before | After condition pgsedon xPath)?
(,Insert content Into node (Before | After condition pesedon xPath)?)*
If Condition Then UpdateClause

(Elself Condition Then UpdateClause)*

(Else UpdateClause)?

InsertClause

IfUpdateClause

Fig. 3. Syntax of XML Update Language.

For propagating the constraints of XML to the
relational database, the rules proposed in work
[18, 17, 31] can be applied. By applying these
rules, preserving the constraints of XML is
pushed to the database engine.

3.2. An XML Update Language

For the update language, we adapt the syntax
proposed by Tatarinov, I. et a. [30] and the
syntax of XQuery [33]. The syntax after this

adaptation is shown in Figure 3. The seman-
tics of the update language is the same as that
presented in [30].

4. Translating XML Update Language into
SQL

When compared with existing XML query lan-
guages, XQuery is the most powerful, provid-
ing many features [21, 4, 33]. In this sec-
tion, five important features will be translated

Translating XML Update Language into SQL

95

into SQL: FLW(RJI|D), an abbreviation for a
For-Let-Where-(Replace|lnsert|Del ete) expres-
sion, conditional expression, quantifier, aggre-
gatefunctionsand (non-recursive) user-defined
function. XQuery is a functiona language
whereas SQL is a declarative language; there-
fore trandating the XML update language, an
extension to XQuery, into SQL is not straight-
forward; thereby several techniques such as
rewriting rules will be used during the trans-
lation. In this section, firstly, four techniques
for trandating the update language will be de-
scribed. Secondly, the steps for trandating the
update language into SQL will be proposed and
finally an example will be presented.

4.1. Four Techniques for Translating XML
Update Language

Our trandlation uses four main techniques: up-

4.1.2. Rewriting Rules

Therearesix categoriesof rewritingrules: FLW
(R|I|D) expression, aggregate function, quan-
tifier, conditional expression, (non-recursive)
user-defined function and SQL rewriting rules.
Thefirst five categories are classified according
to features of the update language and these fea-
tures will be rewritten as SQL functions while
thelast category of rewriting rules: SQL rewrit-
ing rules is used to rewrite update/delete join
commands as SQL commands. In this section,
we explain the SQL function and then describe
the six categories of rewriting rules.

SQL Functions. To trandate XML update
commands, al clauses of XML update com-
mands must be rewritten as SQL functions.
SQL functions are conceptual functions repre-
senting the operations of SQL commands. The

date/del etejoin commands (joinsin update/delete SQL functions are used to group XML update

commands), rewriting rules, graph mapping and
optimization rules for trandating XML update
language into SQL. These four techniques are
asfollows.

4.1.1. Update/Delete Join Commands

In the SQL standard, update/delete join com-
mands cannot be performed; however the trans-
lation of XML update commands can produce
joinsof several tables. Therefore, itisnecessary
that we trandate XML update commands into
update/ delete join commands and then rewrite
them to SQL with sub-query commands. The
syntax of update/delete join commands is as
follows:

e Syntax of joinsin update command

Update table whose fields will be updated
from al related tables
Set fieldl = vauel, field2 = value, ...
Where Condition:;

e Syntax of joinsin delete command

Delete table whose data will be deleted
from al related tables
Where Condition;

Note: Insert ... select-joins can aready be per-
formed in the SQL standard.

clauses and their conditions together since one
XML update command can consist of severdl
update clauses and each update clause can have
its own condition. Thus, these update clauses
aregrouped by using function number (funcNo)
which is a parameter of every SQL function.
The funcNo O will be assigned to ForClause,
L etClause and WhereClause of the XML update
command. These clauseswill be shared clauses
for the UpdateClause. Each update clause will
haveits own funcNo, arunning number starting
from 1. Theupdate clauseand itsown condition
will have the same funcNo. The SQL functions
areasfollows:

bindF(path, $var, funcNo)

bindL (path, $var, funcNo)

insert (node, value [funcNo, funcNo)
delete(node, funcNo)

update(node, value [funcNo, funcNo)

wherel|L ogical Oper(node,
ComparisonOper, value [funcNo, funcNo)

7. aggFunc(node, funcNo)
where aggFunc ::=max |min |count |avg
[sum

8. group_by(node, funcNo)

9. having(aggFunc(node),
ComparisonOper, vaue [funcNo, funcNo)

10. select(node, funcNo)

S A

96

Translating XML Update Language into SQL

Four SQL functions, where]Logical (), having(),
insert() and update(), have the parameter value
| funcNo since sometimesthe valuein the pred-
icate, in inserting or in updating, is not the con-
stant value, but it may come from selecting a
value from other nodes. Hence in this case,
funcNo has the same number as that for the
funcNo of the select() function.

Rewriting rules for FLW(R|I|D). The ex-
pression FLW(RJI|D) will be rewritten as SQL
functions as follows:

1. For $var in XPathExp isrewritten as:
bindF(X PathExp, $var, funcNo)

2. Let $var := XPathExp isrewritten as:
bindL (X PathExp,$var, funcNo)

3. Where predicate isrewritten as:
where(node, ComparisonOpe,
value [funcNo, funcNo)

4. LogicaOper predicate isrewritten as:
L ogi cal Oper(node, ComparisonOpe,
value [funcNo, funcNo)

5. For $var in XPathEXPpredicate IS translated
into:
For $var in XPathExp Where predicate
Then this clause is rewritten as SQL func-
tionsaccording torules 1, 3, 4.

6. Let $var := XPathEXppredicate iS translated
into:
Let $var := XPathExp Where predicate
Then this clause is rewritten as SQL func-
tions according to rules 2-4.

7. Select node |[Return node
select(node, funcNo)

8. Replace node with content is rewritten as:
update(node, content’s value, funcNo)

9. Delete node
delete(node, funcNo)

10. Insert simple content into node is rewritten
as:
Insert(node, content’s value, funcNo)

isrewritten as;

isrewritten as;

11. Insert complex content Into node
The complex content is shredded into many
simple contents. The Insert command is
rewrittenintheform of thecommandsbased
on the simple contents which are in turn
rewritten as SQL functions as follows:

Define: complex content e; = {e1, &,...,
6_1, 6, a1, &, .8} where e, e,...,6_1,
g are eements, &y, a&,..., § are attributes,
e={ai{e2{€i}.}, a1, &z, &i}.

