
A PATTERN-BASED FOUNDATION FOR

LANGUAGE-DRIVEN SOFTWARE ENGINEERING

– RELEVANT PUBLICATIONS –

TIM REICHERT

January 2011

List of Relevant Publications

The following publications of the author resulted from the PhD research and are,
therefore, included in this appendix.

Tim Reichert, Edmund Klaus, Wolfgang Schoch, Ansgar Meroth, and Dominikus
Herzberg. A Language for Advanced Protocol Analysis in Automotive Networks. In
Proceedings of the 30th International Conference on Software Enginieering, ICSE '08,
pages 593-602, New York, NY, USA, 2008. ACM.

Tim Reichert and Dominikus Herzberg. A Domain Specific Language for Uncovering
Abstract Protocols and Testing Message Scenarios. In Proceedings of Software
Engineering 2008 (Workshops), pages 427-430, 2008.

Tim Reichert and Dominikus Herzberg. Teaching Language-Driven Software
Engineering. In International Conference of Education, Research and Innovation
(ICERI), Madrid, Spain, November 2009.

Dominikus Herzberg and Tim Reichert. Concatenative Programming - An Overlooked
Paradigm in Functional Programming. In ICSOFT 2009 - Proceedings of the 4th
International Conference on Software and Data Technologies, Volume 1, Sofia, Bulgaria,
July 26-29, 2009, pages 257-263, INSTICC Press, 2009.

Dominikus Herzberg and Tim Reichert. Software Engineering for Telecommunication
Systems. In Benjamin W. Wah et al. (Eds): Encyclopedia of Computer Science and
Engineering. Wiley, 2009.

Dominikus Herzberg, Tim Reichert, and Nick Rossiter. Towards Modeling Language
Interoperability – Getting Meta-Level Architectures Right. Forschungsbericht der
Hochschule Heilbronn 2008/2009, 2008.

A Language for Advanced Protocol Analysis
in Automotive Networks

Tim Reichert
School of Computing,

Engineering & Inf. Sciences
Northumbria University

Newcastle upon Tyne, NE2
1XE, United Kingdom

tim.reichert@unn.ac.uk

Edmund Klaus
Department of Software

Engineering
Heilbronn University

74081 Heilbronn, Germany
eklaus@stud.hs-

heilbronn.de

Wolfgang Schoch
Department of Software

Engineering
Heilbronn University

74081 Heilbronn, Germany
wschoch@stud.hs-

heilbronn.de

Ansgar Meroth
Automotive Competence

Center
Heilbronn University

74081 Heilbronn, Germany
meroth@hs-heilbronn.de

Dominikus Herzberg
Department of Software

Engineering
Heilbronn University

74081 Heilbronn, Germany
herzberg@hs-
heilbronn.de

ABSTRACT
The increased use and interconnection of electronic compo-
nents in automobiles has made communication behavior in
automotive networks drastically more complex. Both com-
munication designs at application level and complex commu-
nication scenarios are often under-specified or out of scope
of existing analysis techniques. We extend traditional pro-
tocol analyzers in order to capture communication at the
level of abstraction that reflects application design and show
that the same technique can be used to specify, monitor and
test complex scenarios. We present CFR (Channel Filter
Rule) models, a novel approach for the specification of ana-
lyzers and a domain-specific language that implements this
approach. From CFR models, we can fully generate powerful
analyzers that extract design intentions, abstract protocol
layers and even complex scenarios from low level communi-
cation data. We show that three basic concepts (channels,
filters and rules) are sufficient to build such powerful ana-
lyzers and identify possible areas of application.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms
verification, languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

Keywords
protocol analysis, protocol specifications, automotive sys-
tems engineering

1. INTRODUCTION
The amount of electronics and software in automobiles

has been increasing rapidly over the last two decades. Mod-
ern vehicles contain a growing amount of Electronic Control
Units (ECUs) that are in charge of different subsystems,
ranging from motor control to entertainment [20]. Bus sys-
tems connect these distributed ECUs into communication
networks and thus allow previously autonomous subsystems
to exchange information in order to provide more advanced
functionality. Coping with the system complexity that re-
sults from increasingly sophisticated and more and more in-
terconnected subsystems poses one of the great challenges
for the automotive industry today. Problems caused by
faulty electronics and/or software are quickly becoming the
number one reason for car defects. Electronics and soft-
ware related product recalls cost car manufacturers heavily
in money and reputation. In addition to that, crucial sub-
systems such as breaks, steering and airbags require utmost
reliability from software and electronics [6].

Figure 1 shows a typical communication context in a mod-
ern car. Subsystems in distinct domains such as drive train
or multimedia are connected by specialized bus technolo-
gies, e.g. CAN (Controller Area Network) [1] or MOST (Me-
dia Oriented Systems Transport) [4], to form subnetworks.
Communication between components in different subnet-
works is established through gateways that bridge techno-
logical differences. To provide an example of advanced func-
tionality that requires such communication contexts, con-
sider the implementation of an adaptive break light. Becom-
ing a standard in today’s cars, an adaptive break light warns
following drivers, for example through rapid blinking, when
an emergency brake maneuver is executed. To correctly im-
plement such functionality, data from different subsystems
in different subnetworks has to be exchanged and compared.

Navigation Phone AV Internet MOST
Multimedia

Gateway/
Firewall

MOST
Firewire

Firewall

Lights A/C Door Passive Lock
CANBody

Gateway

Lights A/C Door
SafetyMirror CAN

LIN

Body

G b Di i
Drive Train

M t
Sensors

CANGearbox DiagnosisMotor
Actuators

CAN
TTCAN

Gateway

Chassis TTCANC ass s
FlexrayBrakes Steering Shocks

Figure 1: Typical communication context in a mod-
ern automotive network

This is done by sending messages over the communication
bus. Among the relevant data might be the speed of the car,
possibly provided by the instrument cluster, and the reac-
tion of the anti-lock brakes, provided by the break system.
In addition to that, the light system has to be instructed to
blink rapidly.

A well known technique for specifying communication be-
havior between distributed components that originated in
the telecommunications domain is definition through pro-
tocols and protocol stacks [5]. Protocols define the format
and order of messages that can be exchanged between com-
ponents. ECUs then have to implement these protocols in
order to successfully communicate with other ECUs. Proto-
col analyzers can greatly help both testing and understand-
ing systems that communicate based on protocols. They are
components that either observe the network traffic or stim-
ulate complete applications in a more or less static manner.
A protocol analyzer scans messages on the network, decodes
the messages, i.e. it changes the binary coded messages in
accordance with the protocol standard into a reader-friendly
textual or graphical representation, and offers more or less
comfortable monitoring functions.

Protocol analyzers are effective tools when communication
behavior is explicitly specified or even standardized through
protocols. However, in today’s complex systems, not all
communication behavior is specified in protocols. While
protocols usually exist for lower levels of communication,
application specific behavior that involves high-level com-
munication patterns is often not formally specified. Instead,
communication intentions are often implicit, undocumented
or even evolved during implementation – with the design
intention hidden in the source code. A simple example of
a communication pattern that is usually not specified by a
protocol is the implementation of notifications on top of a
request/reply protocol. We presented this example in Sec-
tion 2. In addition to the aforementioned problems, com-
plex communication scenarios such as the one that occurs
in the context of the adaptive break light, where a sudden
event triggers a chain of messages between different compo-
nents in different subnetworks, are often under-specified or
not specified at all. This poses a severe problem for system
comprehension and testing approaches in general and proto-

col analysis in particular, as communication not specified in
a protocol is shown at the wrong level of abstraction during
analysis.

In our work, we tackle the problems associated with under-
specification of communication behavior between ECUs with
a novel approach for the specification of analyzers for pro-
tocols and scenarios. Three basic concepts (channels, filters
and rules) are sufficient to build such analyzers. Using a
Domain Specific Language (DSL) that implements our ap-
proach, we can specify communication behavior at different
levels of abstraction. The result are analyzers that can be
the basis for automated testing as well as system compre-
hension and re-engineering of underspecified systems. In
addition to that, we propose our language as a means to
formally specify complex scenarios that are often not ade-
quately captured using existing formalisms. The novelty of
our approach is thus its use of a single formalism to capture
both communication design intentions and communication
scenarios.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of basic concepts including ab-
stract protocols and complex scenarios; examples that we
use throughout the paper are introduced there. In Section 3
we present our approach in detail and show how it can be
applied to protocols and scenarios and how it can make a
contribution at different stages of the software development
process. Section 4 introduces a domain-specific language
that implements our approach. We give an overview of con-
crete and abstract syntax, provide examples and discuss im-
plementation issues. Related work is explored in Section 5.
We conclude in Section 6 with a reflection on our results and
lay out possible directions for future research.

2. THE CHALLENGE: PROTOCOLS AND
SCENARIOS

As described in the previous section, the different ECUs
and buses in modern cars constitute complex, distributed
systems of communicating entities [23]. Such systems have
been the subject of much research in the telecommunication
and computer networking domain and many of the tech-
niques in these domains have been applied to networks in
cars as well, for example layering. Layering is a fundamental
technique for designing distributed systems. It is a method
to provide in a stepwise fashion higher-level service to users
on the layer above, and to separate levels of services by
precisely defined interfaces. This overall design principle is
reflected by the use of protocol stacks where higher layer
network services rely on lower layer services until a physical
layer is reached [14].

2.1 Abstract Protocols
Protocol analyzers can monitor system communication on

different layers of a protocol stack [11]. However, the parts
of the communication design that are not specified as part
of a protocol are invisible during analysis. Instead, only the
effect that the implementation of a design has on a lower
protocol layer can be monitored. This is severely limiting
the benefits of protocol analysis, as communication on the
application level is – in contrast to lower level communica-
tion – typically not captured by protocols. Our solution is
to extend the scope of protocol analysis to capture higher
levels of communication design. In the following, we provide

an example for the kind of communication behavior that is
typically underspecified.

Consider a communication protocol that specifies the com-
munication between a client and a server. The protocol is
based on request and reply messages. A valid communi-
cation always consists of a request by the client and a re-
ply by the server. This entails, that the server cannot con-
tact clients directly without receiving a prior request. Now
consider an application where the client needs information
about a particular state change that happens on a server.
The most intuitive solution for an implementation would
be, that the server sends a notification message to the client
as soon as the state change occurs. However, when client
and server communicate using the request/reply protocol
just described, this seems impossible.

One solution to this problem is to add a notification ser-
vice to both the client and the server. The service encapsu-
lates the request/reply-based communication and offers an
interface that provides notification capabilities to the rest of
the application. To achieve this, the service implements a
polling strategy. That is, the service on the client periodi-
cally sends requests to the server. Upon receiving a request,
the service on the server can reply and transmit either a neg-
ative acknowledgment or deliver the notification message.
Thus, for applications using the notification service, com-
munication is based on notifications, not on requests and
replies.

The left sequence chart in Figure 2 shows how a possible
communication involving two notifications might look like
when traced with a protocol analyzer for the request/reply
protocol. The communication consists of all request/reply
messages between client and server. However, the notifi-
cation service layer that was introduced in the software is
invisible. That means, using the protocol analyzer, it is im-
possible to view the system behavior at a level of abstraction
where a server sends notifications to a client, although that
is the way application developers think about the communi-
cation behavior. Also, viewing communication at this higher
level is what is typically needed for reasoning about applica-
tion behavior. For instance, we might be interested in what
notifications are sent from the server and how the client
reacts – independent of how the notification mechanism is
implemented. That is, we wish to monitor communication
in terms of application level abstractions.

In order to make the communication at this level of ab-
straction accessible using a protocol analyzer, the analyzer
has to understand the additional service level introduced by
an application. Once uncovered, this new level of abstrac-
tion can then be used to analyze reactions of components
to notifications without having to consider sequences of re-
quests and replies. We can define the higher level of ab-
straction as a protocol and relate it to communication on a
lower level. For our example, this means that we first define
a very simple notification protocol, where valid communica-
tion consists only of a server sending a notification message
to a client. We then relate this protocol to the request/reply
protocol by describing how sequences of request and reply
messages relate to notification messages: a request message
from a client followed by a positive reply from the server
to the same client should be interpreted as a notification
message from server to client. The right sequence chart in
Figure 2 shows how the lower level communication depicted
on the left can be rendered using the newly defined notifica-

Client Server Client Server

request(notify?)

reply(notify?=no)

request(notify?)

reply(notificationMsg)

request(notify?)

notification(msg)

request(notify?)

reply(notify?=no)

request(notify?)

reply(notificationMsg) notification(msg)

request/reply
protocol layer

abstract notification
protocol layer

Figure 2: Protocol abstraction: Defining an abstract
notification layer on top of the request/reply layer

tion protocol layer. The notification protocol captures the
design intention of the application designer. We call such
protocols abstract protocol that constitute abstract layers of
service.

We can stack abstract protocols in the same way regular
protocols can be stacked. That is, we can define an abstract
protocol on top of another abstract protocol. Indeed, even
the request/reply protocol in our example could be an ab-
stract protocol based on a yet lower protocol layer. This
approach is open ended and can be used to build levels of
abstraction in a stepwise fashion, thereby mirroring the ab-
straction process in the application itself. In order to teach a
protocol analyzer abstract protocol layers, the analyzer must
be programmable. That is, there needs to be a mechanism
for describing stacks of protocol layers in a way that can be
used to instruct the analyzer how to extract each layer from
a lower layer. In Section 3 and 4, we will introduce CFR
models as a way to define protocol stacks in such a way.

Abstract notification protocols such as the one described
in this section are widely used in automotive networking.
The MOST network uses request/reply mechanisms for the
communication between clients, e.g. Human Machine Inter-
faces, and servers, e.g. a radio tuner [18]. For example, to
ask the tuner for the current frequency, a message is sent
with the content AMFMTuner.ATFrequence.Get() and the
reply is sent back with the current value. On a notifica-
tion layer, it is possible to subscribe a client to be notified
if a property such as ATFrequency changes. CAN, on the
other hand, is purely built upon broadcast of signal values.
However, the Remote Transmission Request Bit that is part
of the protocol header can be used to stimulate the trans-
mission of a signal value. This is in effect a request/reply
mechanism.

2.2 Complex Scenarios
Use cases are a widely-used technique for describing sys-

tem functionality from a user-centric point of view. We facil-
itate use cases to identify scenarios in automotive systems.
As an example for a use case, consider the adaptive brake
light discussed in Section 1. If the user – a driver in this case
– performs a braking maneuver that activates ABS (Anti-
lock Breaking System), the break light might show some re-
action that deviates from its normal behavior, depending on

speed, strength of breaking and the reaction of the driving
assistance systems. The use case can be described as: The
driver performs an ABS braking maneuver. At the level of
ECUs, we derive the following – much simplified – scenario
from the use case: The braking system registers blocking
of tires and activates the anti-lock brakes. It notifies other
components listening on the bus of the anti-lock brake activ-
ity. The control unit that controls the adaptive brake light
registers the activity of the ABS and requests the speed of
the car from, for example, the instrument cluster and de-
cides to instruct the brake light system to blink. A second
scenario associated with the same use case might be similar
to the one just described, only that the speed is lower than
a certain threshold and the adaptive brake light thus does
not interfere with the normal operation of the brake light.

While the above description of scenarios is rather impre-
cise, scenarios can be precisely described at the level of the
actual messages exchanged between components over the
communication bus. This can be done at different protocol
layers by associating a sequence of relevant messages with a
scenario. By monitoring bus activity it is then possible to
identify scenarios by looking for certain message patterns in
the communication stream. We will elaborate on this in the
following section and proceed instead with a description of
the challenges posed by complex scenarios.

Complex scenarios involve communication between sev-
eral different ECUs, possibly in different subnetworks. They
pose a challenge for both specification and testing of ECUs.
Typically, they are not built by only determined message
sequences within the network. Vehicle communications sys-
tems are heavily impacted by stochastic triggers arising from
the system’s environment. For example, mobile phone calls
may appear any time as well as warnings and recommenda-
tions from driver information and assistance systems. Even
for moderate scenarios, the amount of communication to
process may rise to an extent that makes monitoring and
verification of scenarios a non-trivial task. Complex sce-
narios may cause peculiar errors e.g. overflow under stress
conditions which may lead to the breakdown of a certain re-
source or the whole network. On the other hand, component
and system developers may diverge in their assumptions of
the system’s macroscopic behavior. They are likely to an-
ticipate different reactions of the components, depending on
the system context taken into account.

While network standards often precisely define lower levels
of communication and trivial scenarios, complex scenarios
are often not specified properly. One reason for this is that
the combination of all possible sequences of a given protocol
surmounts the scope of a protocol standard. Especially for
safety critical systems such as vehicles, this is not accept-
able and calls for more complete approaches to specification
and testing. In the following section we will show that our
approach to protocol analysis can be the foundation for such
approaches.

3. THE SOLUTION: CHANNELS, FILTERS
AND RULES

In the previous section we introduced abstract protocols
and complex scenarios as two main challenges when analyz-
ing communication messages in a distributed system. Sub-
sequently, we describe our approach in detail and indicate
how we address these challenges.

3.1 Defining Abstract Protocol Layers using
CFR Models

We already observed that in order to be able to intro-
duce abstract protocol layers, we need some way to formally
describe these new layers. As we have explained through
the request/reply example, it is common to stack protocols
on other protocols with the protocol layers interfacing adja-
cent protocol layers only. In this way, a protocol layer can
be described by relating its communication patterns to the
communication patterns on the next lower layer. Indeed,
that is how we described the abstract notification protocol
in Section 2: A request for notification message from a client
followed by a positive reply from the server to the same client
should be rendered on the next higher layer as a notification
message from server to client. If we look more carefully at
this natural language description of the protocol layer, we
see that the following information is provided:

• Certain messages on the lower protocol layer are iden-
tified.

• The sequence in which these messages occur is given.

• A mapping of this message sequence to a message on
the higher level protocol layer is defined.

We now present a conceptual framework that allows us to
describe protocol layers in a machine-processable form. This
framework is the foundation of the language we describe in
the next section. Our framework is based on the following
three basic concepts:

• A channel is a medium which transports messages.
The messages obey a concrete or abstract protocol.
A protocol consists of messages; it defines their syntax
(i.e. the construction) and optionally a set of sensible
message sequences.

• A filter is a passive and stateless unit that redirects
messages from an incoming channel to one of two out-
going channels. Depending on a given pattern, the
filter determines which message is to be delivered to
which outgoing channel. Since both the input and out-
put of a filter are messages, the output of a filter can
be used as the input of another filter. Filters might
be put in parallel or in sequence and may build up
a filter-pipe-architecture. To reduce complexity, filter
cascades can be encapsulated into an encapsulating fil-
ter. Filters are passive elements as they do not modify
or create messages.

• A rule is an active and stateful message processing unit
that consumes messages from one or more incoming
channels and returns messages to one or more outgoing
channels. In opposition to filters, a rule can modify
incoming messages or create new messages. To do that,
a rule contains defined logic in form of a state machine
or a set of state machines with a selector function.
Similar to filters, rules can be used to encapsulate other
rules, channels or filters. Similar to filters, the output
of one rule might be the output of another rule.