Vel, Ve2,.-, Vei—1, Val, Va2,..., Vai are values
of e, e,..., §_1, &, &,.., & ad Vi, Va1,
Vai2,..., Vaii are vaues of g;, a1, a2,..., &i
respectively.

Insert e; Into node
insert(node/ e, , funcNo)
insert(node/e;/ €y, Ve1, funcNo)
insert(node/e;/ e, Vez, funcNo)

is rewritten as;

iﬁsert(node/ec/a_l, Vi_1, funcNo)
insert(node/e;@ay, Va1, funcNo)
insert(node/e;@ay, V42, funcNo)

insert
insert
insert
insert

node/e:@a;, Vs, funcNo)
node/e:/g;, , funcNo)
node/e:/& /&1, , funcNo)
node/e:/e/€1/&2, , funcNo)

PG

insert
insert
insert
insert

node/e:/e/e1/&2/.../8i-1,, funcNo)
node/e:/e/e1/&2/.../&i, Veii, funcNo)
node/e:/ e @a;1, Va1, funcNo)
node/e;/ e @32, Vai2, funcNo)

o~~~

iHsert(node/ec/a @a;i, Vaii, funcNo)

Rewriting rulesfor aggregate functions.

1. Define: For $varl in XPathExpl
Let $var2 := $varl/X PathExp2
Then: aggFunc($var2) is rewritten as:
aggFunc($var2, funcNo)
group_by($varl, funcNo)

2. Define: Let $var := XPathExp
Then: aggFunc($var) is rewritten as:
aggFunc($var, funcNo)

3. Define: For $varl in XPathExpl
Let $var2 := $varl/X PathExp2
Then:
Where aggFunc($var2) ComparisonOper
value iSrewritten as:
group_by($varl, funcNo)
having(aggFunc($var2),ComparisonOper,
value, funcNo)

Translating XML Update Language into SQL

97

Rewriting rules for quantifier. 1n XQuery,
there are two quantifiers: existential quantifier
(some) and universal quantifier (every). Both
quantifierscan betrandlated into acount() func-
tion since the existentia quantifier is used to
test whether at least one item in the sequence
satisfies the condition while the universal quan-
tifier is used to test whether every item in the
sequence satisfies the condition; thus, before
rewriting these quantifiers to SQL functions,
their meanings will first be translated and then
rewritten as SQL functions as follows:

1. For $varlin XPathExpl
Where some $var2 in $varl/ X PathExp2
Satisfies (Condition) istranglated into:
For $varl in XPathExpl
Let $var2 := $varl/XPathExp2
Where count($var2) >0
And Condition iSrewritten as:
$varl = bindF(X PathExpl, funcNo)
$var2 = bindL ($varl/XPathExp2,
funcNo)
where (node, ComparisonOperator,
value |:funcNo, funcNo)
(L ogical Oper(node,ComparisonOperator,
value |:funcNo, funcNo))*
group_by($varl, funcNo)
having(count($var2), >, 0, funcNo)

2. For $varl in X PathExpl

Where every $var2 in $varl/ X PathExp2
Satisfies (Conditionl)
[And Condition2 |
For $varl in XPathExpl
Let $var2 := $varl/XPathExp2
Where Conditionl
[And Condition2 |
And count($var2) =

(For $var3 in X PathExpl

Let $vard := $var3/X PathExp2

Where $var3 = $varl

[And Condition2]

Return count($var4)

) is rewritten as:
$varl = bindF(X PathExpl, funcNo)
$var2 = bindL ($varl/ X PathExp2,

funcNo)
where (node,ComparisonOpe,
value |:funcNo, funcNo)
(Logica Oper (node, ComparisonOper,
value |:funcNo, funcNo))*
[and(node,ComparisonOper,
value |:funcNo, funcNo)

istrandated into:

(L ogical Oper(node,ComparisonOper,
value |:funcNo, funcNo))*

]

group_by($varl, funcNo)

having(count($var2), =, :1, funcNo)

$var3 = bindF(XPathExpd, :1)

$vard = bindL ($var3/XPathExp2, :1)

select(count($vard), :1)

where ($var3, =, $varl, :1)

[and(node,ComparisonOperator,vaue, :1)

(logical _operator(node,
ComparisonOperator, value, :1))*

]
group_by($var3, :1)

Besides ‘some’ and ‘every’ quantifiers, there
are two functions: empty() and exists() which
can be rewritten as count() functions. These
functionsand quantifierscan be used along with
‘not’. Tosummarise, themeaning of thesefunc-
tions and quantifiers can be trandated before
rewriting as follows:

some istranglated into count >0
not (some) istrandated into count = 0
every istrandated into

COUNtpredicate = COUNtwithout predicate
not (every) istrandated into

COUNtpredicate < COUNtwithout predicate

and countpregicate > 0
empty istranglated into count=10
not (empty) istrandated into count >0
exists istranslated into count >0
not (exists) istrandated into count=0

Rewriting rule for conditional expression.
The construction

(ForClause|L etClause)+

If (Condition;) then
UpdateStm;

Else If (Conditiony) then
UpdateStm,

I[Else [If (Conditiony)]

98

Translating XML Update Language into SQL

UpdateStmp,
]

is translated into a series of commands as fol-
lows:

(ForClause|L etClause)+
Where Condition;
UpdateStm;

(ForClause|L etClause) +
Where Condition,

And not(Condition;)
UpdateStm,

|

(ForClause|L etClause) +
[Where conditiony, |

Where |And not(condition;)
And not(conditiony)

A nd not(conditionp—_1)
UpdateStmp,

]

The series of commands are then rewritten as
SQL functions according to the category of ex-
pressions. The number of commands in the
series corresponds to the number of conditions
if-then-else.

if T1 is table
Update T1
From all related tables
Set fieldl = value, field2 = value, ...
Where Condition

Update T1
Set fieldl = value, field2 = value, ...

Then

is rewritten to:

Where PK(T1) in (select PK(T1) from all related tables where Condition)
Elself T1 is separate table derived from recursive structure or IDREF(s) Then
Define:

T2 is table containing primary key(PK1) referrenced by foreign key(FK1) of T1
T3 is table containing primary key(PK2) referrenced by foreign key(FK2) of T1
valuel, value2 are constant values

If predicate of T1.FK1 is T1.FK1 = valuel OR

predicate of T1.FK2 is T1.FK2 = value2 Then
Update T1
From all related tables
Set FK1 = value, FK2 = value
Where Condition
And T1.FK1 = valuel|T2.PK1
And T1.FK2 = value2|T3.PK2
Update T1
Set FK1 = value, FK2 = value
Where T1.FK1 (= valuel|
in (Select T2.PK1 From all related tables except T1
Where Condition without join to T1))
And T1.FK2 (= value2|
in (Select T3.PK2 From all related tables except T1
Where Condition without join to T1))
Elself predicates on T1.FK1 and T1.FK2 are not constant value Then

Update T1
From all related tables
Set FK1 = value, FK2 = value
Where Condition
And T1.FK1 = T2.PK1
And T1.FK2 = T3.PK2 is rewritten to:
Update T1
Set FK1 = value, FK2 = value
Where T1.FK1 in (Select T2.PK1 From all related tables except T1 and T3
Where Condition without join to T1 and except predicates on T3)
And T1.FK2 in (Select T3.PK2 From all related tables except T1 and T2
Where Condition without join to T1 and except predicates on T2)
EndIf
EndIf

is rewritten to:

Fig. 4. Rewriting rulesfor joinsin update command.

Translating XML Update Language into SQL

99

if T1 is table
Delete T1
From all related tables
Where Condition

Delete From T1
Where PK(T1) in (select PK(T1) from all related tables where Condition)

Elself T1 is separate table derived from recursive structure or IDREF(s)
Define:
T2 is table containing primary key(PK1) referrenced by foreign key(FK1) of T1
T3 is table containing primary key(PK2) referrenced by foreign key(FK2) of T1

Then

Then

is rewritten to:

valuel, value2 are constant values

If predicate of T1.FK1 is T1.FK1 = valuel OR
predicate of T1.FK2 is T1.FK2 = value2
Delete T1
From all related tables
Where Condition
And T1.FK1 = valuel|T2.PK1
And T1.FK2 = value2|T3.PK2

Delete From T1
Where T1.FK1 (= valuel|

And T1.FK2 (= value2|

Delete T1

From all related tables
‘Where Condition

And T1.FK1 = T2.PK1
And T1.FK2 = T3.PK2

Delete From T1

EndIf
EndIf

in (Select T2.PK1 From all related tables except T1
Where Condition without join to T1))

in (Select T3.PK2 From all related tables except T1
Where Condition without join to T1))

Elself predicates on T1.FK1 and T1.FK2 are not constant value

Where T1.FKI1 in (Select T2.PK1 From all related tables except T1 and T3
Where Condition without join to T1 and except predicates on T3)

And T1.FK2 in (Select T3.PK2 From all related tables except T1 and T2
Where Condition without join to T1 and except predicates on T2)

Then

is rewritten to:

Then

is rewritten to:

Fig. 5. Rewriting rulesfor joinsin delete command.

Rewritingrulesfor non-recur siveuser-defined
function. Callsto non-recursivefunctionsare

replaced with the body of such functions and

parameters are replaced with proper values. Af-

ter such replacements, the update command is
rewritten as SQL functions according to the cat-

egory of expressionsin the command.

SQL rewriting rules (rewriting rules for up-
dateand deletejoincommands). Thesesrules
are used to rewrite update and delete join com-
mands as SQL commands. Rewriting rules for
update join commands are shown in Figure 4
and rewriting rules for delete join commands
are shown in Figure 5.

4.1.3. Graph Mapping

The purpose of graph mapping is to indicate
the SQL functions performed on tables or fields
of the database, so that SQL commands can be
correctly generated from the graph.

The steps for graph mapping start from creat-
ing a graph whose paths correspond to paths
in the SQL functions and then the graph is
mapped to the database schema graph to iden-
tify which node is a table or field. Then the
foreign keys for joins tables and join symbols
are added to the graph and the SQL functions

100

Translating XML Update Language into SQL

aremapped to thegraph. Next pushingthefunc-
tion down to proper nodes of the graph may be
performed depending on which function is per-
formed on which node. The graph may then
be split into several sub-graphs. The number
of sub-graphs corresponds to the number of up-
date operations performed on different tables.
Finaly, optimization rules are applied to the
graph or the sub-graphs and SQL commands
or update/delete join commands are generated
from the graph or the sub-graphs.

4.1.4. Optimization Rules

There are three techniques for optimization as
follows:

1. Eliminate unnecessary previous nodes. this
technique is performed by traversing from
the root node of the graph until it finds the
first predicate or update operation on a ta-
ble or afield. Then nodes which are prior
to the table or the table of the field can be
eliminated from the graph.

2. Eliminate join of any two contiguous tables:
Define: T1 and T2 are two contiguous ta
bles starting from the root of the graph. PK
stands for primary key and FK stands for
foreign key.

Onthegraph, if T1 consistsof only onefield
which is PK/FK linking to FK/PK of T2
and Pisapredicate on PK/FK of T1, then P
can be moved to FK /PK of T2 and T1 and
itsPK /FK can be eliminated from the graph.

3. Eliminate join of any three contiguous ta-
bles:
Define: T1, T2 and T3 are three contiguous
tables starting from the root of the graph.
Onthegraph, if T2 consistsof only onefield
whichisPK/FK linkingto FK /PK of T1and
FK/PK of T3 then T1 and T3 can bejoined
together directly and T2 and its PK /FK can
be eliminated from the graph. If thereisa
predicate on PK /FK of T2 then the predicate
will be moved to FK /PK of T3.

Note: If agraph is aready in optimized form,
the optimization will not be applied.