Protocols and their relationships to the next lower proto-
col layer can then be defined by combining these elements

using connectors or through containment. Such CFR mod-
els can be interpreted in two similar but distinct ways: As
a specification that defines a higher protocol layer through
a lower protocol layer, or as a specification for a protocol
analyzer that can render communication on a higher layer
by observing communication on a lower layer.

We represent the inputs and outputs of channels, filters
and rules by input and output pins. An input pin can be
connected to an output pin using a connector. The message
flow is from output to input pins. Channels and rules have
an arbitrary number of input and output pins, while filters
have exactly one input and two output pins. We use regular
expressions to define the selection criteria in filters. State
machines are used to define the memory of rules. In some
cases involving multiple components, a single state machine
is not sufficient. In this case we use a set of state machines
with a selector function defined over that set. This function
then maps sender and receiver of a message to a distinct
state machine. For reasons of readability, we require that fil-
ters might not be directly connected to rules and vice versa.
This constraint does not reduce the expressive power of CFR
models, as placing an otherwise unused channel between a
filter and a rule is equivalent to connecting the two elements
directly. An example of how CFR models can be used to
define abstract protocols is described in the following. We
define a CFR model to specify the abstract notification pro-
tocol from the request/reply example.

Let Crr be a channel over which messages defined by a
protocol rr – the request/reply protocol – are sent. These
messages include request and reply messages related to no-
tifications, but also other request and reply messages not
related to notifications. Let Cnot be a channel over which
notifications messages are sent. Our aim is now to define a
CFR model that describes how the message stream on Crr

can be transformed into a message stream on Cnot. The fol-
lowing setup achieves this: The output pin of channel Crr

is connected to the input pin of a Filter Fnot. The positive
output pin of Fnot is connected to a channel Crrf . Fnot

is configured in such a way, that it sends all request/reply
messages concerned with notifications to its positive output
and all other messages to its negative output. Now, the
communication on Crrf consists only of the request/replies
concerned with notifications and no other messages. The
output pin of Crrf is connected to the input pin of a rule
Rnot. The first output pin of the rule is connected to the
input pin of Cnot. The rule is configured in the following
way: When a requests message from a client occurs, the
rule memorizes the request. When a positive reply that fits
a previously memorized request is received, a notification
message wrapping the reply is created and sent through the
output pin onto Cnot. The messages on Cnot are now noti-
fication messages sent from servers to clients. Omitting the
filter and rule logic for the moment, the CFR model can be
described in a textual notation as follows, whereby the →
can be read as connected to, Rnot(out, 1) is the first output
channel of Rnot.

Channel: Crr, Crrf , Cnot

Filter: Fnot

Rule: Rnot

Crr(out) → Fnot(in)
Fnot(positive) → Crrf (in)
Crrf (out) → Rnot(in)
Rnot(out, 1) → Cnot(in)

We will return to this example in Section 4 and show it in
the notation of our visual language in Figure 5. Our simple
example already indicates that the restriction on combining
filters and rules enforces more readable designs. Crrf is in-
troduced as a helper because the output pin of Fnot cannot
be directly connected to the input pin of Rnot. We thus
have a way of describing intermediate steps in the defini-
tion of protocols. We can even view intermediate channels
as being based on separate sub-protocols and the protocol
definition itself as layering and combination of these sub-
protocols. It should be noted, that in the example model
and in general, both the given lower layer and the newly de-
fined higher layer communication is represented as a chan-
nel transporting messages adhering to some protocol. This
means that we can use the newly defined channel to define
further channels and thus can use our approach for the step-
wise definition of abstraction layers. In our example, it is
transparent whether the protocol used by Crr is a concrete
protocol or an abstract protocol defined by another CFR
model.

3.2 Specifying and Monitoring Complex Sce-
narios

As described in the previous subsection, the way in which
we define a new protocol on a layer Li is to identify certain
communication patterns on the next lower protocol layer
Li−1. We then describe the abstraction of this pattern as
messages on layer Li. While the identification of patterns
is done using cascades of filters and rules, the abstraction
step is performed through the message generation capabil-
ity of rules. If we view a scenario as a sequence of messages,
the commonalities between abstract protocols and scenar-
ios become obvious and it is apparent that our approach
for specifying protocol layers can directly be mapped to the
specification of scenarios. This can be done by describing a
scenario as a specialized high-level abstract protocol. This
protocol is defined by specifying a message and relating it
to a unique sequence of messages at the next lower layer.

It is important to understand that the messages of a sce-
nario do not necessarily obey the same protocol. In fact,
it is rather unrealistic that they do. As explained earlier
using the adaptive brake light example, complex scenarios
are very likely to involve messages in different subnetworks,
which makes specification using traditional techniques dif-
ficult. Using our approach based on abstract protocols, we
can accommodate for the heterogeneity of the messages in-
volved in a scenario: We first combine all relevant messages
onto a single abstract protocol layer and then use this pro-
tocol layer for the definition of the scenario layer. To define
this unifying protocol layer using CFR models, we repre-
sent each combination of bus and protocol as a channel. A
cascade of filters and rules then select the relevant messages
from each channel. Rules are then applied to these messages
in order to convert them to messages obeying the protocol
of the unifying channel.

We require that each scenario is uniquely identifiable via
its message sequence. Ambiguities have to be resolved at the
specification level. While there usually are a great number of
protocol messages on the communication bus, the challenge
is to identify only those messages that are relevant for a
specific scenario. After these relevant messages have been
singled out, they need to be assigned to a distinct scenario.
This is the same procedure that we have already discussed

SCENARIO A SCENARIO B

blink light

SCENARIO A SCENARIO B

blink light

speed high speed low

speed?

ABS

B1

Figure 3: Two scenarios based on the adaptive brake
light use case

when we introduced protocol abstraction. See Figure 2. In
this case, the low-level protocol layer might be the message
transport protocol, e.g. on a CAN bus, and the abstracted
protocol layer is a scenario. We can then use the techniques
explained in the previous section to relate these protocol
layers.

We illustrate the application of CFR models for defining
scenario analyzers with the two example scenarios we in-
troduced in Section 2 in the context of the adaptive brake
light. Figure 3 shows the message sequence of the two sce-
narios. Both scenarios are associated with the use case of a
strong brake maneuver by the driver. Scenario A describes
this use case under high speed, where the brake light blinks.
Scenario B describes the case where the speed is low and
the brake light operates normally. The two scenarios are
depicted as sequences of messages, whereby both scenarios
share a part of the message sequence. Message B1 marks
the starting point for both scenario A and scenario B. If
we observe the message flow sequentially, starting at B1 we
have an ambiguity for the first three messages. Only af-
ter observing speed-high or speed-low we can uniquely iden-
tify scenario A or B. With each new message, it has to
be checked whether this message is the beginning of a new
scenario or the continuation of one or more scenarios under
monitoring. Unless the path of consecutive messages is not
unique, several scenarios remain as candidates.

Under real conditions, a large number of different concur-
rent scenarios might be monitored simultaneously, some of
them still open to a final decision. For example, each occur-
rence of a B1 message in Figure 3 initiates a new instance
of a scenario monitor. In CFR models, we use filters to sort
out relevant messages and rules to assign sequences to sce-
narios. By describing scenarios through CFR models, we do
not only specify them but at the same time also define the
operation of an analyzer for the scenario level. Thus, we
have a monitor for the scenario that enables us to verify it.
We can refine our analyzers by assigning time intervals to
the arrows connecting two messages. This defines how long
the monitor waits for the continuation of a scenario. If the
expected future is not confirmed within a given time frame,
tracing of the scenario is canceled and an error is reported:

Either the scenario has not been specified properly, or the
flow of messages between two or more parties is in fact faulty
due to misbehavior of one or more communication partners.
We can identify under-specification by identifying message
sequences that cannot be assigned to scenarios.

As we have already explained, scenarios can be viewed
as abstract protocols and thus we can apply the same tech-
niques to scenarios that we applied to protocols earlier. In
particular, we can define sub-scenarios and abstract them
using the technique of protocol abstraction. That is, we de-
fine an abstract protocol on top of the protocol at which
the scenario messages occur. In this new layer, we indicate
the occurrence of a scenario in a system by a single mes-
sage. We can then use such layers to built new layers where
messages represent compound scenarios. This approach is
open-ended and allows stepwise definition of more complex
scenarios through layering.

3.3 Test Automation through Reproduction of
Complex Scenarios

In the previous subsection we described how to monitor
and verify complex scenarios. We can use these techniques
to reproduce complex scenarios with the aim to automate
system tests by simulating the systems components. We as-
sume that each functional component in a system has two in-
terfaces: A protocol interface which refers to network based
communication, and a service interface which refers to the
application and possibly to the interaction with the envi-
ronment. Assuming that each component of a system has
thoroughly and successfully been tested, the system behav-
ior can – to a certain extent – be derived from protocol
messages. Thereby, the states of the components and their
behavior in complex scenarios can be reproduced in a defined
manner from observing the communication on the protocol
interface. This opens the possibility to simulate resources
and in this way also simulate complex scenarios.

Complex test scenarios are defined and verified on the
level of the application on a use case basis. Functional com-
ponents of the network under test can be replaced and simu-
lated by message generators or stimulators, in order to trig-
ger events and enforce specific reactions in the test scenario.
In addition to that, stochastic stimuli, e.g. a user model, can
be introduced by using our approach. In this way, triggers
and events from the service interface can be kept to a min-
imum. The main benefit is that complex scenarios can be
tested through their reproduction. While complex scenarios
can consist of other complex scenarios, the reproduction of
underlying scenarios for a higher level scenario is evident for
automated testing.

3.4 Applications
Our advanced protocol analysis approach contributes to

several different stages of the software development pro-
cess. We present these contributions in the context of the
V-Model, a widely used process model for software develop-
ment in the automotive domain. The stages of the V-model
are associated with our contribution in Figure 4.

The most apparent contribution of a protocol analyzer
in the software development process is analysis on message
level. The message level can be associated to the Module
level in the V-Model. This is where Unit-Testing takes place,
and where it is assured that system modules act in the de-
sired way. So we can use a protocol analyzer to validate the

ys
te
m

Customer
Requirements

System
Delivery

Sy

System
Requirements

System Test &
Integration

A priori specification
on scenario and

A posteriori analysis on
scenario and abstract

t

Requirements Integrationon scenario and
abstract protocol level

scenario and abstract
protocol level

po
ne

nt SW
Requirements

SW Subsystem
Test

SW Design

Co
m
p

SW
Component

SW
Component

SW Component
D i

p
Requirements

p
Test

Design

M
od

ul
e

SW Module
Requirements

SWModule
Test

SW
ImplementationSpecification on

l l
A posteriori analysis on

l lM message level message level

Figure 4: Identification of possible application areas
in the V-Model

correct communication behavior between several modules in
different parts of the whole system network.

We have seen that our approach extends the scope of pro-
tocol analysis to complex scenarios, as we can define scenar-
ios using abstract protocols. This way, our approach can be
used at the system test level and also at the component test
level of the V-Model. We can use analyzers for scenarios and
abstract protocols to validate the correct behavior of system
components and the system itself.

But there is more to our approach than just analysis.
With the capabilities of monitoring message flows and learn-
ing from them – a task we aim to automate in future re-
search – it is possible to document/specify different parts
of a distributed system. Network protocols can be speci-
fied by observing the communication on the message level.
Complex Scenarios can be specified by monitoring messages
in a broader context, concerning components of a network
system or the whole system itself.

So there are two different types of analysis that can be
executed:

• Analysis with a priori knowledge

The challenge at this stage is to uncover under-specification
in a given explicit specification.

• Analysis with a posteriori knowledge

Here we can uncover design intentions out of an implicit
specification, e.g. an implementation.

We have seen that CFR models can be interpreted in two
ways: As instructions of a protocol analyzer on how to per-
form protocol abstraction and as a way to specify protocol
layers. The latter is another important contribution that we
consider to be especially interesting for complex scenarios:
Our CFR models can be used for the layered specification
of communication behavior. We thus give an answer to the
under-specification that we uncovered in Section 1 in con-
junction with complex scenarios and abstract protocols. A
side benefit that arises from the duality of interpretation
of CFR models is that for each specification we define, we
define at the same time an analyzer that can be used for
verifying a system against the specification.

Crr (request/reply)rr

Fnot
RegExp = (notify?|notificationMsg)

+

Crrf
notify

request(notify?)

start
requested

reply(no)

start

Rnot

Cnot

Figure 5: CFR model for the notification example
in visual notation

4. A DSL FOR PROTOCOL ANALYSIS
In this section we describe the implementation of our CFR

approach in the form of a domain specific language (DSL)
from which we generate full code for analyzers that target
different platforms. We already introduced a textual nota-
tion for CFR models in Section 3. While this notation is
suitable for simple models, complex models are better ren-
dered using a visual notation that makes the arrangement
and interconnection of elements immediately clear. In addi-
tion to that, we found that our visual language is less intim-
idating for experts in the automotive domain with possibly
little background in general purpose programming.

4.1 Syntax and Semantics
In this section, we present abstract and concrete syntax

of the CFR language. Figure 5 shows the CFR model for
the notification example rendered using the visual notation.
The state machine inside the rule is instantiated for dif-
ferent client/server combinations and is the rule’s memory.
The regular expression is a simple example for an expression
that would be applied to the content part of a message. One
of the benefits of our visual notation is encapsulation. It is
in principle possible nest CFR models into components. Us-
ing this composition mechanism, reusable protocol analyzer
components can be created and working at different levels
of abstraction is encouraged.

Figure 6 shows a partial metamodel that defines the ab-
stract syntax of our language. For space reasons, we omit
the definition of state diagrams. The concept model within
the meta model represents a container for the basic elements,
so a model can be a CFR model itself. It may contain an
arbitrary number of processing units. A processing unit is
an abstract concept that generalizes any concrete message-
handling entity. In other words, it is sub-classed by the
concepts channel, rule and filter. A processing unit itself
may contain at most one model. This containment rela-
tion represents the structural composability of our approach.
As discussed earlier, processing units are connected through
connectors by using the pins of the processing units.

Inherent to our design is the idea to keep the meta model
itself as simple as possible and to express details with OCL
(Object Constraint Language) [2] constraints. OCL Con-
straints are part of the Unified Modeling Language (UML)
and are used to add detail to UML (meta) models. A con-

Model

name: String
1

name: String

0..1 1
Rule

connectors

0

model
owner

procesingUnits

ChannelProcessingUnitConnector

0..*
procesingUnits

1 0..*

Channelg

name: String

Filter
processingUnit

11..* 1..*

PiO tPi I Pi

pin1..*11

Pin

name: String

OutPin InPin

Figure 6: Partial meta model

straint is an expression that has to be validated to true at
any time. We use OCL in conjunction with our meta model
to complete the abstract syntax specification. Due to space
reasons, we will only provide a simple example of a con-
straint and point the interested reader to the rich literature
on the subject [8]. The constraint that prevents a CFR
model from containing its parent model as a child can be
defined in the following fashion:

context model:

inv noSelfContainment:

processingUnits->forAll(model <> self)

The first line defines that the following expressions are
applied in the context of a model. The keyword inv in the
next line stands for invariant and says that the following
expression must be valid at any time in the system. Finally,
the expression says: “For every processing unit in this model
it is true that every model in that processing unit is not the
model on which context the rule is based.”

As mentioned above, the concrete syntax of our language
is visual. We represent the three basic elements as follows:

• Channels as pipes; pipes are an intuitive metaphor,
signifying the capability of messages to flow through
channels

• Filters as triangles; a triangle is a natural shape for
representing a component with one input and two out-
puts

• Rules as circles; circles are used because rules can have
an arbitrary amount of outputs

Every element contains inPins and outPins. Connectors
are represented by a line between two pins with an arrow
head that indicates message flow direction. The pin concept
is adopted from the electronics domain. Pins are represented
as points on the edges of filters and rules. While a channel
has an infinite amount of pins, these are not explicitly repre-
sented. The concrete syntaxes for the configuration of filters
and rules can be divided into syntax for regular expressions
and the syntax for state machines. Our syntax for state
machines is adopted from UML state charts [10]. Regular
expressions are represented as in the Perl programming lan-
guage [22].

Meta Model
GRAPHICAL LANGUAGE EDITORGRAPHICAL LANGUAGE EDITOR

Constraints

Concrete Syntax/Graphical Representations

Code
Template

MODEL
CODE

GENERATOR

Generated
CodeFRAMEWORK

Figure 7: Implementation overview

The informal semantics of the three basic elements of our
language have already been defined in Section 2. In addi-
tion to that, the exact semantics are defined by a translator
semantics for our two target frameworks.

4.2 Implementation
As a proof of concept, we created a prototype implemen-

tation of CFR using the meta modeling and code generation
tools available for the Eclipse [24] platform. An overview
of the different parts of the implementation is provided in
Figure 7.

The definition of the abstract syntax of our language is
based on a meta model created using EMF (Eclipse Model-
ing Framework) [7]. EMF provides an elegant, light weight
modeling language for creating meta models. EMF offers a
tree-style user interface to create ecore-models that are based
on Essential MOF (Meta Object Facility) [3], a simple subset
of the MOF. EMF also has several built in functionalities for
generating code and for editing and creating models, based
on a meta model representation. The generated code is in
the form of a set of Eclipse plugins that offer a tree-based
interface for model editing and creation.

To define the language constraints and in order to have
error detection at edit-time for CFR models, we decided to
use oAW (openArchitectureWare)1, a modular MDA/MDD
generator framework. Among other functionalities, it pro-
vides the definition and checking capabilities for constraints
on ecore meta models. The definition of such constraints is
done in a special language that is affected by and is sim-
ilar to OCL. Besides the pure constraint definitions, error
messages can be defined to address constraint violations to
the user. oAW provides a convenient way to add the con-
straints to the model editor, created by EMF, and check the
constraints at edit-time.

We used the GMF (Graphical Modeling Framework) [24]
to create an editor for our language. GMF is based on EMF
and provides functionalities for creating graphical editors for
ecore-models. On the basis of an existing meta model the
following needs to be defined:

• Graphical representations for the primitives of the lan-
guage. That is, the concrete syntax of the language.

1http://www.openarchitectureware.org

• A toolbox for the later use of these graphical represen-
tations in an editor.

• The relationships between toolbox elements and graph-
ical representations of the meta model elements.

• Settings for special behavior functionalities of the edi-
tor.

GMF also provides sophisticated code generation func-
tionalities and creates on the basis of the meta model, the
generated code from the meta model and the graphical def-
initions and settings, Eclipse plugins, that can directly be
used as a graphical editor for models, based on the previ-
ously defined abstract syntax. The result is a graphical ed-
itor for CFR models that provides convenient and intuitive
drag&drop editing. To navigate through different abstrac-
tion levels in the model or to open a rule and edit its logic,
it is possible to simply double click a node. Another edi-
tor window will open and allow the user to edit the desired
functionalities.