4.2. Steps for Translating XML Update Lan-
guage

The steps for translating XML update language
into SQL are given below:

1. Rewrite the update command to SQL func-
tions according to the rewriting rules.

2. Create a graph whose paths correspond to
pathsin the functions.

3. Map the graph into the database schema
graph to identify which node is a table or
field.

4. Addkey fields (PK and FK) which are used
tojointables. However, inthe case of recur-
sion on the path of the command (keys of
elements referring back to ancestors in the
path of the command) key fieldswill not be
added. Then add the join symbols by using
the capital L followed by numbers (L1, L2,
..., Ln) to indicate which pair of the keys
isused to join the tables.

5. Map the functions to the graph
If an insert function is performed on a node
converted to the primary key of a table, this
insert function must be copied totheforeign
key of child-tablesto maintain parent-child
relationships.
If adeleteor insert functionisperformed on
nodes converted to fields, without a delete
or insert function on an ancestor-node con-
verted to a table, the function will be con-
verted to an update function.
If an insert or delete function is performed
on anode converted to atable, thisindicates
that the function will insert or delete arow
of the table. In this case the function will
not be converted to an update function.
If an update, where or group_by function
is performed on a node converted to a ta-
ble, the function will be pushed down to the
appropriate primary key of thetable.

6. In the case that there is more than one up-
date function on different tables, the graph
will besplitinto sub-graphs. The number of
sub-graphsisequal to the number of update
operations performed on the different tables
having different funcNo.

Translating XML Update Language into SQL

101

7. For each sub-graph, some join symbols can
be eliminated when

e onlyonetableisinvolvedintheupdating.

an update statement and all of its where
clauses are in the same table.

a select statement and al of its where
clauses are in the same table.

8. Optimizeeach (sub-)graph according to op-
timization rules.

9. Generate SQL commands or update/delete
join commandsfrom each (sub-)graph. The
insert functions, omitting the second param-
eter (value |:funcNo) and the bindF/bindL
functions, will be ignored in generating the
commands.

10. If the generated commands are in the form
of update/delete join commands, the com-
mands are rewritten according to the SQL
rewriting rules.

4.3. An example of Translating XML
Update Language into SQL

For $p in doc(“Library.xml") /Publication,
$ain $p/Author

Where $p/Title = “Java"

Delete $p/PubType, Delete $a

Where $a/Name = ‘John S/

1. Parse the command and rewrite it to SQL
functions as follows
bindF (/Publication, $p, 0)
bindF ($p/Author, $a, 0)
where ($p/Title, =, ‘Java, 0)
delete($p/PubType, 1) delete($a, 2)
where($a/Name, = , ‘JohnS/, 2)

Create a graph whose nodes correspond to

paths in the functions, map the graph to the
database schema graph, add key fields (PK

AN
PublicationID/ | PubType | detetet—H)

Publication(T)

’ where(.,

=, ‘Java’, 0) ‘ Title ’update(., null, 1) ‘

/
PublicationID/ \\ PubType

Title Author(T)

PN
PublicationID Name

(a) Graph after mapping
database schema graph

Author(T blndF(a, 0)
/ \ delete(2)
PublicationID Name ’where(‘John S., 2) ‘

(b) Graph after mapping SQL function
and after delete function is changed to update function

/ 77777
PublicationID

’ where(.,

=, ‘Java’, 0) ‘ Title

| Author(T

) " bindF(. $a 0),

\ PubType ’ update(., null, 1)

’Where(., =, ‘Java’, 0) ‘ Title

o

PublicationID Name | where(., =, ‘John 8., 2)]

(¢) Two sub-graphs of updating Publication table and Author table respectively

Fig. 6.

102

Translating XML Update Language into SQL

and FK)) which are used to join tables and fi-
nally add the join symbolsto indicate which
pair of keysis used to perform the join be-
tween tables. The result is shown in Figure
6(a).

3. Map the SQL functions to the graph. Since
the delete function is performed on the node
‘PubType’ converted to a field and there is
no delete function on the ancestor of this
node converted to a table, then the function
is changed to an update function The result
isshown in Figure 6(b).

4. Split the graph into sub-graphs. There are
two updated target tables. Publication and
Author. Therefore the graph issplitinto two
sub-graphs as shown in Figure 6(c).

5. Eachsub-graphisalready in optimized form.
So commands can be generated from each
sub-graph as follows: For the first sub-
graph, only one table is involved in the up-
date; thus, there isno join in the update op-
eration so the SQL command isgenerated as
follows:

Update Publication P
Set PPubType = null
Where PTitle = ‘Java;
For the second sub-graph, a deletejoin com-
mand is generated as follows:
Delete Author A
From A, Publication P
Where PTitle = ‘ Java
And PPublicationID = A.PublicationlD
And A.Name = ‘John S/;
The delete join command is rewritten as an
SQL command with a sub-query by using
the SQL rewriting rules as follows:
Delete Author A
Where A.AuthorID in
(Select A.AuthorlD
From Author A, Publication P
Where PTitle = *Javal
And PPublicationID = A.PublicationD
And A.Name = ‘John S.');

5. Translating the Recursive Function into
PL/SQL

Therecursive function is processed in the man-
ner of loop processing, whereas aloop structure
cannot be transated into pure SQL commands.
Thus a possible way is tranglating the function

into some SQL forms such as persistent stored
modules (standard SQL) or PL /SQL (Oracle).
In our research, the recursive function will be
translated into PL /SQL becauseitisavery well
designed tool in Oracle.

In our trand ation, we apply the concept of vari-
ables to the concept of tables since only the
tablescan bedirectly manipulated by SQL com-
mands. In this section, firstly, the mechanism
for passing avariable’'svalueis described. Sec-
ondly, the rewriting rules for trandating the re-
cursive function are proposed. Thirdly, steps
tranglating the recursive function into PL /SQL
are presented and finally an example is ex-
pressed.

5.1. The Mechanism for Passing
a Variable’s Value

The mechanism for passing avariable’'svalueis
appliedto selecting and inserting datafrom/into
tables as follows.

1. The concept of passing avalue of avariable
to another variable is applied to the concept
of selecting data from a table and then in-
serting this data into another table.

2. The notion of passing a variable's value is
that the old value in a variable will be over-
written with the new val ue passed by another
variable. To use tables instead of variables
meansthat beforeinserting thedatainto ata-
ble, the old datain the table must be del eted.

5.2. Rewriting Rules for Translating
the Recursive Function

The clauses of the XML update command will
be rewritten as SQL functions or SQL-syntax
commands subject to the following rules.

1. In the rewriting rules for FLW(R|I|D) ex-
pression, theWhere|Replacell nsert|Del etecla-
use is rewritten as an SQL function as men-
tioned earlier, whereas the rule of For|Let
clause is changed. Instead of binding vari-
ables to nodes in XPath, the meaning of op-
eration in For|Let clauseisinterpreted asthe
meaning of the operationin SQL becausethe
number for calling the function is dynamic

Translating XML Update Language into SQL

103

depending on theresult derived from the pre-
vious loop processing. Thus the number of
binding variables cannot be determined in
advance and hence therule is as follows.
For $var in XPathExp |

Let $var := XPathExp

isrewritten as:

Insert into $var

select(XPathExp, funcNo)

. The variable which passes value in the call-
ing function is called ‘argument’ while the
variable which receives the value from the
argument is called ‘ parameter’. Thus

In function call, passing $argument to $pa-
rameter

iSrewritten as:

Insert into $parameter Select * from $argu-
ment

. Replacethevariables (parameter, argument)
in SQL functions or SQL-syntax commands
derived from rules 1 and 2 with their corre-
sponding tables and/or elements. The vari-
ables are categorized into two types. vari-
ables which are not a part of XPathExp (in-
dependent variables) and variableswhich are
a part of XPathExp. Thus the rules for re-
placing variables are as follows:
Theindependent variableswill bereplaced
with tables. Here we define that the argu-
ment will be superseded by table ‘Array’,
whereas the parameter will be substituted
with table * ProcessingArr’; thus

If $var isargument then

$var is rewritten as:
table ‘Array’

Elself $var is parameter then
$var is rewritten as:
table ‘ ProcessingArr’

Endif

Thevariablewhich isa part of XPathExp
cannot bereplaced withtablesdirectly. There
are two cases for these variables: variables
in a where function and variables in other
SQL functions which are not where func-
tions. In both cases, the variables will be
replaced with their corresponding elements.
In the case of the function which is not a
where function, besides replacing the vari-
able with its corresponding element, the fol -
lowing condition must be specified: the
valuein the e ement must be the same asthe
valueheldinthevariable. The variable must

be replaced with table Array /ProcessingArr
depending on whether the variable is an ar-
gument or aparameter; thusit meansthat the
valuein the element must be the same asthe
data kept in the table. Therefore, the rules
areasfollows.

Suppose that E1 is the element correspond-
ing to the variable $var; ergo

where($var /X Path, funcNo) is rewritten as:
where(E1/XPath, funcNo)

Suppose that E1 is the element correspond-
ing to the variable $var and SQLFunct is
any SQL function which is not the function
‘where’; ergo

SQL Funct($var /X Path, funcNo)
ISsrewritten as:

SQLFunct(E1/XPath, funcNo)

where (EL, in, , funcNo)

(select * from Array /ProcessingArr)

5.3. Steps for Translating the Recursive
Function into a PL/SQL Command

1. Rewrite each clause of the update command
until the first calling function in the body of
functionisfound by usingtherules1-2. The
first calling function will not be rewritten in
this step.

2. Create a loop structure when the first call-
ing function in the body of the function is
found. In the loop, the first calling function
and each clause in the body of function is
rewritten by using the rules 1-2. The second
calling function will not be rewritten.

3. Replace the variablesin SQL functions and
SQL-syntax commands derived from steps
1-2 by using rule 3.

4. Follow the concept of passing a variable's
value;, therefore before inserting data into
tables, the old value in such tables must be
deleted; thereby each clause for insertion of
datais preceded by a clause for deleting old
datain thetable.

5. Trandate SQL functionsembeddedinPL /SQL
into SQL commands by using graph map-
ping, as mentioned in translating XML up-
date language into SQL .

104

Translating XML Update Language into SQL

5.4. An Example of Translating the
Recursive Function into PL/SQL

In this example we want to update the year of
both direct and indirect references of the pub-

3 For $rpin

$pub/Reference/ @Ref Pub—>Publication
4 Replace $rp/Year with <Year>2004</Year>
5 alRef($rp)
6}

lication whosetitleis ' XQuery’. Therecursive 7 For $pin doc(“Library.xml")/Publication

function and the command calling the function
are as follows. (Thisfunction follows the syn-

tax of XQuery)

1 define function allRef($pub as element()*)

24

8 Where $p/Title = “XQuery"
9 dIRef($p)

The process starts from the clause in line 7.
Thenitistranslated into PL /SQL asfollows.

Clauses in the update command

Result of rewriting

7 For $p in doc(“Library.xml”)/Publication
8 Where $p/Title = “XQuery”

Insert into $p
select(/Publication, 0)
where($p/Title, =, ‘XQuery’, 0);

9 allRef($p)
1 define function allRef($pub as element()*)

Insert into $pub
Select * from $p;

3 For $rp in $pub/Reference/ @RefPub—>Publication | Insert into $rp

select($pub/Reference/@RefPub—>Publication, 1);

4 Replace $rp/Year with <Year>2004</Year>

update($rp/Year, ‘2004’, 2);

Fig. 7. Result of rewriting clausesin the update command.

Clauses in loop

Result of rewriting

5 allRef($rp)
1 define function allRef($pub as element()*)

Insert into $pub
select * from $rp;

3 For $rp in $pub/Reference/@QRefPub—>Publication | Insert into $rp

select(8pub/Reference/@RefPub—>Publication, 3);

4 Replace $rp/Year with <Year>2004</Year>

update($rp/Year, ‘2004’, 4);

Fig. 8. Result of rewriting clausesin the body of the function which are processed in loop.