Our reason for choosing meta modeling and code gener-
ation techniques was our need for generating complete an-
alyzers from CFR models. oAW provides a very powerful
framework for this task. Based on a meta model it is possible
to create code-templates that can then be used to produce
runnable code out of models, based on the underlying meta
model. The generator scans the model and processes it in a
tree processing manner. Code fragments can be defined for
different nodes reached in the model while processing it. For
instance, the initialization of all channels in a model could
look like this:

<<DEFINE main FOR Model>>

<<FOREACH procUnits.typeSelect(Channel) AS c>>

<<c.name>> = Channel("<<c.name>>")

<<ENDFOREACH>>

<<ENDDEFINE>>

In the context of a model all processing units are checked
for being channels and if they are, a Channel object is ini-
tialized, with the name of the channel. The generated source
code is Python code, more precisely configuration code for
a Python-based framework [16]. We developed this Python-
based simulation framework to explore the possibilities of
our language and as a proof of concept. As a second plat-
form, we target a framework that reads messages from a
MOST network using a commercial protocol analyzer [17].
There are several benefits that our approach gains from us-
ing template based code generation:

• The target platform type is not restricted.

• Templates can be easily exchanged to create code for
new target platforms.

• Template changes have no effect on the model.

• Implementation knowledge is in the template, so errors
can be reduced.

5. RELATED WORK
We are currently unaware of other approaches that apply

protocol analyzer techniques to abstract protocols and com-
plex scenarios. However, our approach can be related to the

large body of work done in forward engineering and ana-
lyzing protocols. Indeed, protocol analyzers are a standard
technique for monitoring, testing and reverse engineering
systems and many academic and commercial implementa-
tions are available [25], e.g. Ethereal [19]. The aim of our
approach is not to implement another protocol analyzer that
understands a set of predefined protocols. Instead, we aim
to provide an elegant specification mechanism that makes
protocol analyzers programmable and extends their scope
to include abstract protocols and scenarios - not only stan-
dard protocols. Staffing a protocol analyzer with features to
capture abstract protocols is essentially a reverse engineer-
ing activity. It is, so to speak, the reverse of approaches such
as OSI [5]. Our claim that basically three concepts suffice to
reverse engineer protocol-based systems is closely related to
approaches in forward engineering protocols, protocol stacks
and protocol-based services that aim to base formalisms on
few basic concepts. For instance, in [13], the authors provide
a formal approach to modeling layered distributed commu-
nication systems with a small number of concepts only. A
mapping between their and our concepts seems possible and
might help us substantiate our approach by a formal founda-
tion. This is work left for future research. The importance
of scenarios and associated heterogeneity challenges in auto-
motive networks has been recognized by many authors, e.g
in [21], [12] and [9].

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented a novel approach that extends

the scope of protocol analyzers to include application level
communication abstractions and complex scenarios. We mo-
tivated our research by the growing complexity of networks
in automobiles and the resulting risk of under-specification.
We identified abstract protocols as a powerful basis for the
specification, understanding and testing of systems. We
identified complex scenarios as a key challenge for the devel-
opment of reliable systems. We gave a precise definition of
scenarios on the message level and related them to use cases.
After pointing out similarities between protocols and scenar-
ios, we concluded that analyzers for both can be specified
using CFR models based on three basic concepts: channels,
filters and rules. CFR models can be interpreted in two
similar but distinct ways: As a specification that defines a
higher protocol layer through a lower protocol layer, or as
a specification for a protocol analyzer that can render com-
munication on a higher layer by observing communication
on a lower layer.

A side benefit that arises from the duality of interpreta-
tion of CFR models is that by defining a specification, we
define at the same time an analyzer for verifying it. One
of the strengths of our approach is its composability: Both
the existing lower layer and the defined higher layer are rep-
resented as channels and there is no conceptual difference
between the two. This means that our approach allows for
layered definition of protocol stacks. In the context of com-
plex scenarios, this allows us to accommodate for the hetero-
geneity of the messages involved, i.e. we can treat messages
on different layers, using different protocols in different sub-
networks as if they were sent using the same protocol on the
same channel. In addition to the approach itself, we pre-
sented a DSL based on it and discussed its implementation.
Our language can be used by experts in the automotive do-
main with little or no programming experience.

We are currently investigating several directions for fu-
ture research. So far, our language implementation allows
generation of analyzers for a Python-based simulation en-
vironment and for a framework that reads messages from
a MOST-bus. We are working on an implementation for a
framework that provides us with messages from other bus
systems, including CAN, so that we can evaluate our ap-
proach for scenarios involving different subnetworks. An-
other direction we are currently pursuing is the application
of machine learning techniques for the automatic configu-
ration of filters and rules for complex scenarios. We expect
this to be a valuable technique for re-engineering underspec-
ified systems. Although the result might still not yield a
complete specification of all possible scenarios between a set
of communication partners, the documentation of valid sce-
narios is already highly valuable. Finally, we are aiming to
give our approach a stronger formal basis. We are currently
experimenting with the translation of CFR models into Fi-
nite State Processes (FSP) [15]. Using this formalism, we
represent single messages as actions, message sequences as
processes and use the parallel composition operator to ex-
press interleaving of messages.

7. REFERENCES
[1] CAN Specification Version 2.0. Technical specification,

Robert Bosch GmbH, 1991.

[2] OCL 2.0 OMG Final Adopted Specification. Technical
specification, OMG, Oct 2003.

[3] Meta Object Facility (MOF) Core Specification, v2.0.
Technical specification, OMG, Jan 2006.

[4] Most specification rev. 2.5. Technical specification,
MOST Cooperation, 2006.

[5] Information Technology – Open Systems
Interconnection – Basic Reference Model: The Basic
Model. ITU-T Recommendation X.200, International
Telecommunication Union, July 1994.

[6] J. Botaschanjan, L. Kof, C. Kühnel, and M. Spichkova.
Towards verified automotive software. In SEAS ’05:
Proceedings of the second international workshop on
Software engineering for automotive systems, pages
1–6, New York, NY, USA, 2005. ACM Press.

[7] F. Budinsky, S. A. Brodsky, and E. Merks. Eclipse
Modeling Framework. Pearson Education, 2003.

[8] T. Clark and J. Warmer, editors. Object Modeling with
the OCL, The Rationale behind the Object Constraint
Language. Springer-Verlag, London, UK, 2002.

[9] F. Corno, S. Tosato, and P. Gabrielli. System-level
analysis of fault effects in an automotive environment.
In DFT ’03: Proceedings of the 18th IEEE
International Symposium on Defect and Fault
Tolerance in VLSI Systems, pp. 529-536, Washington,
DC, USA, 2003. IEEE Computer Society.

[10] M. Fowler. UML Distilled: A Brief Guide to the
Standard Object Modeling Language. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
2003.

[11] J. Hall. Multi-layer network monitoring and analysis.
Technical report, University of Cambridge, July 2003.

[12] A. Hamann, M. Jersak, K. Richter, and R. Ernst. A
framework for modular analysis and exploration of
heterogeneous embedded systems. Real-Time Syst.,
33(1-3):101–137, 2006.

[13] D. Herzberg and M. Broy. Modeling layered
distributed communication systems. Formal Aspects of
Computing, 28(4):751-763, May 2005.

[14] G. J. Holzmann. Design and Validation of Computer
Protocols. Prentice Hall, Englewood Cliffs, NJ, 1991.

[15] J. Kramer and J. Magee. Concurrency: State Models
and Java Programs, 2nd Edition. John Wiley & Sons,
April 2006.

[16] A. Martelli. Python in a Nutshell, 2nd Edition.
O’Reilly Media, Inc., Sebastopol, CA, USA, July 2006.

[17] A. Meroth and D. Herzberg. An open approach to
protocol analysis and simulation for automotive
applications. In Embedded World Conference, 2007.

[18] A. Meroth and B. Tolg. Infotainmentsysteme im
Kraftfahrzeug: Grundlagen, Komponenten, Systeme
und Anwendungen. Vieweg, Wiesbaden, 2008.

[19] A. Orebaugh, G. Morris, and E. W. G. Ramirez.
Ethereal Packet Sniffing. Syngress, February 2004.

[20] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner.
Software engineering for automotive systems: A
roadmap. In FOSE ’07: 2007 Future of Software
Engineering, pages 55–71, Washington, DC, USA,
2007. IEEE Computer Society.

[21] C. Seybold, S. Meier, and M. Glinz. Scenario-driven
modeling and validation of requirements models. In
SCESM ’06: Proceedings of the 2006 international
workshop on Scenarios and state machines: models,
algorithms, and tools, pages 83–89, New York, NY,
USA, 2006. ACM Press.

[22] E. Siever, N. Patwardhan, and S. Spainhour. PERL in
a Nutshell. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 2002.

[23] A. S. Tanenbaum. Computer Networks. Prentice Hall
PTR, Upper Saddle River, New Jersey 07458, 4th
edition, 2003.

[24] The Eclipse Foundation. Eclipse IDE.
http://www.eclipse.org, 2007.

[25] E. Wilson. Network Monitoring and Analysis. Prentice
Hall International, 2000.

A Domain Specific Language for Uncovering Abstract
Protocols and Testing Message Scenarios

Tim Reichert1, Dominikus Herzberg2

1School of Computing, Engineering & Inf. Sciences, Northumbria University
Newcastle upon Tyne, NE2 1XE, United Kingdom

tim.reichert@unn.ac.uk

2Department of Software Engineering, Heilbronn University
74081 Heilbronn, Germany
herzberg@hs-heilbronn.de

Abstract: We present CFR, a language for the specification of protocols and commu-
nication scenarios and show how this language can be used for systematic testing of
distributed systems. Our language is based on three basic concepts, namely channels,
filters and rules. Using our current implementation, we can fully generate sophisti-
cated analyzers from CFR specifications.

1 Introduction

Many of the errors in today’s distributed systems occur in the context of complex com-
munication scenarios involving multiple distributed components. Such errors are intricate
and cannot be found by component testing alone. System testing complex scenarios is,
however, a difficult task, mainly because it is hard to specify correct behavior at the right
level of abstraction and in a way that can be used for automated testing.

Protocol analyzers can be used for monitoring and testing system communication on dif-
ferent layers of a protocol stack. However, the parts of the communication design that are
not specified as part of a protocol are invisible during analysis. Instead, only the effect a
design has on protocol layers can be traced. This has severe consequences, as test cases
have to be specified at an inappropriate level of abstraction, which makes them overly
complex and likely sources of errors. We provide an example of this in Section 3.

We developed a language called CFR (Channel Filter Rule) that allows comprehensive
specification of communication behavior and the full generation of specialized protocol
analyzers that can monitor and test this communication behavior. The main purpose of the
CFR approach is to uncover and document hidden design intentions in protocol use and to
enable specification of communication behavior at appropriate levels of abstraction.

2 The CFR Language

In this section, we introduce CFR, a domain specific language for the specification of
both protocols and message scenarios. CFR models can be interpreted in two ways: As
a specification of a protocol or as a specification of a protocol analyzer. In our current
implementation, we use them to generate analyzers that can monitor and automatically
test even complex scenarios.

A protocol layer can be described by relating its communication patterns to the commu-
nication patterns on the next lower layer. CFR models do this in a machine-processable
form by combining the following basic language constructs:

• A channel is a medium that transports messages. The messages obey a protocol.

• A filter is a passive and stateless unit that redirects messages from an incoming
channel to one of two outgoing channels. Depending on a given pattern, the filter
determines which message is to be delivered to which outgoing channel. Since both
the input and output of a filter are messages, the output of a filter can be used as
the input of another filter. Filters might be put in parallel or in sequence. Filters are
passive elements as they do not modify or create messages.

• A rule is an active and stateful message processing unit that consumes messages
from one or more incoming channels and returns messages to one or more outgoing
channels. In opposition to filters, a rule can modify incoming messages or create
new messages. To do that, a rule contains defined logic in form of a state machine
or a set of state machines with a selector function. Similar to filters, the output of
one rule might be the output of another rule.

We represent the inputs and outputs of rules by pins with connectors between them. The
message flow is from output to input pins. Channels and rules have an arbitrary number
of input and output pins, while filters have exactly one input and two output pins. We use
regular expressions to define the selection criteria in filters. State machines are used to
define the memory of rules. We provide an example of a CFR model in Section 4.

3 Uncovering Abstract Protocols

A concrete protocol is a specification of messages and a set of message sequences. An
abstract protocol constitutes its own communication architecture based on a concrete pro-
tocol. The communication architecture may be layered. At application level, however,
strict layering is often impractical and broken by tunneling. An example is due. HTTP
is a stateless and connectionless concrete protocol. It consists solely of request and reply
messages and only a client can initiate communication via a request message. An appli-
cation using HTTP may compensate for HTTP limitations and define its own interaction
scheme. For instance, it might be necessary for a web browser based application to receive

Crr (request/reply)rr

Fnot
RegExp = (notify?|notificationMsg)

+ ‐

Crrf
notify

request(notify?)

start
requested

reply(no)

start

Rnot

Cnot

Figure 1: CFR model for the notification example in visual notation

notifications of important events from a web server. As the server cannot contact the client
directly, an application programmer needs to design an abstract protocol to implement
event notifications based on HTTP.

One way to realize the “illusion” of a server-based notification service is to let the client
periodically send request messages to the server, asking whether there is a notification
available. Upon receiving a request, the server replies by either sending a negative in-
dication or it delivers the notification. This is exactly how the now popular AJAX web
technology works. Other parts of the application might use the notification service via the
abstract protocol – but they are not forced to do so. Application designers working with
such a notification service certainly think in terms of notifications and probably do not
even know about requests and replies. A conventional protocol analyzer on the other hand
would only analyze the HTTP protocol, not knowing anything about the abstract proto-
col and its communication architecture. With CFR, we can specify abstract protocols and
generate analyzers that understand these protocols.

Figure 1 shows a CFR model that defines the notification protocol just described. In our
visual notation, Channels are tubes, filters are triangles and rules are circles. Channel Crr

transports all request/reply messages. The Filter Fnot ensures that channel Crrf transports
only those requests and replies related to the notification service. The rule Rnot uses a state
machine to transform a request followed by a positive reply into a notification message and
puts it on channel Cnot.

4 Testing Scenarios with CFR Analyzers

Communication behavior in a distributed system can be described by a set of scenarios.
A scenario for the aforementioned example might, for instance, be an update occurring
on the server of which the client application needs to be notified. On the communication
level, this involves at least two messages: An update message to the server followed by
a notification message to the client. An effective method for testing the correctness of
such a scenario is to stimulate the server by sending an update message and to check if the

expected notification message is sent. Using a conventional protocol analyzer, the stimu-
lation and testing could in principle be done. However, the specification of the scenario
would be at an inappropriate level of abstraction, namely at the request/reply layer.

If we view scenarios as sequences of messages, we can use CFR models to specify them
as specialized high-level abstract protocols. By following a layered approach [HB05], we
ensure that these specifications are always at the appropriate level of abstraction. We can
specify even complex scenarios involving different protocols and subnetworks by com-
bining all relevant messages onto a single abstract protocol layer and by then using this
protocol layer for the definition of the scenario layer.

We require scenarios to be uniquely identifiable via their message sequences. Ambiguities
have to be resolved at the specification level. This ensures that the step from merely
monitoring a system to testing it is feasible. Based on a set of CFR models, we can use our
analyzers to identify unspecified - and thus potentially faulty - communication behavior.
In addition to that, we can use the analyzers to systematically stimulate components in
order to trigger scenarios that are then verified. Under real conditions, a large number
of different concurrent scenarios might be monitored simultaneously. We can refine our
analyzers by assigning time intervals to the transitions of state charts within rules. This
defines how long the monitor waits for the continuation of a scenario. If the expected
future is not confirmed within a given time frame, tracing of the scenario is canceled and
an error is reported.

5 Conclusions and Future Work

Our work is related to the large body of work done in forward engineering and analyzing
protocols. Using a formalism based on channels, filters and rules, augmented with state
charts and regular expressions, we are able to specify, monitor and test even very complex
scenarios in distributed systems. Our layered approach ensures that specification can al-
ways be performed at the right level of abstraction. We have developed both a textual and
visual notation for our language and extensively use code generation techniques to gen-
erate analyzers for different technology platforms. Currently, we are using our approach
for testing AJAX based web applications and automotive systems [MH07] in order to gain
more real-world experience. In future work, we will apply machine learning techniques
for the automated extraction of CFR models from communication data and we are working
on giving CFR a stronger formal basis by mapping CFR models to finite state processes.

References

[HB05] Dominikus Herzberg and Manfred Broy. Modeling layered distributed communication
systems. Formal Aspects of Computing, 28(4):751-763, May 2005.

[MH07] Ansgar Meroth and Dominikus Herzberg. An Open Approach to Protocol Analysis and
Simulation for Automotive Applications. In Embedded World Conference, 2007.

TEACHING LANGUAGE-DRIVEN SOFTWARE ENGINEERING

Tim Reichert
Northumbria University / Heilbronn University

Newcastle upon Tyne, UK / Heilbronn, Germany
tim.reichert@unn.ac.uk

Dominikus Herzberg
Faculty of Informatics, Software Engineering Department

Heilbronn University, Germany
herzberg@hs-heilbronn.de

Abstract
Language-driven software engineering requires that software engineers not only use but also design
and implement computer languages. Teaching this new approach is difficult as it requires an
understanding of a wide range of concepts usually taught in a number of different courses. We
developed a novel concept for a course that aims to teach language-driven software engineering to
undergraduate students in a unified, accessible and up-to-date manner. At the center of our course is
XMF (XML Modeling Framework), an interactive teaching tool we created for modeling and meta-
modeling. Our tool is based on web technologies and runs in a web browser. Using a pattern-oriented
formalism, students define their own languages and modeling views. These definitions are used by a
powerful transformation engine for syntax checking and bidirectional view transformations. Built-in
constraint functionality makes the modeling experience interactive as it can be used by teachers for
specifiying models and by students to check their designs against these specifications. We use XMF
not only to introduce basics of creating and modelling languages but also to explain advanced
concepts such as meta-level design, syntactic layering and program transformation.

Keywords - Teaching, Software Engineering, Programming Languages, Modeling, Tools

1 INTRODUCTION
The difficulty of programming a computer depends to a large degree on the use of the right
programming language. It is thus no wonder that the biggest leap in programmer productivity was
achieved with the introduction of “high level” programming languages. These languages abstract from
the details of a particular machine and focus on the needs of the programmer. Raising the level of
abstraction even further to solve today’s increasingly more complex programming problems demands
a similar leap from languages that offer general solutions to highly problem-specific languages.

Modern approaches in software engineering, e.g. Model Driven Development (MDD) [1], Domain
Specific Languages (DSLs) [2] and Generative Software Development (GSD) [3], represent this
important trend in research and practice. The design, implementation and use of specialized
languages have become a fundamental part of the software development process. The software
engineer is no longer a language user only, but also a creator of languages.