Clauses in the update command

Result of replacing variables

Insert into $p
select(/Publication, 0)
where($p/Title, =, ‘XQuery’, 0);

Insert into Array
select(/Publication, 0)
where(/Publication/Title, =, ‘XQuery’, 0);

Insert into $pub
Select * from $p;

Insert into ProcessingArr
Select * from Array;

Insert into $rp
select($pub/Reference/ @RefPub—>Publication, 1);

Insert into Array
select(/Publication/Reference/@RefPub—>Publication, 1)
where(/Publication, in, , 1)

(Select * from ProcessingArr);

update($rp/Year, ‘2004’, 2);

update(/Publication/Year, ‘2004’, 2)
where(/Publication, in, , 2)
(Select * from Array);

Fig. 9. Result of replacing variablesin clauses which are outside loop.

Translating XML Update Language into SQL 105

Clauses in loop Result of replacing variables
Insert into $pub Insert into ProcessingArr
select * from $rp; Select * from Array;
Insert into $rp Insert into Array

select($pub/Reference/@RefPub—>Publication, 3); | select(/Publication/Reference/@RefPub—>Publication, 3)
where(/Publication, in, ,3)
(Select * from ProcessingArr);

update($rp/Year, 2004, 4); update(/Publication, ‘2004’, 4)
where(/Publication, in, ,4)
(Select * from Array);

Fig. 10. Result of replacing variablesin clauses which are inside loop.

Delete from Array;

Insert into Array

select(/Publication, 0)
where(/Publication/Title, =, ‘XQuery’, 0);

Delete from ProcessingArr;
Insert into ProcessingArr
Select * from Array;

Delete from Array;

Insert into Array
select(/Publication/Reference/@RefPub—>Publication, 1)
where(/Publication, in, ,1)

(Select * from ProcessingArr);

update(/Publication, ‘2004’, 2)
where(/Publication, in, ,2)
(Select * from Array);

Loop
If SQL%RowCount >0 then
Delete from ProcessingArr;
Insert into ProcessingArr
Select * from Array;
Delete from Array;
Insert into Array
select(/Publication/Reference/@RefPub—>Publication, 3)
where(/Publication, in, ,3)
(Select * from ProcessingArr);
update(/Publication, ‘2004’, 4)
where(/Publication, in, ,4)
(Select * from Array);
Else
Exit;
End If;
End Loop;

Note: If SQL%RowCount >0 then...Else Exit; EndIf; is added since
looping will continue until no more data can be updated.

Fig. 11. Adding a delete clause before each insertion of datainto tables.

106

Translating XML Update Language into SQL

. Rewrite each clause until the first calling
function in the body of function is found.
The clauses in the update command and the
result of rewriting these clauses by using
rewriting rules 1-2 are shown in Figure 7.

. Create loop structure (Loop...EndLoop)
when the first calling function in the body
of function is found. Clauses in the loop
which are rewritten by using rewriting rules
1-2 are shown in Figure 8.

. Replace the variables by using rule 3. The
results after replacing variablesare shownin
Figures 9 and 10.

4. Follow the concept of passing a variable's

value; thus each clause for insertion of data
is preceded by a clause for deleting old data
in the table. The result which isaPL/SQL
command is shown in Figure 11.

. Trandate SQL functions embedded in PL/

SQL into SQL commands. From Figure 11,
there are 5 groups of SQL functions identi-
fied by the function number 0-4. However
SQL functionsingroup 1 arethe sameasthe
onesin group 3 and SQL functionsin group
2 are the same as the ones in group 4. Thus
wewill only show translating SQL functions

select(., 1)
— T 7 Publication(T

Publication(T) select(., 0) where(., in, , 1)

\
\
\
PublicationID| L1
’vvhe]re(.7 =, ‘XQuery’, 0)‘ Title ‘ ubhcation -
! Reference(T)
\
(a) Graph of SQL function in group 0 | /
| ReflD | PublicationID) L1 |
\
L — — — (RefPub)

Publication(T where(., in, , 2) ReferencePublication(T)

RefID

(b) Graph of SQL function in group 1

’update(.7 £2004’, Qi Year PublicationID

(¢) Graph of SQL function in group 2

Fig. 12.

pushdown

Publication (T seteet{0)

|~ = 7 Publication(T] ’ 1)

pushdown

|
— 3 9 . ‘
’Where(.7 =, ‘XQuery’, 0)‘T1tle i | PubationlD L1
PublicationID [select(., 0) \ Reference(T) where(., in, , 1}
| /
|
\ RefID

L — — — (RefPub)
ReferencePublication(T)

RefID

(b) Graph after pushing
select and where functions in group 1

(a) Graph after pushing select function in group 0
PublicationID

Publication(T —2)

: :

’upda‘ce(,7 2004’, Qi Year
PublicationID | where(., in, , 2)

(¢) Graph after pushing where function in group 2

PublicationID select(., 1)

Fig. 13.

Translating XML Update Language into SQL

107

SQL functions

SQL commands

select(/Publication, 0)
where(/Publication/Title, =, ‘XQuery’, 0);

Select P.PublicationID
From Publication P
Where P.Title = ‘XQuery’;

select(/Publication/Reference/@RefPub—>Publication, 1)
where(/Publication, in, , 1)

Select RP.PublicationID

From Publication P, Reference R, ReferencePublication RP
Where RP.ReflD = R.RefID

And R.PublicationID = P.PublicationID

And P.PublicationID in

update(/Publication/Year, ‘2004’, 2)
where(/Publication, in, , 2)

Update Publication P
Set P.Year = ‘2004’
Where P.PublicationID in

select(/Publication/Reference/@RefPub—>Publication, 3)
where(/Publication, in, , 3)

Select RP.PublicationID

From Publication P, Reference R, ReferencePublication RP
Where RP.ReflD = R.RefID

And R.PublicationID = P.PublicationID

And P.PublicationID in

update(/Publication/Year, ‘2004’, 4)
where(/Publication, in, , 4)

Update Publication P
Set P.Year = ‘2004’
Where P.PublicationID in

Fig. 14. SQL commands generated from the graphs.

ingroups0, 1and 2. SQL commandswill be
generated from each group of SQL functions
independently as follows:

(a) Graphs of SQL functions in groups 0, 1
and 2 are created according to paths in
SQL functions.