For educators the challenge is how to teach this new understanding to software engineering students
as it is based on a breadth of knowledge usually taught in a number of different courses. As part of the
government-sponsored ”Novel Teaching Approaches” program we took up that challenge and
designed a novel course that aims to teach Language-Driven Software Engineering (LDSE) to
undergraduate students in a unified, accessible and up-to-date manner. The course we designed over
the last two years combines concepts that are traditionally taught as part of formal language theory,
compiler construction, modeling, programming and software engineering.

The basic idea underlying our course is an interactive teaching tool that we created specifically to
satisfy the needs of our students. The tool, XMF (XML Modeling Framework), aims to make modeling
(using languages) interactive and meta-modeling [4] (creating languages) comprehensible. XMF is
easily accessible for students as it is based on familiar web technology. All editing of models and
meta-models is done in a web browser, either in XML or through specific HTML views. Model
validation through inner- and inter-model constraints leads to a modeling process that is controllable
by teachers and highly interactive for students – with immediate feedback from the system in case of
errors or design flaws. New languages can be designed with a built-in pattern language. A query
interface allows students to ask XMF questions about models and thereby verify whether their design
intentions are captured by their creations.

Aside from using XMF to create, relate and use various languages, an important part of our course is
to look at “the big picture” of language-driven software development by relating XMF to other
technologies. For example, we compare the meta-model of XMF to the four level architecture of UML
(Unified Modeling Language), show the relationship between our pattern language and grammar
formalisms such as EBNF (Extended Backus Naur Form) and compare XMF’s transformational
approach to macro mechanisms found in languages of the Lisp family.

The rest of this paper is organized as follows. The following section, Section 2, describes XMF from a
high-level perspective, showing how the tool looks and how it basically works. Section 3 goes into
more detail by introducing the mechanisms for defining and relating languages. Section 4 gives three
examples of advanced concepts in the context of LDSE that we teach using XMF. In Section 5 we
draw conclusions from our use of XMF in the classroom and outline future work.

2 XMF OVERVIEW
The most important goal when we designed XMF was to make modeling (using languages) and meta-
modeling (creating languages) accessible and comprehensible for students. Our strategy consisted of
two parts. Firstly, to lower the learning curve by basing the tool on a technological platform that our
students are familiar with and, secondly, to make the modeling process highly interactive by providing
automated feedback. Regarding the technological platform, browser technologies were a natural
choice as they are already part of our curriculum. Thus, in XMF, models and meta-models are stored
in XML. Editing is done either in XML or using a HTML-based view mechanism directly in a web
browser.

One problem when teaching modeling in contrast to teaching programming is that models are not
necessarily executable. Thus, students cannot run their models as they would run a program and
react to feedback from the system. To enable such trial and error, i.e. to make the modeling
experience interactive, we added a constraint mechanism to XMF. By using a JavaScript library
teachers formulate constraints for a model; students can then check their models against these
constraints, receiving valuable feedback on their validity.

A language in XMF consists of a language schema, a set of constraints and optionally a view
definition. The schema defines the abstract syntax of the language. Since XML is the basis of all
models, this is done by restricting the set of valid tag names, nesting and data values. Constraints
may be used to refine the abstract syntax or to impose semantic constraints. Views define the
concrete syntax of models, i.e. how a model is actually created or edited using a web browser. If no
view definition is given, the default concrete syntax of models is XML.

Fig. 1 is a screenshot of XMF displaying two models at the same time. This is useful when there are
relationships between two models as it is for example the case with class and an object models. The
tabs above each model are for navigating between different views on the model and also for switching
to the language definition. When displaying the model using a view, the rendering engine of the
browser is used. The constraint box is for formulating model constraints and queries against one or
more models using a JavaScript API. The log box shows the results of executing these constraints or
queries on the models.

Figure 1: Screenshot of XMF running in Firefox

XMF has two example modeling languages built in, one for class and one for object modeling. The
following XML-fragment is an example of a class definition in the class modeling language. It
describes a class with id “1”, name “Person”, a parent class named “Object”, two attributes and one
operation. In Section 3 section we will describe how such a modeling language can be defined using
patterns.

<class id="1">
 <name>Person</name>
 <parent><ref type="classRef">Object</ref></parent>
 <attributes>
 <attribute><name>name</name><type>String</type></attribute>
 <attribute><name>age</name><type>Integer</type></attribute>
 </attributes>
 <operations>
 <method><name>saySomething</name><params>x</params></method>
 </operations>
</class>

From a technological point of view, an advantage of using XML is that it is straightforward to process,
Through its rigid syntactic framework it provides clear guidance on how to define new model syntax.
As XML is quite verbose, editing models in a different representation – a view – makes sense. Views
in XMF are HTML descriptions of a model (possibly containing JavaScript) that are rendered in the
browser. Fig. 2 shows a view on the class described in the XML fragment above. Both normal and
editing modes are shown.

Figure 2: Example of a view on a class

Model 1 Model 2

LogConstraints

Tabs

3 XPLT LANGUAGE AND TRANSFORMATION ENGINE
A central component of XMF is the language XPLT (XML Pattern Language for Transformations) and
its underlying transformation engine. This is also what students learn first when starting to use XMF to
define languages. XPLT, which we developed specifically for XMF, is used for defining schemas and
views through patterns. It also provides mechanisms for establishing relationships between schemas,
e.g. the relationship between a model and its view. In Fig. 3 we use the example of a class modeling
language to show the connection between schemas, models and views. An XPLT schema defines the
basis of a class modeling language through patterns that state how class models may look like. A
class model in this sense is an XML-document that matches this pattern. Similarly, the XPLT schema
for a view defines how a class model might look like in HTML and a class model view is any matching
description of the model in HTML. The relationship between the two schemas for models and views is
established through variable names in the schema. If these relationships are properly set up, the
transformation engine of XMF can automatically transform from model to view and back which allows
editing the model through the view.

Figure 3: Relationship between schemas, models and views

An XPLT pattern is a mixture of concrete syntax of the modeling language and XPLT meta-operators.
In the following section we will describe these operators.

3.1 Language Abstractions and Syntax
XPLT is comparable to XML schema languages such as W3C XML-Schema or DTD (Document Type
Definition) in particular and in general to other grammar formalisms such as EBNF (Extended Backus-
Naur Form). Similar to EBNF, it provides operators for expressing sequencing, alternation and
repetition and also supports recursion. The most important constructs of XPLT are introduced in the
following. It shall be noted that XML patterns should be read as defining restrictions on a Document
Object Model (DOM) tree, not on XML strings directly.

Literal Writing an XML fragment without variables enforces that the XML-Fragment must be present
in the model in exactly the way it is given in the pattern. For example, the pattern named “literally”

<pattern id=“literally“>
 <a>hello
</pattern>

defines that the model needs to contain the element <a>hello. In the following examples we
will ignore the pattern tag that usually surrounds each pattern.

Variable As opposed to literals, variables allow arbitrary structures at the place in the model that
corresponds to where the variable occurs in the pattern. Variables always start with a dollar character.

The pattern <a>$var simply defines that the model has an a-tag as parent and arbitrary
children, for example <a>hello or also <a>hello.

Alternative To express that different structures are allowed in a particular place in a model,
alternatives are used. For example, the pattern

<alternative>
 <a>$x
 $x
</alternative>

allows the occurence of either the a- or the b-tag in a model.

Sequence If model elements are required to appear in a certain sequence, this is defined using the
sequence-tag:

<sequence>
 <a>seq1
 seq2
</sequence>

Repetition If elements in a model may occur an arbitrary number of times at a certain position this is
expressed using repeat. For example, the pattern
<a>
 <repeat container=%c>
 $x
 </repeat>

expresses that “a” might have any number of children “b”. Providing a container name that always
starts with the percentage character is relevant for using the patterns for transformations. An example
of a fragment that would match the pattern above is:
<a>
 test1
 test2
 test3

Ignore To ignore certain parts of a model the ignore tag is used as shown in the example:

<ignore>
 <a>$x
</ignore>

Reference By using references, patterns may be defined on the basis of existing pattern. This is the
foundation for modularisation, reuse and also for recursive definitions in XPLT. For example, the
pattern
<a>
 <pref id=”b”/>

references the pattern with id b. This corresponds to copying the pattern at the place of the reference.

To give an impression of how XPLT models look like, we give a more complete example of its use.
The following pattern defines how classes are represented in XMF's built-in class modeling language.
An instance of this pattern was introduced in Section 2.
<pattern id="class">
 <class>
 <name>$cname</name>
 <parent><ref type="classRef">$parent</ref></parent>
 <attributes>
 <repeat container="%attributes"><pref id="attribute" /></repeat>
 </attributes>
 <operations>

 <repeat container="%methods"><pref id="method" /></repeat>
 </operations>
 </class>
</pattern>

The pattern uses a pref-Tag to refer to existing patterns for attributes and methods. It contains a
variable $cname at the position of the class name.

3.2 Transformation Engine
What sets XPLT apart from other schema languages is that XPLT-patterns are not only used for
syntactic validation of XML documents, but are the basis for transforming and querying models. To
verify that a model fragment is an instance of a pattern, the fragment is matched against the pattern.
The result of a successful match is a set of bindings for all the variables in the pattern:

match(pattern, model) ⇒ bindings

Patterns cannot only be used to check data but also to generate data. During this process the variable
parts of the pattern are filled with the information from the bindings:

instantiate(pattern, bindings) ⇒ model

To unambiguously instantiate an XPLT-pattern, a value for every variable in the pattern, the number of
occurrences for every repeat and the choice taken for every alternation must be clear. While the first is
critical, the XPLT instantiation engine tries to deduce the second and third. This is possible in some
cases and the deduction strategy is as follows: The number of occurrences is the count of variable
bindings in the respective repeat container. The choice taken is deduced from the variable bindings
themselves. The strategy is based on the premises that here must be a variable in every choice, that
variable names must be different across choices in an alternation, that there must be containers for
every repeat and that there must be a binding for every variable.

Based on matching and instantiating patterns, a transformation relationship for patterns whose
matching fulfils the above premises can be defined

transform(pattern1,pattern2,model1) ⇒ model2

Here, model2 is an instance of pattern2. transform relates to match and instantiate in the following way:

transform(pattern1,pattern2,model1) ⇔ instantiate(pattern2, match(pattern1, model1))

This means, that instead of defining transformations explicitly, as for example the W3C XSL
Transformation language (XSLT) does, XPLT's transformations are defined implicitly through naming
conventions in the source and target patterns. In other words: For many structurally similar patterns it
is possible to compute transformations automatically.

3.3 Views and Bidirectional Transformations
Especially when editing data through a view it is useful to have transformations that work in two
directions. Whenever the user switches views on a model, the data has to be transformed between the
two representations creating the view. As XPLT transformations are not explicitly defined, there is no
problem of the form "calculate an inverse transformation from a given transformation" as with other
transformation engines. Instead, the following equation must hold for all instances model1 of pattern1
and all instances model2 of pattern2:

transform(pattern2,pattern1, transform(pattern1,pattern2,model1)) ⇔ model1

This is true when matching the patterns produces the same bindings. For such cases bidirectional
transformations are guaranteed. The following example pattern enables a bidirectional transformation
when combined with the pattern for classes in Section 3.1. It defines the view in Fig. 2:

<pattern id="classHTML">
 <TABLE cellpadding="2">
 <THEAD>
 <TR><TH colspan="2">$cname</TH></TR>
 </THEAD>
 <TBODY>
 <repeat container="%attributes"><pref id="attributeHTML"/></repeat>

 </TBODY>
 <TBODY>
 <repeat container="%methods"><pref id="methodHTML"/></repeat>
 </TBODY>
 </TABLE>
</pattern>

Based on the two patterns, transformations from XML to HTML and from HTML to XML can be
performed automatically by XMF’s transformation engine.

3.4 Constraint and Queries
XMF allows for elaborate queries against a single model or a whole set of models. Querying in XMF is
realized through matching. The query component tries to match every element in a model against a
given pattern and returns a list of matches. This list of matches can then be used as target for further
queries. Constraints in XMF typically take the form "for all objects of type T in the model M, condition
C must be fulfilled" or "for all objects O1 of type T1 in model M1 must exist an object O2 of type T2 in
model M2 where O1.x=O2.y". Such constraints can be formulated by querying models with partially
instantiated patterns. For example, the following query returns all classes with name "Student" from a
given model:

query(instantiate-partially(cpattern, {$name,"Student"}),cmodel)

Partial instantiation works as follows. Every XPLT pattern defines a set of structures that have some
commonality expressed in the pattern and some variability. Instead of instantiating a pattern we can
also refine it by fixing some of the variability. Whereas instantiation fails when bindings are missing for
a variable in a pattern, partial instantiation yields a pattern with the variable for which no bindings were
found un-instantiated:

instantiate-partially(pattern, bindings) ⇒ refined-pattern

Constraints in XMF are currently written against a JavaScript API that exposes functionality for
matching, instantiating and querying. Putting a syntactic layer over the API could simplify constraint
definition and remains future work.

4 USING XMF TO TEACH ADVANCED LDSE CONCEPTS
We introduce XMF to students not only as a tool for creating, relating and utilizing languages but also
use it as a means to explain advanced concepts and technologies in the context of language-driven
software engineering, e.g. different grammar formalisms [6], meta-architectures and program
transformation. This is done by analysing how XMF works and by comparing it to these related
technologies and approaches. In the following, we will do this for the UML (Unified Modeling
Language) meta-architecture [7], the concept of syntactic layering and for program rewriting.

4.1 Meta-Architectures
We explain the meta-architecture of XMF by comparing it to the UML meta-architecture [5]. Our goal is
that students become aware of the design choices underlying the UML meta-model and their
consequences. In context of class and object models, the UML meta-architecture is often described as
shown in Fig. 4.

ID Level Name Concept

M3 Meta-Meta-Level Meta-Class

M2 Meta-Level Class

M1 User-Level Class-Model

M0 Data-Level Object-Model

Figure 4: Levels of the UML meta-model for class and object models

For a concrete example of a class "Student" and an object "Jim" we would have the concept of a
Meta-Class on level M3, that of a class on level M2, a Student on M1 and an instance of Student “Jim”
on M0. This is shown in Fig. 5.

M3 Meta-Class

M2 Class

M1 Student

M0 Jim

Figure 5: Class and Object example using the UML meta-model

According to the UML-Architecture, the general linguistic relationship between a meta-model and a
model (M3-M2 and M2-M1) and the specific relationship between class and object model (M1-M0) is
shown in the same direction. According to our experience, this can be confusing for students. In XMF
we entangle this by drawing linguistic instance-of relationships vertically and general inter-model
relationships horizontally as shown in Fig. 6.

M2 XPLT-Pattern

M1 Class Object

M0 Student Jim

Figure 6: Class and Object example using the XMF meta-model

A fourth level is not needed for defining the XMF meta-model. As in UML, level M(n+1) defines the
concepts that are used on level Mn to define concepts on level M(n-1) and so on. For practical
purposes, we can restrict the architecture to three levels. In UML-terms, meta-classes are used to
define meta-classes. Infinite regress is replaced by circularity that somehow has to be resolved. In
XMF, patterns take the role of meta-classes and are used on M1 to define what classes and objects
are. From these definitions it can, for example, be deduced that “Student” and “Jim” are valid
instances of class and object. Constraints define the relationships between Class and Object. In
general, M1 is the level on which users work when they define languages. XPLT is used to define
class and object models. On M0 the modeling languages defined that way are used in the form of

models. The relationships between M1 and M0 are defined through patterns. In our example,
"Student" must match the pattern “Class”. The pattern “Class” must match the XPLT-pattern and then
we run into circularity again. Horizontal relationships are optional. One model does not necessarily
have a non-linguistic relationship with another model. In the case of class and object models, the
horizontal relationship on M1 is the abstract relationship "object is of type class". The instance of this
relationship on M0 is, for example, the concrete relationships "Jim is an object of type Student".

XPLT can be defined in a meta-circular way. This means that there is an XPLT pattern that describes
how XPLT patterns look like. Because of this we can say that M2 points to itself. This circularity on the
conceptual level is resolved by using an XPLT-JavaScript implementation for the actual system.
Showing the definition and implementation of XMF to students makes an intricate concept such as
meta-circularity understandable.

4.2 Syntactic Layering and Views
Syntactic layering is an advanced concept in the context of language syntax. We explain it using
XPLT, the pattern language of XMF. The goal is to make students aware of the layers that exist when
structured languages are used, how these layers restrict language syntax and how restrictions might
be broken. This leads to the general concepts of views, an important idea in LDSE.

XPLT is a language based on XML for defining languages based on XML. This means that in XMF,
there is no way around the syntactic boundaries of well-formed XML. All languages and views are
XML-based. This means that every model could be viewed as being at the end of the following
specialization-hierarchy:

Level Description Restriction

R3 Arbitrary Representation limited only by machine

R2 Unicode String Unicode character set

R1 Well-formed XML XML Grammar

R0 Well formed language L L XPLT Pattern

Figure 7: Syntactic layers for a language L defined with XPLT

Every level defines a set of possible representations. For every level, the representation on Rn is a
subset of the representations on R(n+1). If we describe XMF using this architecture, we are concerned
with the restriction from R1 to R0. An XPLT pattern answers the following question: How to restrict
well-formed XML to the subset of XML that is a particular modeling language? As transformations are
computed from patterns, patterns are restricted to valid XML, and there is no transformation without a
pattern, all data is always on Level R0. Interestingly, the variables in XPLT patterns do not mean
"anything", they mean "anything that is well formed XML". That is, variables are implicitly referring to
R1. The following pattern makes R0=R1:
<pattern id="norestrictions">
 $anything
</pattern>

If all models in XMF are restricted to level R0 in this way, how is it then possible to view the data in
ways that are outside of the restrictions imposed on Level R1? We have to bring the system to display
the data in a different way. Some XML-Editors for example can display XML as nested boxes.
However, such a mapping is defined for level R1 and thus for all kinds of XML-Strings. What we need
is a way to define individual representations of data on level R0. Instead of an R1 definition such as
"every element in an XML-Document is displayed as a box." we need R0 definitions such as "every
class in a class model is displayed as in a UML-style box".

As we can only achieve this on level R0 and the maximum flexibility we have is R0=R1, we must have
a process that can read a well-formed XML description and display it in the desired view. We can then
translate our class models into the XML-based language that this process understands. In the case of

XMF there are two View-Processes for displaying models: The first one is the Code Mirror Firefox-
plugin that displays all models as strings with syntax highlighting. The second one is the HTML
rendering component of the browser that can render the full range of XHTML. In order to define a view
for a class model we can define a pattern that complies with XHTML.

It should be noted here that with XMF we take the display processes and the languages they
understand as fix. This means that we cannot change the internals of these processes and thus have
to transform our modeling language to the language of the display process. The benefit is that we
have an explicit description of how the data is displayed in terms of the display processes language.
The drawback is that the view is volatile to changes within the display process.

Intermediate languages can be added between the processing components and the modeling
language. For example, the following pattern abstracts from the XHTML table that is used to display a
class by introducing the concept of an editable box (“ebox”):

<pattern id="classView">
 <ebox>
 <headgroup>_{<elem>$cname</elem>}</headgroup>
 <group name="attributes">
 <repeat container="%attr"><pref id="attrView" /></repeat></group>
 <group name="methods">
 <repeat container="%methods"><pref id="methodView" /></repeat>
 </group>
 </ebox>
</pattern>

Typically, users do not only wish to display models according to a view definition, but also edit them
using the view. In this case, the view process must map changes on the display back to the XML-
based description of the view data. This view language description can then be mapped back to the
modeling language description.

4.3 Program Rewriting, Lisp and Macros
Part of our curriculum is Scheme [8], a programming language of the Lisp family [9]. Comparing XMF
to Lisp is valuable because there is a deep relationship: Lisp programs are written using symbolic
expressions (s-expressions) in the same way that XMF models are written using XML. The special
nature of Lisp can thus be explained by referring to the syntactic layering as defined in the previous
section.

XPLT patterns can be compared to declarative macro systems used in some Lisp dialects. Indeed, the
macro system of Scheme, especially its notion of ellipsis to express repetition of structural patterns
was highly influential on the design of XPLT. The application of Lisp macros corresponds to model
transformations in XPLT. Implementing a language in Lisp using declarative macros is similar to
defining a view in XMF: A new syntax for the language is defined using a pattern and the relationship
between the new language and an underlying language is established by a pattern using the same
variables. The concept of pattern matching and instantiation that is underlying XMF is found in many
areas of informatics and is the basis of several program rewriting systems. In our course we show
examples of such systems and compare them to XMF in order to make students aware of the
similarities.

5 CONCLUSIONS
XMF is a flexible tool for defining, using and relating languages. Our experience so far is that its highly
interactive nature combined with the fact that it is based on familiar web technology significantly
lowers the time it takes for students to successfully design, implement and use their own languages.
Once students have reached this level, XMF becomes a reference point for explaining many of the
principles necessary to understand language-driven software engineering. Intricate concepts such as
self-referential meta-architecture and syntactic layering become much more concrete when we can
discuss them based on XMF’s design. The concept of editing models through views which becomes
increasingly more important can be explained quite easily in XMF as it is based directly on pattern
matching and instantiation.

Future work on XMF will include a language for constraints and queries that can be used instead of
API calls. We plan to add an executable XML-based language so that models can be transformed into
executable code by the existing transformation engine. This will also enable us to discuss the basic
principle of program compilation in the XMF context.

References

[1] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software Development:
Technology, Engineering, Management. John Wiley & Sons, 2006.

[2] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An annotated
bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

[3] Krzysztof Czarnecki. Overview of generative software development. In volume 3566 of Lecture
Notes in Computer Science, pages 326–341.Springer, 2004.

[4] Tony Clark, Paul Sammut, and James Willans. Applied Metamodelling - A Foundation for
Language Driven Development. Ceteva, 2008.

[5] Dominikus Herzberg, Tim Reichert, and Nick Rossiter. Towards modeling language
interoperability – getting meta-level architectures right. In Rektor der Hochschule Heilbronn
(Hrsg.):Forschungsbericht der Hochschule Heilbronn 2008, Hochschule Heilbronn, 2008

[6] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineering discipline for grammarware.
ACM Transactions on Software Engineering Methodology, 14(3):331–380, 2005.

[7] Unified Modeling Language: Infrastructure, Version 2.1.2. Technical Specification, Object
Management Group (OMG), November 2007.

[8] R. Kelsey, W. Clinger, and J. Rees (eds.). 5th Revised report on the algorithmic language scheme.
Higher-Order and Symbolic Computation, 11(1), August 1998.

[9] Paul Graham. On Lisp. Prentice Hall, 1993.

Acknowledgements

This work was partially funded by the LARS project of the “Studienkommission für Hochschuldidaktik
an Fachhochschulen in Baden Württemberg” and by the Thomas Gessmann-Stiftung.

CONCATENATIVE PROGRAMMING
An Overlooked Paradigm in Functional Programming

Dominikus Herzberg
Department of Software Engineering, Heilbronn University

Max-Planck-Str. 39, 74081 Heilbronn, Germany
herzberg@hs-heilbronn.de

Tim Reichert
School of Computing, Engineering & Information Sciences, Northumbria University

Pandon Building, Camden Street, Newcastle Upon Tyne, United Kingdom
tim.reichert@unn.ac.uk

Keywords: language-oriented programming, functional programming, concatenative languages

Abstract: Based on the state of our ongoing research into Language-Driven Software Development (LDSD) and
Language-Oriented Programming (LOP) we argue that the yet relatively unknown paradigm of concatena-
tive programming is valuable for fundamental software engineering research and might prove to be a suitable
foundation for future programming. To be sound, we formally introduce Concat, our research prototype of a
purely functional concatenative language. The simplicity of Concat is contrasted by its expressiveness and a
richness of inspiring approaches. Concatenative languages contribute a fresh and different sight on functional
programming, which might help tackle challenges in LDSD/LOP from a new viewpoint.

1 INTRODUCTION

One of our main themes of research is Language-
Driven Software Development (LDSD) and
Language-Oriented Programming (LOP). It is
about how the creation and use of languages might
help us in building and engineering complex software
systems. As a matter of fact, LDSD/LOP is a growing
field of interest as is manifested by the research on
Domain Specific Languages (DSLs), Model-Driven
Development (MDD), generative software devel-
opment and software factories, to name just a few
areas.

In order to experiment with language layers and
domain specific specializations and to test our con-
ceptions and hypotheses, we made use of languages
which are regarded as flexible and easily adaptable.
Among these languages were Lisp/Scheme, Prolog
and Smalltalk. Their interactive nature and their late-
binding features due to dynamic typing turned out to
be helpful in the setting of a “laboratory situation” for
language experimentation. Still, some experiments
turned out to fail e.g. applying extreme refactoring
or attempting to uncover hidden design intentions in
code. We felt having something in our way; a problem
we could neither clearly pinpoint nor sketch a solution
for. There was something “wrong” with the languages

we used.
When we made contact with so-called concatena-

tive programming languages things began to fall into
place. As a result, we developed our own concate-
native language called Concat. We benefited a lot
from using the concatenative paradigm and still do;
our work on Concat is research in progress. Concat
is a language that is “as simple as possible, but no
simpler” – to paraphrase a quote attributed to Albert
Einstein – but still useful and practical.

Our claim is that concatenative languages are (a)
ideally suited for language experimentation and (b)
worth to be applied in software engineering because
of its unique features.

The features that characterize and distinguish
Concat in particular and concatenative languages in
general are:

• Concat is a functional language (no explicit
states) with static types and type inference. A
concatenative language can also be dynamically
typed and work without type inference; some vari-
ants are also functionally impure

• Concat is a language one can interactively work
with on the console; we regard interactivity as es-
sential for an experimental approach to LDSD and
LOP

• Concat is homoiconic, i.e. code can be treated as
data and data as code

• Concat has a very simple syntax. Programs are
created by concatenating words and so-called
quotations, and there are just three tokens with
special meaning: whitespace, [and]

• Similarily, Concat has very simple semantics. We
distinguish the level of words and quotations from
the level of functions processing stacks

• Both level of Concat maintain a relationship
called a homomorphism; that means that there is
a structure preserving mapping from the word/
quotation level to the function/stack level and vice
versa
There are immediate implications that follow from

these characteristics: (1) Concat has a sound mathe-
matical foundation, which enables formal treatment
and reasoning over programs. (2) There are no vari-
able bindings in Concat, that means there are no struc-
tural ties beyond the homomorphism mentioned. And
that has two other important consequences especially
for code engineering: (3) Concat supports macros out
of the box without further ado. (4) One can cut out
any fragment of code at whitespaces. Presumed that
you leave the code within squared brackets intact, any
such fragment still represents a valid program. This is
something, which is impossible in, say, Java, C#, Lisp
or Haskell. Concat enables code reuse and refactoring
of code to an extent unknown in other languages.

We think that Concat offers many interesting
properties. We formally define Concat in Sec. 3 after
we have briefly touched upon related work in Sec. 2.
We hold the view that concatenative languages de-
serve much more attention than is the case. They are
inspiring, usable and practical despite and because of
their simplicity, see Sec. 4 – a position surely debat-
able. We draw some conclusions in Sec. 5.

2 RELATED WORK

Much of the foundational work on concatenative
languages was done by Manfred von Thun in con-
junction with the development of the Joy language.1

Today, several implementations of concatenative lan-
guages exist. Cat is a purely functional language that
unlike Joy and like Concat supports static type check-
ing.2 Factor is a programming language designed for
use in practice. It has a concatenative core and sup-
ports object-oriented programming.3

1http://www.latrobe.edu.au/philosophy/phimvt
2http://www.cat-language.com
3http://factorcode.org

Concatenative languages are closely related to
stack-based languages.4 The former are characterized
by the homomorphic relationship between words/
quotations and function, the latter by the use of a
stack as the central concept in the execution model.
A language may be both stack-based and concatena-
tive, but this must not necessarily be the case. Forth
(Rather et al., 1996) and PostScript (Adobe Systems
Inc., 1999) are popular “high-level” stack-based lan-
guages that are not concatenative. Several assem-
bly and intermediate languages also use a stack-based
model of execution.

In a concatenative language, even those words
that may intuitively be perceived as data, for exam-
ple numbers and strings, denote functions. Thus, con-
catenative languages are not only functional in the
sense that functions have no side effects, but also in
the sense that “everything is a function”. This form of
purity and the non-existence of variables relates them
closely to function-level programming as defined in
(Backus, 1978) and the point-free style of functional
programming (Gibbons, 1999).

3 FORMAL FOUNDATIONS

In this section we will define the concatenative lan-
guage Concat. Due to space limitations we restrict our
presentation to a dynamically typed version of Con-
cat. Actually, Concat is statically typed enabling the
programmer to define arbitrary types as encodings.

A specialty of concatenative languages is that
there is the level of words and quotations (Sec. 3.1
and 3.2) and the level of functions and stacks (Sec. 3.3
and 3.4). Both levels have their own concepts and
their own semantics. However, the levels are con-
structed in such a way that there is a close relationship
between the two (Sec. 3.5).

3.1 Words and Quotations

On the level of words and quotations Concat is de-
fined by only a handful of concepts: words, vocab-
ularies, quotations, concatenation and substitution.
The stack pool is just defined for convenience pur-
poses on the word level, but it is needed later on on
the function level.

Definition 3.1 (Vocabulary of Words) A vocabu-
lary is a set of elements V = {w0,w1, . . . ,wn}∪{Id};
its elements are called words. The word Id is the
identity word.

A quotation is recursively defined as:

4http://concatenative.org

Definition 3.2 (Quotation) Let [] be the empty quo-
tation. Given a vocabulary V of words, a quotation
q using V is a finite sequence of elements written as
q = [s1 s2 s3 . . .] with each element being either a
word of V or a quotation using V including the empty
quotation.

Definition 3.3 (Stack Pool) Given a vocabulary V ,
the stack pool SV is the set of all possible quotations
using V .

A program in a concatenative language is a se-
quence – a concatenation – of words and quotations,
respectively.

Definition 3.4 (Concatenation) Given a vocabulary
V , the binary operation ⊕ defines the concatenation
of two words or quotations or combinations thereof:
⊕ : (V ∪ SV)× (V ∪ SV)→ (V ∪ SV). The following
properties hold with w,w′,w′′ ∈ (V ∪SV):

w⊕ Id⇔ Id⊕w⇔ w

(w⊕w′)⊕w′′⇔ w⊕ (w′⊕w′′)⇔ w⊕w′⊕w′′

The first property declares the identity word as the
neutral element of concatenation, the second property
is the law of associativity. Concatenation constitutes
a monoid.

For the sake of a simpler notation, we replace the
concatenation operator ⊕ by a whitespace character
and do not use parentheses, since they are unneces-
sary because of associativity.

Definition 3.5 (Substitution Rule) Given a vocabu-
lary V , a substitution rule r is a unique mapping
from one concatenation to another concatenation:
r : (V ∪SV)n→ (V ∪SV)m with m,n ∈ N\{0}.

Now we have everything together to define a
generic substitution system that rewrites concatena-
tions. The execution semantics are fairly simple.

Definition 3.6 (Substitution Evaluation) Given a
sequence of substitution rules and a concatenation
of words and/or quotations, substitution evaluation
is defined as follows: walk through the sequence of
substitution rules, rewrite the concatenation if there
is a match (probing from right to left!) and repeat
this process until no more substitution rules apply.

Before we advance to the level of functions, we
would like to provide some simple examples of sub-
stitution rules. The attentive reader might notice that
the rules look very much like operators written in
postfix position. This is for a good reason, which
will become clear when we talk about the connection
to the function level. The rightmost position on the
left-hand side of a substitution rule almost always is a
word. Substitutions essentially dispatch from right to
left.

3.2 Examples of Substitution Rules

Substitution rules have a left-hand side (LHS) and a
right-hand side (RHS). Inside substitution rules, capi-
tal letters prefixed by a $, # or @ denote variables used
for matching words and quotations on the LHS and
for value replacement on the RHS. If prefixed by $,
the variable matches a single word only. If prefixed by
#, a single word or quotation is matched. If prefixed
by @, any number of words or quotations is matched.

The following rule defines a swap operation. Re-
member that the concatenation operator⊕ is replaced
by whitespace for improved readability:
#X #Y swap ==> #Y #X

On the LHS #X and #Y match the two words or
quotations preceding swap in a given concatenation.
On the RHS, the recognized words or quotations are
inserted in their corresponding places. Take for exam-
ple the concatenation “2 [3 4] swap”, which is
resolved by applying the above rule to “[3 4] 2”.

The following substitution rules might help get an
idea how simple but powerful the substitution system
is.
[@REST #TOP] call ==> @REST #TOP
[@X] [@Y] append ==> [@X @Y]
true [@TRUE] [@FALSE] if ==> [@TRUE] call
false [@TRUE] [@FALSE] if ==> [@FALSE] call
#X dup ==> #X #X

The first rule, call, calls a quotation by dequoting
it i.e. by releasing the content of the quotation. Syn-
tactically, this is achieved by removing the squared
brackets. The second rule, append, takes two quota-
tions (including empty quotations) and appends their
content in a new quotation. The third and fourth rule
define the behavior of if. If there is a true followed
by two quotations, the quotation for truth is called, if
false matches, the failure quotation is called. Appar-
ently, quotations can be used to defer execution. The
last rule simply duplicates a word or quotation.

Due to space limitations we cannot show nor
prove that some few substitution rules suffice to have
a Turing complete rewriting system. Substitution
rules play the role macros have in other languages
such as Lisp or Scheme.

3.3 Functions and Stacks

The concepts on the level of functions and stacks par-
allel the concepts on the word/quotation level. On the
one hand there are words, quotations and concatena-
tions, on the other hand there are functions, quota-
tion functions and function compositions. The iden-
tity word is mapped by the identity function. We will
discuss this structural similarity in Sec. 3.5.

Definition 3.7 (Pool of Stack Functions) Given a
stack pool SV , a pool of stack functions F (SV ,SV) is
the set of all stack functions f : SV → SV .
Definition 3.8 (Quotation Function) Given a quo-
tation q ∈ SV , the corresponding quotation function
fq ∈ F (SV ,SV) is defined to be

fq(s)→ s⊕q⊕ append ∀s ∈ SV

A function that throws its representation as a word
onto a stack is called constructor function or con-
structor for short.
Definition 3.9 (Function Composition) Given a
stack pool SV , the composition of two functions
f ,g ∈ F (SV ,SV) with f : A → B, g : B → C and
A,B,C ⊆ SV is defined by the composite function
g ◦ f : A → C. The following properties hold with
f ,g,h ∈ F (SV ,SV):

f ◦ Id⇔ Id ◦ f ⇔ f
(h◦g)◦ f ⇔ h◦ (g◦ f)⇔ h◦g◦ f

That means that Id is the neutral element of func-
tion composition and that function composition is as-
sociative. Function composition constitutes a monoid
as well.

We use the same identifier for the identity word
and the identity function. It should always be clear
from the context, whether Id is a word or a function.
From the above definition of function composition we
can deduce the definition of the identity function:
Definition 3.10 (Identity Function) For any vocab-
ulary V , the identity function Id ∈ F (SV ,SV) is de-
fined as Id(s)→ s for all s ∈ SV .

We can now compute results with a given compo-
sition of stack functions and quotation functions.
Definition 3.11 (Function Evaluation) Given
a stack pool SV , the evaluation of a function
f ∈ F (SV ,SV) with f : A → B and A,B ⊆ SV is
defined to be the application of f on some s ∈ A:
f (s).

3.4 Examples of Function Definitions

In the context of functions, we refer to quotations as
stacks. A function in Concat expects a stack and re-
turns a stack. It will take some values from the input
stack, do some computation and possibly leave some
results on the input stack to be returned.

Function definitions look like substitution rules.
The rightmost position on the LHS is a word denoting
the name of a function. Everything else that follows
to the left are pattern matchers picking up words and
quotations from the stack. The position next to the
function name stands for the top of the stack, then
comes the position underneath etc.

$X $Y + ==> #<(+ $X $Y)>#

In the example, $Y expects a word on top of the
stack and picks it up; $X picks up the word under-
neath. If there are more words or quotations on the
stack, they are left untouched. The RHS of a function
definition says that the top two values on the input
stack are replaced by a single new word or quotation,
which is the result of some computation enclosed in
#< and >#.

Within these delimiters a computation can be
specified in any suitable language; we use Scheme in
this example. Before the computation is executed, the
items picked up by $X and $Y are filled into the tem-
plate at the corresponding places.

A function definition can also be read as having a
so-called stack effect (and so can substitution rules):
The function + takes two words from the stack and
pushes a single word onto the stack. Looking at stack
effects helps in selecting functions that fit for func-
tion composition. A function or composite function
cannot consume more items from a stack than there
are.

If a suitable language for specifying computations
is used, function composition can be directly imple-
mented by combining and rewriting the templates.
That is one reason why we have chosen Scheme as
the specification language for functions. To provide
an example, take the definition to compute the inverse
of a number:

$X inverse ==> #<(/ 1 $X)>#

The concatenation “+ inverse” can – on the
functional level – be automatically derived as a com-
posite function:

$X1 $X2 + inverse ==> #<(/ 1 (+ $X1 $X2))>#

Here, $X1 and $X2 are automatically generated
by Concat. If template rewriting is too complicated
to achieve in another target language, the behavioral
effect of function composition can be simulated by
passing a stack step by step from one function to an-
other.

Any of the above substitution rules (Sec. 3.2) can
also be defined as function definitions. One example,
although rather trivial, demonstrates this for dup. The
two values pushed onto the stack are “computed” on
the function level.

#X dup ==> #< #X ># #< #X >#

3.5 Connecting the Levels

The previous section already indicates that the level
of words and quotations and the level of functions
and stacks are connected. As a matter of fact,

we established a bijective mapping between words
and functions, quotations and quotation functions,
and between concatenation and function composition.
Mathematically speaking, this is called a homomor-
phism.