(b)The graphs are mapped to the database
schema graph, join keys and join sym-
bols are added to the graphs and finally
each group of SQL functions is mapped
to its corresponding graph. The results
of mapping SQL functionsin groupsO, 1
and 2 are shown in Figures 12(a), 12(b)
and 12(c) respectively.

(c) The select function in group 1 acting on
Publication element is pushed down to
the field linking to this element since this
function is performed on the node which
ison the recursive path. The select func-
tion in group O, where function in group
1 and where function in group 2 acting
on Publication element converted to table
are pushed down to the primary key of
this table. The results of pushing SQL
functionsin groups O, 1 and 2 are shown
in Figures 13(a), 13(b) and 13(c) respec-
tively.

(d)SQL commandsgenerated fromthegraphs
are shown in Figure 14. The SQL func-
tionsin groups 3 and 4 arethe same asthe
onesingroups1and 2 respectively; hence
the generated SQL commands from the
functions in groups 3 and 4 will be the
same as the generated SQL commands
from the functions in groups 1 and 2 re-
spectively.

(e)SQL functionsin the PL /SQL command
are replaced with the SQL commands
generated from the graphs. The result
isshown in Figure 15.

6. Conclusion and Further Work

Our work trandates five important features of
the XML updatelanguageinherited from X Query
into SQL: FLW(RJI|D), conditional expression,
quantifier, aggregate functions and (non-recur-
sive) user-defined function. Four techniquesare
used: rewriting rules, graph mapping, optimiza-
tion and update/ deletejoin commands. There-
cursive function is translated into PL /SQL by
applying the concept of variableto the notion of
table and then using graph mapping techniqueto
generate SQL commands from SQL functions.
One major benefit of updating XML documents

108

Translating XML Update Language into SQL

Begin
Delete from Array;
Insert into Array
select(/Publication, 0)
where(/Publication/Title, =, ‘XQuery’, 0);

Delete from ProcessingArr;
Insert into ProcessingArr
Select * from Array;

Delete from Array;

Insert into Array
select(/Publication/Reference/@RefPub—>Publication, 1)
where(/Publication, in, ,1)

(Select * from ProcessingArr);

update(/Publication, ‘2004, 2)
where(/Publication, in, ,2)
(Select * from Array);

Loop
If SQL%RowCount >0 then

Delete from ProcessingArr;
Insert into ProcessingArr
Select * from Array;

Delete from Arrays;
Insert into Array

select(/Publication/Reference/@RefPub->Publication, 3)

where(/Publication, in, ,3)
(Select * from ProcessingArr);

update(/Publication, ‘2004, 4)

Else
Exit;
End If;
End Loop;
End;

where(/Publication, in, ,4)
(Select * from Array);

Note: Begin...End; block is added to make PL/SQL command completed.

Fig. 15. PL/SQL command after replacing SQL functions.

through the database is that presevering con-
straints can be pushed to the database engine.
Our trandating approach can apply to updat-
ing other (object) relational databases whose
schemas are derived from mapping XML docu-
ments by the shredding approach. Examples of
trandating XML update language into SQL to
update object-relational database are presented
on our website [2].

In our further work, wewill proposehow to han-
dle the order of elements in XML documents
when elements are inserted or deleted and we

will present a mechanism for propagating the
change in the database to the XML documents.

References

[1] S. ABITEBOUL, D. QUASS, J. MCHUGE, J. WIDOM
AND J. L. WINER, The Lorel query language for
semistructured data. Proceedings of International
Journal on Digital Libraries, (1997), pp. 68-88.

[2] P. AMORNSINLAPHACHAI, N. ROSSITER AND A. ALI,
Trandating XML update language into SQL
based upon object relational database. 2005:
http://computing.unn.ac.uk/pgrs/cgpa2/.

Translating XML Update Language into SQL

109

3]

[4]

[5]

S. CERI, S. CoMAI, E. DAMIANI, P. FRATERNALLI, S.
PARABOSCHI AND L. TANCA, XML-GL: aGraphical
Language for Querying and Restructuring WWW
Data. Computer Networks: The International Jour-
nal of Computer and Telecommuni cations Networ k-
ing, 31 (1999), pp. 1171-1187.

D. CHAMBERLIN, XQuery from experts: A Guideto
t(he W;%C XML Query Language. Addison-Wesley,
2003).

A. DEUTSCH, M. FERNANDEZ, D. FLORESCU, A.
LEVY AND D. Suciu, A query language for XML.
Proceedings of the 8th International World Wde
Web Conference (WWWS8), Toronto. Canada,
(1999).

A. DEUTSCH, M. FERNANDEZ AND D. Suclu, Stor-
ing Semistructured Data with STORED. SGMOD
Conference, Pennsylvania, United States, (1999),
pp. 431-442.

M. FERNANDEZ, Y. KADIYSKA, D. Suciu, A. MOR-
ISHIMA AND W. TAN, SILKROUTE, A Framework for
Publishing Relational Datain XML. ACM Transac-
tions on Database Systems (2002), pp. 1-55.

M. FERNANDEZ, A. MORISHIMA AND D. Suclu, Ef-
ficient Evaluation of XML Middle-ware Queries.
ACM S GMOD, Santa Barbara, California, USA,
(2001).

D. FLOREScU, |. MANOLESCU AND D. KOSSMANN,
Answering XML Queries over Heterogeneous Data
Sources. Proceedingsof the 27th VLDB Conference,
Roma, Italy, (2001).

J. FONG AND T. DILLON, TowardsQuery Trandlation
From XQL to SQL. Proceedings of the 9th IFIP 2.6
working conference on database semantics (DS9),
Hong Kong, (2001), pp. 113-129.

S. JAIN, R. MAHAJAN AND D. Suciu, Trandating
XSLT Programs to Efficient SQL Queries. Pro-
ceedings of the eleventh international conference
on World Wide, ACM Press New York, NY, USA,
Honolulu, Hawaii, USA, (2002), pp. 616-626.