There is a subtle detail. The homomorphism im-
plies that the search strategy looking for substitution
matches must scan a concatenation from right to left.
On each word or quotation we look through the list
of substitution rules top down for a match. After a
successful substitution has occurred, the search might
continue to the left or start over again at the right. The
first way (continuing) has the same effect, function
composition has. The second way (starting over) is
equivalent to passing a stack from function to func-
tion i.e. without really making use of function com-
position. Either way, the lookup for matching substi-
tutions has to restart top down again.

When writing programs in Concat, we have the
choice to either define substitutions that work on a
purely syntactical level by rewriting concatenations of
words and quotations. Or we define functions whose
operational behavior is outside the reach of Concat
– it is done in another computational world Concat
has only an interface with but no more. For Concat,
functions and composite functions are black boxes.
Interestingly, we can seamlessly combine substitution
and function evaluation.

The two approaches to interpret a given concate-
nation lead to two different readings. Take the follow-
ing example, a simple addition:
3 0 +

Notationally, all there is are words and quota-
tions. Assumed that there is the substitution rule
“$X 0 + ==> $X”, the result on the word/quotation
level is mechanically retrieved as 3. On the level of
functions, all there is are functions and stacks. So 3 is
a constructor function that takes a stack and pushes a
unique representation of itself – the word(!) 3 – onto
the stack and returns the changed stack. So does 0.
Taken together with the function +, function compo-
sition results in a function accepting some stack and
leaving 3 on top. Only if we suppress function com-
position, we see a stack being passed from function to
function. This is also called trace mode.

A slightly more complicated example is the fol-
lowing concatenation:
6 5 dup [3 >] call [+] [*] if

The word dup duplicates 5 and call unquotes
[3 >], leading to 6 5 5 3 > [+] [*] if.
Assumed that a function definition for > (greater than)
is given, 5 3 > results in true. Now if rewrites
the concatenation to 6 5 [+] call. The result of
6 5 + is 11.

4 THINKING CONCATENATIVE

The following subsections aim to inspire the
reader of the richness that lurks behind the concate-
native paradigm. We barely scratch the surface on a
subject worth further investigation.

4.1 Pattern Recognition Agents

The input to Concat can be viewed as a static but
possibly very long sequence of words and quotations.
Substitution rules and function definitions could be
viewed as agents working on the input. Each agent
has some sensors that allow the agent to recognize
a set of specific subsequences of words/quotations
somewhere in a program. If a pattern is recognized,
the agent takes the input sensed, transforms it into a
new sequence of words and quotations and replaces
the input by the transformation.

Essentially, there is a pool of agents ready to pro-
cess any subsequence they find a match for. This
model has some similarities with biochemical pro-
cesses. Let us take protein biosynthesis in a cell of a
living organism as an example. After a copy of the
DNA has been created (transcription), complex or-
ganic molecules called ribosomes scan the code of the
DNA copy in a way comparable to pattern matching.
The ribosomes read a series of codons as an instruc-
tion of how to make a protein out of an sequence of
amino acids (translation). These processes could be
understood as numerous computing agents working
together.

It is an interesting observation that Concat can be
used in a way that is close to how nature works in
creating complex living systems. This might inspire a
lot of interesting and interdisciplinary research ques-
tions. Also cognitive processes rely very much on pat-
tern recognition.

4.2 Stream Processing

Another, dynamic view is to regard the input to Con-
cat being continuously filled with new words and quo-
tations at the outmost left and added to the bottom(!)
of the stack, respectively. A continuous stream of
words and quotations flows in. With a certain looka-
head Concat applies substitution rules and function
definitions as usual. Any context information needed
for processing the stream must be either left on top
of the stack. Or we introduce a “meta-stack”, with the
stream-stack being on top, so that context information
can be left somewhere else on the meta-stack.

We have built a system called channel/filter/rule
(CFR) for advanced protocol analysis in computer

networks. The incoming stream of data stems from
a recording or a live trace of a monitoring device in-
tercepting the communication of two or more inter-
acting parties. Stateless selection (filters) and stateful
processing (rules) help in abstracting and extracting
information that represent the information flow on the
next protocol layer (channel). We suspect that such a
stream processing system can be easily realized with
Concat. We have not done a prototype, yet. This is
research in progress.

4.3 Refinement & Process Descriptions

Refinement is a very important notion in computer
science, especially in the formal and theoretical
branch. As a matter of fact, refinement is a well-
understood concept. The formalization of refinement
dates back to the 1970s. Refinement is a means to
reduce underspecification. A specification S2 is said
to refine the behavior of a specification S1 if for each
input the output of S2 is also an output of S1. Seman-
tically, this notion is captured by logical implication.
The denotation [[S2]] implies [[S1]].

Programming languages typically do not support
refinement. However, it is trivial to provide refine-
ment in Concat, because it is built in: the notion of
refinement is captured by unidirectional substitution
“==>”.

Some researchers bring the notion of refinement
and software development processes explicitly to-
gether; one prominent example is FOCUS (Broy and
Stølen, 2001). In a yet unpublished paper we show
that it is straight forward to formally describe devel-
opment processes in Concat using refinement. We be-
lieve Concat to be well-suited for process modeling.

4.4 Flexibility & Expressiveness

Another area for which we cannot take credit for is
a demonstration of the extreme flexibility of concate-
native languages – this is best shown by pointing to
Factor, a modern concatenative language implemen-
tation. Factor is dynamically typed and functionally
impure (for practical reasons) though functional pro-
gramming is a natural style in Factor. Its dominating
programming model is a stack being passed from one
function to the next.

Factor is powered by a kernel written in C of
about 10.000 lines of code. Everything else is writ-
ten in Factor itself. Factor’s syntax is extensible, it
has macros, continuations and a powerful collection
library.

Factor comes with an object system with inheri-
tance, generic functions, predicate dispatch and mix-

ins – it is implemented in Factor. Lexical variables
and closures are implemented as a loadable library
– in Factor. An optimizing compiler outputs effi-
cient machine code – the compiler is written in Factor.
Bootstrapping the system helps all libraries in Factor
benefit from such optimizations. Right now, Factor
supports a number of OS/CPU combinations among
which are Windows, MacOS and Linux for x86 and
PowerPC processors.

Programs in Factor are extremely short and com-
pact. Refactoring programs in Factor is easy as is in
any concatenative language: any fragment of words
can be factored out – hence the name “Factor”. These
features have helped the developers continuously im-
prove the code base and its libraries. Factor outper-
forms other scripting languages like Ruby, Groovy or
Python not only in runtime but also in the number of
features supported by the language.

We are confident that we can achieve a similar
level of flexibility, expressiveness and performance
with Concat.

5 CONCLUSIONS

Remarkably, the definition of Concat fits on a sin-
gle page of paper (Sec. 3.1/3.3). Yet, the concatena-
tive paradigm shows a lot of interesting features and
inspiring approaches (Sec. 4). We barely scratched
the surface of a subject worth further investigation and
research. We think that concatenative programming
is a much overlooked paradigm that deserves wider
recognition.

REFERENCES

Adobe Systems Inc. (1999). PostScript language reference
(3rd ed.). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Backus, J. (1978). Can programming be liberated from the
von Neumann style?: A functional style and its alge-
bra of programs. Commun. ACM, 21(8):613–641.

Broy, M. and Stølen, K. (2001). Specification and Devel-
opment of Interactive Systems: FOCUS on Streams,
Interfaces, and Refinement. Springer.

Gibbons, J. (1999). A pointless derivation of radix sort. J.
Funct. Program., 9(3):339–346.

Rather, E. D., Colburn, D. R., and Moore, C. H. (1996).
The evolution of Forth. History of programming lan-
guages, II:625–670.

S

SOFTWARE ENGINEERING FOR
TELECOMMUNICATIONS SYSTEMS

INTRODUCTION

Since the construction of the worldwide telephone network
started more than a century ago, advances in communica-
tion systems and their widespread availability have been a
source of profound change in societies and are an important
part of what we call the ‘‘information society.’’ Today,
communication systems allow people to talk, see, and
exchange data with each other almost independently of
their physical location in the world. In the so-called devel-
oped countries, telephones are in virtually every household,
cell phones are omnipresent, and half a billion computers
are part of the Internet—together, these technologies form
a gigantic network that allows anyone easy access to an
enormous amount of information and to communicate
easily with each other.

According to a broad definition, any system that makes
communication over long distances (tele ¼ distant) possi-
ble is a telecommunication system. Historically however,
the term refers primarily to telephony networks for fixed
and mobile communication. For the Internet and other
interconnections of computers, the term computer network
is used. The term communication system can refer to both
computer networks and telecommunication systems.
Because of the convergence of telecommunication and
Internet technology, the once sharp line between computer
networks and telecommunication systems has, however,
been blurred in recent years. End users engaged in distant
communication are indifferent as to whether their voice is
transported via traditional telecommunication networks or
over the Internet—as long as the service preserves high-
quality demands expected from telecommunication sys-
tems: lost calls, too much delay in voice transmission,
echoes, and so on are not tolerated.

Many definitions for software engineering exist in the
literature. One definition that we feel is particularly
suitable in the context of telecommunication systems is
‘‘the application of engineering to software’’ (1). In fact,
(electrical) engineers built the first telecommunication
systems. The key challenges for software engineering
telecommunication systems developed from several
aspects that make telecommunication systems special.
These aspects relate to the system in general and the
software components in particular and can be subdivided
into industry practices, general technical challenges, and
quality demands. Important industry practices in the
telecommunications domain include the definitions of
standards and protocols, the layering of systems, and
intensive testing. General technical challenges develop
mainly from the distribution aspect of telecommunication
systems and the large amount of communication that
these systems need to handle simultaneously in real
time. For example, modern switching systems can handle

several ten thousands of calls simultaneously. Thereby,
high-quality demands must be fulfilled.

From a user’s perspective, telecommunication systems
must provide a high quality of service, namely the fulfill-
ment of real-time and lossless requirements. In addition to
that, they must satisfy high availability, reliability, and
robustness demands. For example, delays greater than a
tenth of a second or lost words in a telephone conversation
are unacceptable; the expectation of users is that the tele-
phone system ‘‘always works’’ and that especially emer-
gency calls always go through, no matter the amount
traffic. From the perspective of software engineers, tele-
communication systems must be scalable, extensible, and
portable. Scalability means that the code basis can be used
for different traffic demands. For example, it is desirable
that the same switching software can be used in a system
that handles an average of 1000 simultaneous calls as well
as in a system that handles 100,000 calls simultaneously.
This consistency is especially important as the demand for
telecommunication services is steadily increasing. Exten-
sibility is important because the services that must be
provided by telecommunication systems are constantly
subject to enhancements. Portability has to do with the
long lifetime of telecommunication software and the rapid
advances in hardware platforms; one cannot afford to throw
away the software developed for two decades just because of
a switch to new hardware.

The next section provides an overview of relevant his-
toric developments and crucial design decisions that led to
today’s telecommunication systems; important background
information for understanding what makes software engi-
neering for telecommunication systems special is given.
The section entitled System Design in the Larger describes
fundamental telecommunication concepts that are encoun-
tered when designing systems in the large. The basic
notions of distribution and communication, as well as
layering, planes and resource control are discussed. Sys-
tems design in the small is the topic of the section that
follows. The last section surveys a selection of the literature
on modeling telecommunication systems and introduces
the Real-Time Object-Oriented Modeling ROOM language
as an example of a modeling language for telecommunica-
tion systems.

BACKGROUND AND RATIONALE

Modern telecommunication systems were developed in the
early 1960s. The new technology of computer control, called
stored program control (SPC), started to substitute electro-
mechanical systems (2). One of the main advantages intro-
ducing SPC was flexible systems, in which additions and
changes could be introduced primarily through program
modifications rather than through changes in the hardware
(3). However, by the late 1960s, it was time for a review. At
Ericsson, one had learned that the current generation of
SPC, as it existed in the late 1960s, was expensive and way

1

too complex, with hindsight, for widespread use, except, to
some extent, in the American Bell companies. The disad-
vantages were above all in the high costs of handling—
design, testing, modification, fault-correction, production,
installation, and operation and maintenance (4). What was
needed was a new approach to structure and organize these
complex systems. With the engineering techniques avail-
able at that time—‘‘Structured Programming’’ is in the air
(5), the principle of functional modularity was a promising
approach. Within Ericsson, it was IVAR JACOBSON who made
the important contribution of the ‘‘block concept’’ in 1967
(6), which included the structuring of the system into self-
contained functional modules (blocks), with all interwork-
ing between blocks performed by software signals (7). The
development of Ericsson’s AXE switching system was based
on these principles; it went into trial service late in 1976
and became and still is one of the most successful switching
systems worldwide (4).

Hand in hand with this development, the study of new
languages was initiated. The industry was in need of
languages highly adapted to the demands of programming
and designing telecommunication systems. The outcome of
these efforts were Specification and Description Language
(8) (SDL), Message Sequence Chart, (9) (MSC), CHILL
CCITT High Level Language (CHILL) (10), and Man-
Machine Language (MML) (11). All three languages have
been standardized by Consultatif International de Télé-
graphique et Téléphonique) (CCITT) and are still in use
today. In the early 1980s, SDL and MSCs were intended for
system specification and design, CHILL for detailed design,
coding and testing, MML primarily for operation and main-
tenance. Especially for coding, many companies developed
their own variant of a programming language. For exam-
ple, Ericsson developed Programming Language for
EXchanges (PLEX) (7), Northern Telecom Procedure
Oriented Type Enforcing Language (PROTEL) (12), both
languages are block structured. More recently, new lan-
guages and paradigms have become part of the toolset of
software engineers in the telecommunication domain. An
example of a modern programming language for telecom-
munication systems is Erlang (13); Erlang can be classified
as a functional programming language. It was developed at
the Ericsson Computer Science Laboratory in the late
1980s and was released as open source in 1998. It has
been used in industrial projects for the production of highly
reliable and fault-tolerant telecommunication systems. For
example, Ericsson’s AXD301 switching system handles 30–
40 million calls per week and node, and its reliability is
measured at 31 milliseconds downtime per year. It contains
1.7 million lines of Erlang code (14).

In 1994, the ROOM language appeared. ROOM blends
object-oriented and real-time concepts and techniques and
is thus particularly well suited for modeling telecommuni-
cation systems. Elements of ROOM were added to the
Unified Modeling Language (UML) (15,16) version 2.0
that was released in 2004. In 2006, the Object Management
Group (OMG) released the specification for the Systems
Modeling Language (SysML) (17), which is a modeling
language for systems engineering that seems to be a pro-
mising addition to the toolset of software engineers in the
telecommunications domain. A good chance exists that

telecommunication systems engineering might benefit
from the recent research and commercial interest in gen-
erative (18) and model-driven development (19). Domain-
specific notations have been used by telecommunication
engineers for a long time, and new technologies might
enable the generation of systems based on descriptions
using these notations.

The complexity of switching systems by sheer size of
code is impressive. Already around 1980, several hundred
programmers had produced over one million lines of code
over a five-year period for the DMS-100 switching system
family of Northern Telecom. This company represents over
15,000 procedures in 1500 modules (12). The systems of
today are even more complex. A code base of several million
lines of code is not unusual. Still, these systems fulfill high-
quality demands on availability, reliability, fault tolerance,
and so on. Such systems can be upgraded and maintained
while being in operation! A downtime of some few minutes
per year is already perceived as ‘‘bad quality.’’

Considering their complexity, it may come as no surprise
that architecture is and always has been an important issue
in telecommunication systems design. Architecture is and
was a means to deal with complexity. Of course, the term
‘‘architecture’’ was not defined clearly, but it is absolutely in
line with the design paradigm of the 1970s: The modulariza-
tionofasystemisregarded as its architecture.Architectures
were not modeled, as we tend to say today, but rather
described either informally, usually in some sort of box-
line diagrams, or formally with Simple Declarative Lan-
guage (SDL). It is interesting to read which design concep-
tions were identified for new software architectures in the
1980s: independent subsystems for call control (features),
signaling, and hardware control; data abstractions parti-
tioned for each subsystem; formal communication protocols;
concurrent and asynchronous operation of each subsystem;
terminal-oriented control; layered virtual machines; FSM
Specifications;applicationprograms;andsystemsprograms
(20)—the topicality of the list is astonishing.

Before ‘‘software engineering’’ was an established field,
telecommunication engineers had already established a
discipline of engineering highly reliable, scalable, and
robust real-time systems, which are open and standar-
dized—and it included software. When the telecommunica-
tion engineers included programmable devices into their
systems, they integrated these devices into a hardware-
driven environment. Thus, they applied a lot of their hard-
ware principles to software. In effect, they made it trans-
parent to the system, whether an entity is realized in
hardware or software. Simply speaking, the software
was and still is developed as seriously and effortful like
hardware. Because failures and downtimes of telecommu-
nication components are not an option, much energy is put
into the design and architecture of those systems. The
engineering aspect of the software part of telecommunica-
tion systems resembles many qualities of systems engineer-
ing: standardized interfaces, message-orientation, casca-
ding, and composition as main design principles; exhaus-
tive testing routines including load and stress testing,
configuration management, process driven develop-
ment—to name just a few—are best practices in the tele-
communication domain.

2 SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS

The concepts, techniques, and requirements we describe
in the historic overview above are still relevant to software
engineering for telecommunication systems today. It is the
way telecommunication engineers design their systems in
the large and in the small that is special. That is why we put
our focus on these two topics in the following sections. Other
software engineering issues like requirements engineering
and traceability, configuration and product management,
software product lines and families, testing, project man-
agement and so on do not differ that much from software
development practices in other domains such as large
enterprise information systems.

Regarding software engineering for telecommunica-
tion systems, no established body of literature exists
yet, which reflects a commonly agreed viewpoint on how
telecommunication systems are (to be) designed in the
large and in the small. However, if you spend some years
in the telecommunication industry among systems
designers and software developers and study existing
publications, then you will notice that they somehow
speak ‘‘one language’’ and design their software in similar
ways. This article is an attempt to uncover the elements of
design of telecommunication system engineers to provide
valuable input for the interested reader. A more elabo-
rated version of the systematics presented here can be
found in Ref. 21.

SYSTEMS DESIGN IN THE LARGE

In telecommunications, systems design in the large must
deal with the notion of distribution, layering, planes, and
resource control. We will discuss issue in turn.

Distribution

A telecommunication system is made up of entities like
switching systems, radio base stations, and mobile phones.
These entities are physically distributed in space; they are
either located in a fixed place (like switching systems) or are
mobile (like mobile phones). These entities collaborate with
each other to provide a service to end users. Thus, the most
obvious characteristic of a communication system is its
aspect of distribution. If two or more devices, processes,
users or—more abstractly—entities are physically spread
in space but want to collaborate, they somehow have to
bridge spatial distribution and establish communication.
We will give rather informal definitions of the concepts
related to distribution in the following section. Formal
definitions of these concepts can be found in Ref. 22.