E.C. JENSEN, S. M. BEITZEL AND D. A. GROSSMAN,
Using a Relational Database Management System
to Implement XML-QL. Proceedings of the 17th
International Conference on Advanced Scienceand
Technology (ICAST’2001), Chicago, (2001).

B. KANE, Consistently Updating XML Documents
using Incremental Constraint Check with XQueries.
Worchester Polytechnic Institute, (2003).

L. KHAN AND Y. RAO, A Performance Evaluation
of Storing XML Data in Relational Database Man-
agement Systems. ACM (2001).

M. KLETTKE AND H. MEYER, Managing XML Doc-
uments in object-relational databases. Computer
Science Department, University of Rostock, Ros-
tock, Germany, (1999).

R. KRISHNAMURTHY, V. T. CHAKARAVARTHY, R.
KAUSHIK AND J. F. NAUGHTON, Recursive XML
Schema, Recursive XML Queries, and Relational
Sorage: XML-toSQL Query Trandation. |ICDE
2004 (2004).

[17]

[23]

[24]

[25]

D. LEE AND W. W. CHu, Constraints-preserving
Transformation from XML Document Type Def-
inition to Relational Schema. 19th International
Conference on Conceptual Modeling, Salt Lake
City, Utah, USA, (2000), pp. 323-338.

D. LEe AND W. W. CHU, CPl: Congtraints-
Preserving Inlining Algorithm for Mapping XML
DTD to Relational Schema. Data & Knowledge
Engineering, 39 (2001), pp. 3-25.

M. LIu, L. LU AND G. WANG, A Declarative XML-
RL Update Language. Proceedings of 22nd Inter-
national Conference on Conceptual Modeling (ER
2003), Springer-Verlag, Chicago, lllinois, USA,
(2003), pp. 506-519.

|. MANOLEScU, D. FLORESCU AND D. KOSSMANN,
Pushing XML Queriesinside Relational Databases.
INRIA Technical Report No. 4112, (2001).

J. McGOVERAN, P. BOTHNER, K. CAGEL, J. LINN
AND V. NAGARAJN, XQuery Kick Sart. Sams Pub-
lishing, (2003).

Y. Mo AND L. T. WANG, Storing and Maintain-
ing Semistructured Data Efficiently in an Object-
Relational Database. The Third International Con-
ference on Web Information Systems Engineering,
Singapore, (2002), pp. 247-256.

J. RoBIE, TheDesign of XQL. 1999: http://www.
ibiblio.org/xql/xql-design.html.

T. SCHLIEDER, Querying and ranking XML doc-
uments. Journal of the American Society for In-
formation Science and Technology, 53 (2002), pp.
489-503.

A. SCHMIDT, M. KERSTEN, M. WINDHOUWER AND
F. Wass, Efficient Relational Storage and Retrieval
of XML documents. International Workshop on the
Web and Databases, Dallas, TX, USA, (2000), pp.
47-52.

SHAMKANTE B. NAVATHE, A Proposal for an XML
Data Definition and Manipul ation Language. VLDB
Conference, Hong Kong Chaina, (2002).

J. SHANMUGASUNDARAM, J. KIERNAN, E. SHEKITA,
C. FAN AND J. FUNDERBURK, Querying XML Views
of Relational Data. Proceedings of the 27th VLDB
Conference, Roma. Italy, (2001).

J. SHANMUGASUNDARAM, K. TUFTE, G. HE, C.
ZHANG, D. J. DEWITT AND J. F. NAUGHTON, Rela-
tional Databases for Querying XML Documents:
Limitations and Opportunities. Proceedings of
the 25th VLDB Conference, Edinburgh, Scotland,
(1999), pp. 302-314.

T. SHIMURA, M. YOSHIKAWA AND S. UEMURA, Stor-
age and Retrieval of XML Documents using
Object-Relational Databases. 1PSJ Transactions on
Databases Abstract, 40 (2001).

|. TATARINOV, Z. IVES, A. Y. HALEVY AND D. S
WELD, Updating XML. Proceedings of 2001 SIG-
MOD Conference, Santa Barbara, CA, USA.,
(2001), pp. 413-424.

110

Translating XML Update Language into SQL

[31] I. VARLAMIS AND M. VAZIRGIANNIS, Bridging
XML-Schema and relational databases. A system
for generating and mani pulating rel ational databases
using valid documents. ACM Symposium on Docu-
ment Engineering (2001), pp. 105-114.

[32] W3C: XQuery 1.0 and XPath 2.0 Data Model.
W3C working draft. 2003: http://www.w3.org/
TR/query-datamodel.

[33] W3C: XQuery 1.0: An XML Query Language.
2003: http://www.w3c.org/TR/xquery.

[34] XML:DB working group: XUpdate. 2002.
http://www.xmldb.org/xupdate/xupdate-
wd.html: http://www.xmldb.org/xupdate
/xupdate-wd.html.

[35] M. YOSHIKAWA, T. AMAGASA, T. SHIMURA AND S.
UEMURA, XREL: A Path-Based Approach to Stor-
age and Retrieval of XML documents using Re-
lational Databases. ACM Transactions on Internet
Technology, 1 (2001).

Received: October, 2004
Revised: August, 2005
Accepted: September, 2005

Contact address:

Pensri Amornsinlaphachai

School of Computing, Engineering & Information Sciences
Northumbria University

Pandon Building (Room 113), Camden Street,

Newcastle upon Tyne, NE2 1XE, UK

e-mall: pensri.amornsinlaphachai@unn.ac.uk

PENSRI AMORNSINLAPHACHAI is a Ph.D. student a School of Com-
puting, Engineering & Information Sciences, Northumbria University,
Newcastle, UK. She received her MSc. with Distinction in 2001 and
Sun Certified Programmer For THE JAVA 2 in 2002.

DR Nick ROSSITER is a reader a School of Computing, Engineering
and Information Sciences, Northumbria University, Newcastle, UK. He
isinterested in interoperability of information systems.

DR M AKHTAR ALl isasenior lecturer at School of Computing, Engi-
neering and Information Sciences, Northumbria University, Newcastle,
UK. Hereceived his Ph.D. in 2003 from Manchester University.