Communication. ‘‘It is all about communication’’—this
slogan characterizes concisely the motto of telecommunica-
tions. We can classify three types of communication used
in telecommunications. The classification scheme bases
on the question ‘‘Who controls whom?’’ We can distinguish
three basic combinations of the exertion of control between
two communicating parties: (1) no side exerts control, that
is no side has a state model of the other side to influence the
other side’s behavior in a controlled way, which we call
data-oriented communication; (2) only one side exerts con-
trol, which we call control-oriented communication; (3) both

sides exert control, which we call protocol-oriented commu-
nication.

Any communication type can be realized in a connection-
oriented mode, a connectionless mode, or even other kinds
of communications styles. We will come back to this in the
discussion of communication services. Note that commu-
nication in telecommunications is message-oriented and
that communication relations are strictly specified in form
of protocols.

Decomposition and Remote Communication. What is dis-
tribution? With the eyes of software engineers, we tackle
the notion of distribution in two steps: First, distribution is
an issue of logical decomposition. Second, we need to con-
sider the effects of remote communication.

We can view a telecommunication system as a logical
entity that encapsulates some functionality and offers
interfaces (often called ‘‘ports’’) for message-based commu-
nication with the environment. We assume that the beha-
vior of the system is given, meaning that we know the set of
allowed messages per interface, their format, how the
system reacts on messages delivered to the interfaces
and which messages it emits to the environment. The
behavior of a telecommunication system is often said to
provide services to its environment, usually its end users.

A first step toward distribution is that the entity under
consideration can be logically split up (‘‘decomposed’’) into
separate parts, each part representing a new entity. The
parts also communicate to each other via messages through
their interfaces. The interfaces are connected via so-called
channels, which are sometimes also called connectors. A
channel is an idealized communication medium, which
transfers messages faultless and in an instant. In other
words, a logical entity gets refined by a network of sepa-
rated but cooperating parts. From an outer perspective, the
conglomerate of parts preserves the behavior that can be
experienced at the interfaces of the single entity. The
decomposition process is recursive.

The second step is to take into account that the com-
munication over a channel is not ideal but suffers from the
real-world effects of remote communication. When the
decomposed parts get spread over, say, hosts or physical
nodes, they require some sort of communication means to
bridge the spatial separation. The interaction of the
decomposed parts in a distribution network is not fault-
free per se; it is sensitive to disturbances on the commu-
nication medium and dependent on the properties of the
connection. We condense the whole communication med-
ium in a model of a nonideal channel, which we call
complex connector. The complex connector is a component
that represents the properties of the communication chan-
nel and its effects on the transmission of messages. These
properties are called QoS attributes and include all rele-
vant characteristics, such as reliability, throughput,
jitter, and delay (21,22).

To summarize: A telecommunication system is a dis-
tributed system. To its end users, a telecommunication
system appears as a single, coherent, service-provisioning
system. As a matter of fact, the system is decomposed into a
number of physically separated but interacting parts,
called nodes, which constitute a communication network.

SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS 3

The effects of remote communication are captured by the
notion of a complex connector.

Network Topology and Communication Services. Readers
might be familiar with the fact that communication sys-
tems are composed of a stack of layers. We will come back to
layering in a subsequent article. In this section we view
each layer in a communication system as a self-contained
unit without any dependencies to other layers. Each layer
unit consists of distributed entities communicating remo-
tely to each other via a network that interconnects the
entities. In short, we treat a layer as a distributed network
in its own right.

Here, we are concerned with what kind of communica-
tion services and communication resources the distributed
entities use to bridge their spatial distance; for the time
being we are not interested in how it is achieved via a lower
layer. That means our understanding of a network is an
abstract model of distribution, which includes a network
topology (who is permitted to communicate with whom) and
the used communication services. A communication service
can offer connection-oriented or connectionless communi-
cation means.

Connection-Oriented Communication Services. With the
help of the complex connector, we can describe static con-
figurations of distant connection-oriented communication.
The complex connector concentrates all impacts that the
transmission may have on the messages to be conveyed. In
reality, connections are rarely static; they are rather a form
of a long-lasting, dynamically created connection. Nor-
mally, connections are set-up and released on demand.
Thus, we need something; we can ask for inserting and
removing a complex connector between any two ports at
some point in time. The connection-oriented communica-
tion service fulfills this role. In a telecommunication sys-
tem, circuit switching is a connection-oriented
communication services.

Connectionless Communication Services. A style of com-
munication exists that requires no connection. Instead,
messages include the address of the receiver. The sender
hands the message over to a connectionless communication
service, which distributes the message according to the
address to a destination. If the sender wants to get a
response on a delivered message from the receiver, the
then sender has to include its source address in the message
as well. In a telecommunication system, packet switching is
a connectionless communication service.

Addressing. Addressing is crucial for communication sys-
tems in general and telecommunication systems in parti-
cular. In the following, we focus on addressing in the context
of telecommunication systems. Generally speaking, an
address denotes a concept to identify and locate objects in
a defined scope. The scope is the so-called address space (or
name space), which is an assembly of addresses with each
address being unique in the assembly. An address associa-
tion relates two addresses to each other; the association is
directed pointing from one address (the source address) to
another address (the destination address). Source and des-

tination address must not belong to the same address
spaces; wemustmakea difference betweenexternal address
associations and internal address associations. External
address associations relate addresses of different address
spaces, internal address associations relate addresses of the
same address space.

For example, the difference between connection-
oriented communication and connectionless communica-
tion is basically different ways of working with address
spaces. In connection-oriented communication, commu-
nication interfaces are associated with a fixed (better:
temporarily fixed) communication partner. Information
that is pushed to the interface is conveyed to the commu-
nication partner; reversely, information the communica-
tion partner wants us to notice, pops up at the interface. In
that sense, the interface is a sort of representation of the
other party, and the interface identifier is an internal
address denoting the other party. So, talking to another
party must either use another interface (that is bound to
the other party) or newly bind the interface with the other
communication party.

For connectionless communication, the general addres-
sing structure looks different. The arrangement of associa-
tions is so that two communication partners do not
maintain direct relations between their address spaces.
Instead, local addresses are associated to a third party,
which is an external address space. Consequently, users
who communicate connectionless need to have an internal
representation of the address space outside their locally
addressable scope. They need to specify the destination of
their messages. Users who communicate connection-
oriented do not have to do that.

Remarks. Definitions on distribution to be found in lit-
erature suffer preciseness on the one hand and generality
on the other hand. We think that at an abstract-level
distribution is primarily a logical conception and that it
is adequate to give a formal definition based on a proper
model. Secondary, distribution has a technical dimension.
A formal definition of distribution is given in Ref. 22.

No notion exists of a complex connector in open systems
interconnection (OSI), but in practice, telecommunication
engineers work with this concept. As an evidence for that
statement, have a look at channel substructures in SDL (23,
p.121), which basically captures the same intention as
complex connectors.

Addressing is a delicate issue in modeling and an
neglected issue in software engineering.

Layering

Layering is one of the oldest techniques in software engi-
neering to structure a system. Possibly the first, who made
systematically use of layering was Dijkstra, he used layer-
ing for the design of the THE operating system (24). Layer-
ing is also a key structuring principle in the design of
communications systems, be they telecommunications or
computer networks. In the previous section, we intention-
ally left out the issue of layering. We simply said that one
can look at each layer of a distributed communication
system individually. Now it is time to explain, how several

4 SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS

layers of communication networks are interconnected and
make up a layered system.

In the next section, we will briefly outline the seven layer
reference model (RM) of open systems interconnection(25)
(OSI). We will then distill the key idea that underlies
layering. This progression will naturally lead us to two
viewpoints one can have on a communication network: a
network-centric or a node-centric perspective. Finally, we
discuss the concept of planes.

The OSI Reference Model. Layering is a means to step-
wise provide higher-level services to a user or the next
‘‘upper’’ layer, and to separate levels of services by pre-
cisely defined interfaces. This overall design principle is
reflected by the use of protocol stacks. The OSI RM is the
most prominent framework for a layered communication
architecture. We do not repeat OSI RM to the full extent,
we just would like to remind the reader of the basic out-
look, see Fig. 1: Several network layers are stacked on
each other, each layer realizing a complete network of its
own. Higher-layer network services rely on lower layer
services until a physical layer is reached. Additional
introductory information can be either retrieved from
the X-Series of the ITU-T recommendations or from text-
books. Almost any textbook on computer networks and/or
data communications gives an introduction into OSI RM,
for example Ref. 26.

We wish to highlight one important point. OSI RM
clearly distinguishes two communication relations: layer-
to-layer (‘‘vertical’’) communication from peer-to-peer
(‘‘horizontal’’) communication. ‘‘Vertical’’ communication
refers to the exchange of information between layers
(that is levels of services usually within the same physical
entity) in the form of Service Data Units (SDU). ‘‘Horizon-
tal’’ communication refers to the exchange of information
between remote peers. Remote peers are physically dis-
tributed and communicate with each other according to a
protocol in the form of protocol messages, also called Pro-
tocol Data Units (PDU), thereby sharing the same level of
protocol conventions. PDUs are the vehicles for SDUs. A
single SDU may be packaged into one or more PDUs. Such
PDUs are also called data PDUs. Nondata PDUs are called
controlPDUs. In a multilayer communication architecture,
a service provisioning layer becomes the service user of the
next lower layer.

Communication Refinement. To understand how two dif-
ferent networks of service levels are connected through
layering, one has to know that Fig. 1 unveils only half the
truth. The dotted lines labeled with ‘‘Peer protocol’’ do not
represent protocol relations only. Each double-headed
arrow ‘‘hides’’ a complete infrastructure of a communica-
tion service for this specific layer. The communication
service per layer is an abstract model of the style of com-
munication (connection-oriented, connectionless), proper-
ties (delay, reliability, etc.), topology, and addressing
schema. This abstract model can be refined into a more
concrete model, which is in effect the next lower layer of the
protocol stack. The next lower layer includes the commu-
nicating entities (the boxes next to the double-headed
arrow) and the communication service of that layer. In
essence, layering is the result of refining communication
services; we call this communication refinement.

Communication refinement leads to two different view-
points on distributed layered communication systems. Both
viewpoints are important for systems modeling in software.

Network-Centric Viewpoint. If we regard the communi-
cation service as an abstract model of the means of com-
munications, suppressing all the details of lower layers,
then we just observe a network of communicating entities of
one layer using the communication service. This view is the
network-centric viewpoint on communication systems.
This view Let’s one to look onto a network as a distributed
system ignoring layering. We made use of this technique in
the section about distribution.

Node-Centric Viewpoint. If all communication services
are resolved by a refinement, which represents the next
lower layer, we end up with a situation similar to Fig. 1: We
have a communication service at the very bottom, a phy-
sical media, which cannot be resolved more. The pile of
boxes labeled ‘‘Open System’’ on the left and on the right
represent the entities that, together, make up the software
or hardware, which resides on a physical node in a network.
This view is the node-centric viewpoint on communication
systems.

Planes

One concept that has turned out to be extremely useful is
the concept of planes. The concept was introduced in Inte-
grated Services Digital Network (ISDN) (27), taken over in
Global System for Mobile communication (28), and cur-
rently shapes the network architecture of Universal Mobile
Telecommunication System (UMTS) (29). The distinction is
usually in three planes, namely the control plane, the user
plane, and the management plane.

A plane encapsulates service functionality and may
have internally a layered (protocol) structure. Planes are
an organizational means on top of layering and commu-
nication refinement, respectively. In telecommunications,
the user plane provides for user information flow transfer
(data PDUs), along with associated controls (e.g., flow
control, recovery from errors); the control plane performs
call and connection control functions (control PDUs), deal-
ing with the necessary signaling to set up, supervise, and

Application

Presentation

Session

Transport

Network

Data Link

Physical

Physical media for OSI

Open
System

Open
SystemPeer protocol

Figure 1. OSI seven layer reference model; see Ref. 25, p. 31.

SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS 5

release calls and connections; the management plane takes
care of (1) plane management functions related to the
system as a whole including plane coordination and (2)
functions related to resources and parameters residing in
the layers of the control and/or user plane (30).

OSI RM is not prepared to handle planes (nor is the
Internet architecture), which is also one of its major defi-
ciencies. The control and user plane are not separated. In
software engineering, the organization of a system in
planes is almost unknown. On a case-by-case basis,
designers had and still have to invent individual solutions
to handle planes in their models. For example, in ISDN the
engineers introduced a synchronization and coordination
function (SCF) as a major component of the management
plane. The SCF is connected to the highest layer of the user
plane and to the highest layer of the control plane to
coordinate and synchronize the required collaboration of
planes (27).

Resource Control

A field that is largely ignored in computer networks but is of
importance in telecommunications is the issue of resource
control—most popular textbooks on computer networks and
distributed systems do not touch on the subject at all. The
term resource does not only include physical resources such
as adaptors, switchboards, echo cancellers, codec conver-
ters, and so on, but also resources implemented in software.
On a software level, resources can be combined, added by
some functionality, and offer value added services that
make a user believe to access a ‘‘new’’ kind of resource
that is more than the sum of its physical components.
Take for example an alarm clock and a radio, add a compos-
ing layer, and you will get a clock radio. The new feature,
that the radio turns on at a certain alarm time, is more than
any of the resources could provide in isolation.

We recognize a need to pay some special attention to
resource control. As was mentioned previously, telecom-
munication systems are sliced in a control and a user plane;
basically, it is the control plane that controls the user plane.
In most cases this control relationship breaks down to
resource control. The control plane controls resources of
the user plane. Although the control plane and the user
plane may operate as largely independent networks, the
combining spots are locations of resource control. Usually,
the node hosting the resource brings together the control
and the user plane. Traditionally, the aspect of resource
control has been a local, internal issue. Often, inside such a
node, the border between controlling and controlled beha-
vior is blurred and not fully separable. At best, the
designers define a proprietary application programming
interface (API) for the resource.

One of the intentions of UMTS has been to clearly
separate the control and the user plane and to avoid the
blur of the control\slash user plane inside nodes hosting
resources; this idea is the so-called architectural split
introduced with UMTS. As a result of that, the telecommu-
nication sector of the international telecommunication
union defined a protocol, a control-oriented protocol in
our terminology, that describes how a user can control a
switching center. This protocol is called media gateway

control protocol, it is specified in H.248 (31) and has been
taken over as a standard by IETF as well, see RFC 3015
(32). With the definition of a protocol and the separation in a
resource user and a resource provider all prerequisites are
given to aim for physical separation of both roles. In the
UMTS architecture, these two roles are logically fulfilled by
the media gateway controller and the media gateway. It is
up to a manufacturer to produce two individual nodes or a
single combined node. Important is that the distinction has
been made logically.

Remarks

We mentioned the OSI RM. The Reference Model of the
Internet Architecture, is related loosely to OSI RM, see Ref.
26. Other frameworks, which address the topic of distrib-
uted communication system and propose a terminology, a
set of conceptions, and a system architecture organization.
The most important frameworks to mention are the refer-
ence model for open distributed processing (33,34), the
telecommunications information networking architecture
(35), and the object management architecture (36,37),
(38,39) which is the basis for the Common Object Request
Broker Architecture. Basically, all three frameworks spe-
cify an environment to develop, install, and maintain dis-
tributed applications.

SYSTEMS DESIGN IN THE SMALL

When it comes to systems design in the small, the most
apparent issue a software engineer is confronted with is
that telecommunication systems are real-time systems. An
understanding of real-time systems and a suitable
approach for designing such systems is required. The use
and the understanding of the term ‘‘real-time system’’ is not
consistent in the literature. It is a mixture of characterizing
attributes and structural properties of a system. For exam-
ple: On one hand, it is said that a real-time system fulfills
timing constraints, (i.e., a real-time system has to react to a
stimulus in a certain time frame); in this example the
guaranteed response time is an attribute, which charac-
terizes a real-time system. On the other hand, real-time
systems are often classified as ‘‘embedded systems.’’ An
embedded system is recognized as a specific part of a larger
system, which is a structural aspect. Besides this lack of
clarity in terminology, there is not even common agreement
on the word ‘‘real-time.’’ The following paragraphs sum-
marize findings from studying the literature.

What is a Real-Time System?

Real-time systems are defined as those systems in which
the correctness of the system depends not only on the logical
result of computation, but also on the time in which the
results are produced (40). After more than a decade this
definition still seems to be the greatest common denomi-
nator. Here, ‘‘real-time’’ is an attribute to ‘‘system.’’
Because of their specific field of application, additional
attributes are usually associated with real-time systems.
Included in this category are e.g., reliability, fault toler-
ance, adaptability, and speed (41).

6 SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS

Hard versus Soft Real-Time

The most popular classification is the distinction in hard
and soft real-time systems. Hard real-time systems are
under deadline constraints. Passing a deadline is consid-
ered unacceptable. A soft real-time system retains some
tasks that are still valuable for execution even if they miss
their deadlines (41). Several (42) telephony systems belong
to the class of soft real-time systems: Passing of deadlines is
accepted as long as the number of failures is below a defined
threshold. Although this explanation might be true in
general, some components in telecommunication networks,
have to fulfill hard real-time constraints. For example, the
time delay perceived as acceptable for voice transmission in
a speech conversation places tough time limitations on a
mobile phone for speech encoding- and decoding including
cyphering and channel coding.

Rough Structure

A very rudimentary structure of the basic elements of a
real-time system is given by Ref. 42: It consists of hardware,
sensors and effectors, the environment, and software. The
sensors and effectors interact with the environment;
the software controls the actions of the hardware via a
hardware interface. A similar description using different
terminology can be found in Ref. 43: A real-time system
consists of a controlling and a controlled system. The con-
trolling system interacts with its environment using infor-
mation about the environment available from various
sensors and activating elements in the environment
through ‘‘actuators.’’ The controlled system can be viewed
as the environment with which the computer interacts.

A loose reasoning describes why timing aspects and
structural issues of a real-time system are related: Timing
correctness requirements develop because of the physical
impact of the controlling systems’ activities on its environ-
ment. That means that the environment needs to be mon-
itored periodically and sensed information needs to be
processed in time (41). This finding implies that we have
to distinguish the environment from a controlling part, and
detecting and acting devices are needed.

What is an Embedded System?

The definition of an embedded system is vague; it mainly
describes a structural aspect. In its most general form, an
embedded system is simply a computer system hidden in a
technical product (44). A more concrete definition is that
most embedded systems consist of a small microcontroller,
and limited software situated within (e.g., an automobile or
a video recorder) (45). Three issues seem to be important
here: (1) size matters, (2) an embedded system is part of a
technical system, and (3) it serves the purpose of the
technical system and not vice versa. Issue (3) especially
helps delimitate nonembedded systems from embedded
systems. A Personal Computer (PC) for instance is a gen-
eral purpose computing machine, the software and the
central processing unit (CPU) are an integral part of it.
This eliminates a PC from being an embedded system. A
counterexample might be a mobile phone. The digital signal
processing chip and its software serve a single purpose: to

offer phone functionality. Embedded systems may or may
not have real-time constraints (43), but many real-time
systems are embedded systems (45).

To summarize: The special character of systems, that
have a physical impact on the ‘‘real’’ world by means of
reactiveness is most significantly described by the require-
ment on the timing constraints to be met by the system.
Such systems are called real-time systems. Additional prop-
erties, which reflect other aspects of the physical impact
character, include reliability, fault tolerance, stability,
safety and so on. As yet no commonly agreed list of proper-
ties exists that constitutes is a real-time system. Moreover,
the physical impact nature of such systems implies a rough
structure: a controlling part interacting with the environ-
ment (the controlled part) through sensors and effectors.
The hardware mediates between the sensors\slash effec-
tors and the software of the system. Many real-time sys-
tems are embedded systems, which means they serve a
specific purpose in a technical system, which is actually the
case for all nodes in a telecommunication system.

Despite these various aspects of real-time systems and
partly confusing definitions from the literature, designing
real-time systems is a well-established domain. When
designing telecommunication systems in the small, it
becomes obvious that just a few key design concepts are
required, such as active objects for modeling threads and
message-orientation for modeling asynchronous communi-
cation. Interestingly, these concepts can also be used for
systems design in the large. This statement means if care-
fully selected, then one can use the same language for both
systems design in the small and in the large. In the section
on Real-time object-oriented modeling, we describe a lan-
guage that can be used for both tasks.

MODELING TELECOMMUNICATION SYSTEMS

In this section, we describe different modeling approaches
by surveying the available literature. We then go on to
describe ROOM, which is a language in widespread use in
the telecommunications domain. ROOM can be used for
both systems design in the large and in the small.

Modeling Approaches

Since the UML has been standardized by the object man-
agement group (OMG) and published in many books, mod-
eling is on everybody’s lips. Also, the importance of the
architecture level in software systems is more and more
respected, see for example OMG’s initiative on Model Dri-
ven Architecture (46). However, when it comes to modeling
telecommunication systems the fundus of literature is even
smaller.

In Some books, the object-oriented paradigm has been
used to model communication systems. One example is
Object-Oriented Networks: Models for Architecture,
Operations, and Management (47). The book uses not
only conventional object-oriented modeling concepts but
also advanced concepts from specialization theory. The
syntax used to capture the semantics of models is the
Abstract Syntax Notation One (see Ref. 48). The author
develops a classification scheme adapted to the needs of

SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS 7

communication networks that enables a designer to
develop understandable and meaningful object and class
diagrams. The approach is descriptive and the techniques
presented seem to be suited for modeling product archi-
tectures. The risk is that given ‘‘facts’’ are just schemati-
cally modeled (it is relatively easy to note down an object
diagram for almost anything) without any reflection about
the actual functioning and the actual meaning for the
architecture.

Another example is Object-Oriented Network Protocols’’
(49). The book’s intention is to provide a foundation for the
object-oriented design and implementation of network com-
munication protocols. Although modeling of communica-
tion systems is not the topic of the book, it is worth to have a
look at the modular communication system framework
developed by the author. It gives an insight how protocols
could be modeled and that object-orientation is a practical
approach in protocol design.

A completely different approach is taken by ‘‘Modeling
Telecom Networks and Systems Architecture: Conceptual
Tools and Formal Methods’’ (50). This book condenses more
than 20 years of experience gained on the subject within
Ericsson. It presents a method and a language for modeling
telecommunication system and is based on the processing
system paradigm (51). The whole field of communication
systems is covered, and a stringent methodology and clas-
sification scheme is discussed. The interested reader might
also look at Ref. 52.

Real-Time Object-Oriented Modeling

Subsequently, we briefly present the ROOM language to
give the reader a notion of what kind of concepts software
engineers in the telecommunication system domain work
with. Even though the publication of ROOM dates back to
1994, it is still modern and a rare example of a well-docu-
mented design language, see Ref. 42. Many features of the
ROOM language have been incorporated into the UML
(15,16). Nonetheless, we have chosen to describe ROOM,
because it represents a coherent set of features required for
designing (embedded) real-time systems in the telecommu-
nication domain; the UML is just a rich set of modeling
concepts a designer can choose from. In the following sec-
tion, we will briefly discuss structural elements of ROOM,
behavioral elements and mention model execution.

Structural Elements. Actor, Port, Message, Protocol. The
ROOM language is built on the notion of an actor. An actor
represents a physical device or a software unit; it is a sort of
active object that clearly separates its internals from the
environment. Everything inside the actor, meaning the
actor’s structure and behavior, is not visible to the environ-
ment. Only at distinct points of interaction, so-called ports,
the actor interfaces the environment. A port is somewhat
comparable to an interface as known for example, in the
UML but the comparison blurs two important facts. First,
ports in ROOM are not method interfaces but message
interfaces. A message consists of a message name, priority,
and data. Messages may be incoming and/or outgoing at a
port (the direction is always defined from the viewpoint of
the actor). So, ports are message exchange points between

the actor and its environment. Secondly, a port is not only an
interface that tells the environment how to use the actor but
also is a definition of the actor’s expectations on the envir-
onment. Therefore, a protocol is always associated with a
port, which defines the set of incoming and outgoing mes-
sages that may pass the port. An actor is specified by means
of an actor class. An actor class is symbolized by a rectan-
gular box with a thick black border. A port is figured by a
small squared box that appears on the border of an actor
class symbol. An example is shown in Fig. 2.

Actor References. An actor can be composed of other
actors. In ROOM, references describe compositions. That
means, an actor class specification may reference zero or
more other actor class specifications. Such a reference is
called actor reference; it is a way to include other actors into
the name space and life-time context of an actor. Per actor
reference, a replication factor determines the maximum
number of valid actors of the referenced actor class that can
be put in context. By default, the replication factor is set to
one. The following types of references can be distinguished:
an actor reference may be fixed, optional, imported or
substitutable. These types specify run-time relations.
For a fixed actor reference, actors of the referenced actor
class are incarnated along with the incarnation of the
composing actor. If the actor reference is declared as
optional, then actors of the referenced actor class can be
dynamically created and destroyed during the life time of
the composing actor. The maximum number of allowed
actors (given by the replication factor of the actor reference)
may not be exceeded. If declared as imported, then an actor
that already exists in another context of another composing
actor is plugged-in at incarnation of the composing actor.
That means a single actor instance may act in two or more
contexts of a composing actor: in the context of the ‘‘origi-
nal’’ composing actor that created the actor and owns the
permission to destroy it and in the context of one or more
other composing actors which imported that specific actor.
Imported actor references are a powerful tool to define
different roles for different contexts of an actor and thereby
to define patterns of collaboration. A substitutable actor
reference means that any actor instance of that actor
reference can be replaced by another actor, provided that
the other actor’s class specification is compatible with the
referenced actor class of the actor reference. Here, compat-

Figure 2. Actor class containing all types of actor references.

8 SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS

ibility means that the other class specification supports at
least the same set of ports (with the same message schema).

Binding, Contract. To build up complete structures of
actor references, some means to interconnect their ports
must exist. This connection is done by so-called bindings,
sometimes also referred to as connectors. A binding con-
nects a port of an actor reference either with the port of
another actor reference or with a port of the composing
actor class. Bindings define communication relationships
on class level. The auxiliary concept of a contract consists of
a binding and the two interface components (ports) that the
binding connects.

Example. An example of an actor class specification that
encompasses all the discussed modifications of an actor
reference is shown in Fig. 2. Actor references are symbo-
lized by a rectangular box with a thinner black border and
can only appear ‘‘inside’’ the context (also called decom-
position frame) of an actor class specification. Names for
actor references begin with a small letter. Names for
bindings begin with a small letter by convention. Some-
times, to avoid visual clutter, the names of bindings and
ports are not displayed in the diagram. The replication
factor of a replicated actor reference is displayed inside a
box in the upper right-hand corner. Optionality is indi-
cated by stripes. If imported, the actor reference is colored
grey. Substitutability is indicated by a ‘‘+’’ symbol in the
upper left-hand corner.

The Behavior Component. A component specifies the
actor class’ behavior. In fact, the behavior component is
invisible; the behavior component’s border is colored in
grey just for demonstration purposes. Thus, all ports of
an actor class specification that are not connected some-
where else are actually connected to the actor’s behavior
component; they are called end ports. Otherwise, they are
called relay ports. All other ports ((p3, p4) that ‘‘hang
around’’ are also implicitly connected to the behavior com-
ponent. Reference ports (the name for ports of actor refer-
ences) that are not involved in a contract are actually not in
use, see p5.

Layer Connection, Service Provision Point, Service Access
Point. The notion of layers is a built-in concept in ROOM.
Layering is a form of abstraction that is used to define
‘‘islands’’ of self-contained functionality that provide ser-
vices to another ‘‘island’’ of functionality. In contrast to the
horizontal structure of peer-to-peer communication
between ports, layers represent a vertical organization
of a system. The terms ‘‘horizontal’’ and ‘‘vertical’’ are
apparently vague and indicate the difficulty for giving a
precise definition of layers. Actually, the sort of interfaces
used to describe layers are very close to ports. The inter-
face of an actor that provides (layer) services towards
another actor is called service provision point (SPP).
The SPP may be replicated; the number of replications
is given by a replication factor. Its counterpart, the inter-
face that accesses services of an SPP is called service
access point (SAP). SAPs can be replicated as well but
they need to. The SPP and the SAP each have a protocol

associated with it that determines the interface type.
Similar to a binding, a SPP and a SAP are connected to
each other by a layer connection.

Behavioral Elements. ROOMcharts, Scheduler. We
already mentioned the behavior component of an actor.
In ROOM, behavior is specified in form of state machines,
so-called ROOMcharts, a variant of Harel’s statechart
formalism (53). Actors in ROOM are reactive objects with
their own thread of execution, which is a typical character-
istic for real-time systems. All incoming messages at the
behavior component are events that may trigger a transi-
tion to leave a state, of perform some action and enter the
same or another state. For a state, entry and exit actions
can be specified. Actions are specified in a detail level
language such as C, C++, or Java. A guard (a boolean
condition) can be attached to a transition, which that pre-
vents the transition from firing if the condition evaluates to
false. The concept of composite states enables the modeler to
nest states within states. Once all actions have been exe-
cuted (ROOM follows the ‘‘run-to-completion’’ processing
model), the actor ‘‘falls asleep’’ waiting for additional events
to process. Because incoming events are queued, the actor
may immediately become busy again until the event queue
is empty. Events can also be deferred (i.e., the processing is
postponed). Message priorities change the order of event
processing usually to ‘‘the more important, the more up
front in the event queue.’’ In principle, the scheduling
semantics of the scheduler can be adapted to any other
scheme. ROOM flexible in that respect to cover a wide range
of real-time applications. For example, time-based schedul-
ing (‘‘the more urgent, the more up front in the queue’’) may
be an alternative.

Data Classes. Complex data structures can be modeled
using the concept ofdata classes. Data classes correspond to
traditional classes: they define data and methods that
operate on them. In contrast to actors, data objects do
not have their own thread of control; they are extended
state variables that are encapsulated within the actor and
are accessible by the behavior component. Typically, data
classes are based on classes provided by the detail-level
programming language. That means within an actor the
modeler can use and stick to a traditional object-oriented
design paradigm. In addition to their role as variables, data
classes are used to define the data carried in messages.
Remember that a message consists of a name, a priority,
and data, or more precisely, a data object. This single data
object is an instance of a predefined or user defined data
class. The basic requirement put on data objects is that they
must be serializable for message transfer by the ROOM
virtual machine.

Model Execution. In principle, two possible methods
exist to execute ROOM models: (1) the model is accompa-
nied by an interpreter called the ROOM virtual machine,
which is a hypothetical platform implemented in software
that interprets ROOM models; and (2) the elements of the
model are mapped to their functional equivalents in the
target environment, which usually is a real-time operating
system.

SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS 9

BIBLIOGRAPHY

1. IEEE Standard Glossary of Software Engineering Terminol-
ogy. Standard 610. 12-1990, Piscataway, NJ: IEEE Standards,
1990.

2. J. Meurling and R. Jeans, A Switch in Time—An Engineer’s
Tale, Chicago, IL, Telephony Publishing Corp., 1985.

3. F. S. Viglinate, Fundamentals of stored program control of
telephone switching systems. Proceedings of the 1964 19th
ACM National Conference, 1964, pp. 142.201–142.206.

4. J. Meurling and R. Jeans,TheEricsson Chronicle: 125Years in
Telecommunications, Stockholm, Sweden: Införmationsförla-
get Heimdahls, 2000.

5. O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured
Programming, New York: Academic Press, 1972.

6. I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard,
Object-OrientedSoftwareEngineering, Reading, MA: Addison-
Wesley, 1992.

7. D. Herzberg, UML-RT as a candidate for modeling embedded
real-time systems in the telecommunication domain, in R.
France and B. Rumpe, (eds.),UML ’99—TheUnifiedModeling
Language: Beyond the Standard; Second International Con-
ference, FortCollins, CO, 1999, LNCS 1723, Springer, 1999, pp.
330–338.

8. Specification and Description Language (SDL), ITU-T Recom-
mendation Z.100, International Telecommunication Union,
November 1999.

9. Message Sequence Chart (MSC), ITU-T Recommendation
Z.120, International Telecommunication Union, November
1999.

10. CCITT High Level Programming Language (CHILL), ITU-T
Recommendation Z.200, International Telecommunication
Union, October 1996.

11. Introduction to the CCITT Man-Machine Language, ITU-T
Recommendation Z.301, International Telecommunication
Union, November 1988.

12. B. K. Penny and J. W. J. Williams, The software architecture
for a large telephone switch, IEEE Trans. Communicat. Com-
municat. Software, COM-30(6): 105–114, 1982.

13. J. Armstrong, Programming Erlang: Software for a
ConcurrentWorld, Raleigh, NC: The Pragmatic Programmers,
2007.

14. J. Armstrong, Concurrency oriented programming in erlang,
Proc. of theGermanUnixUserGroup’s Frühjährsfachgespräch
(FFG), 2003.

15. Unified Modeling Language: Superstructure, Version 2.1.1,
Technical Specification, Object Management Group (OMG),
February 2007.

16. Unified Modeling Language: Infrastructure, Version 2.1.1,
Technical Specification, Object Management Group (OMG),
February 2007.

17. OMG Systems Modeling Language (OMG SysML) Version 1.0,
Technical Specification, Object Management Group (OMG),
September 2007.

18. K. Czarnecki and U. W. Eisenecker, Generative Programming:
Methods, Tools, and Applications, New York: ACM Press/
Addison-Wesley Publishing Co., 2000.

19. T. Stahl and M. Völter, Model-Driven Software Development,
London: John Wiley & Sons, 2006.

20. D. A. Lawson, A new software architecture for switching
systems, IEEE Trans. Commun. Communication Software,
COM-30(6): 17–25, 1982.

21. D. Herzberg, Modeling telecommunication systems: From
standards to system architectures, PhD thesis, Aachen Uni-
versity of Technology, Department of Computer Science III,
2003.

22. D. Herzberg and M. Broy, Modeling layered distributed com-
munication systems, Formal Aspects Comput., 17(1): 1–18,
2005.

23. J. Ellsberger, D. Hogrefe, and A. Sarma,SDL—Formal Object-
oriented Language for Communicating Systems, London: Pre-
ntice Hall, 1997.

24. E. W. Dijkstra, The structure of the ‘‘THE’’-multiprogramming
system. Commun. ACM, 11(5): 341–346, 1968.

25. Information Technology—Open Systems Interconnection—
Basic Reference Model: The Basic Model, ITU-T Recommenda-
tionX.200, International TelecommunicationUnion,July 1994.

26. A. S. Tanenbaum, Computer Networks, 4th edition, Upper
Saddle River, NJ: Prentice Hall PTR, 2003.

27. ISDN Protocol Reference Model, ITU-T Recommendation
I.320, International Telecommunication Union, November
1993.

28. J. Eberspacher and H.-J. Vögel, GSM—Switching, Services
and Protocols, New York: Wiley, 1998.

29. B. Walke, M. P. Althoff, and P. Seidenberg, UMTS—Ein Kurs,
J. Schlembach Fachverlag, 2001.

30. B-ISDN Protocol Reference Model and its Application, ITU-T
Recommendation I.321, International Telecommunication
Union, April 1991.

31. Gateway Control Protocol, ITU-T Recommendation H.248,
International Telecommunication Union, June 2000.

32. F. Cuervo, N. Greene, C. Huitema, A. Rayhan, B. Rosen, and J.
Segers, Megaco Protocol Version 1.0. Standard RFC 3015,
Internet Engineering Task Force, November 2000.

33. Information Technology—Open Distributed Processing—
Reference model: Overview. ITU-T Recommendation X.901,
International Telecommunication Union, 1997.

34. J. R. Putman, Architecting with RM-ODP, Englewood Cliffs,
NJ: Prentice Hall, 2001.

35. M. Chapman and S. Montesi, Overall Concepts and Principles
of TINA—Version 1.0, Tina baseline, TINA-C, February 1995.

36. R. M. Soley and C. M. Stone, Object Management Architecture
Guide—Revision 3.0. Document ab/97-05-05, Object Manage-
ment Group (OMG), June 1995.

37. R. M. Soley and C. M. Stone, Object Management Architecture
Guide, 3rd edition, New York: Wiley, 1995.

38. T. J. Mowbray and W. A. Ruh, Inside CORBA: Distributed
Object Standards and Applications, Reading, MA: Addison-
Wesley, 1997.

39. Common Object Request Broker Architecture: Core Specifica-
tion—Version 3.0. Specification formal/2002-11-03, Object
Management Group (OMG), November 2002.

40. J. Stankovic, Misconceptions about real-time computing: A
serious problem for next generation systems, IEEE Comput.,
21(10): 10–19, 1988.

41. A. B. Tucker, Real-time and embedded systems, in The Com-
puter Science and Engineering Handbook, Boca Raton, FL:
CRC Press, 1997, pp. 1709–1724.

42. B. Selic, G. Gullekson, and P. T. Ward, Real-Time Object-
Oriented Modeling, New York: John Wiley & Sons, Inc., 1994.

43. J. A. Stankovic, Real-time and embedded systems, ACM Com-
put. Surv., 28(1): 205–208, 1996.

44. D. E. Simon, An Embedded Software Primer, Reading, MA:
Addison-Wesley, 1999.

10 SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS

45. J. A. Stankovic et al. Strategic directions in real-time and
embedded systems. ACMComput.Surv.,28(4): 751–763, 1996.

46. J. Miller and J. Mukerji, Model driven architecture (MDA).
Technical Description ormsc/2001-07-01, Object Management
Group (OMG), 2001.

47. S. Bapat, Object-Oriented Networks—Models for Architecture,
Operations, and Management. Englewood Cliffs, NJ: Prentice
Hall, 1994.

48. J. Larmouth, ASN.1 Complete, San Francisco, CA: Morgan
Kaufmann, 1999.

49. S. Boecking,Object-OrientedNetworkProtocols., Reading, MA:
Addison-Wesley, 2000.

50. T. Muth, Modeling Telecom Networks and Systems Architec-
ture: Conceptual Tools and Formal Methods, Berlin: Springer,
2001.

51. T. Muth, D. Herzberg, and J. Larsen, A fresh view on model-
based systems engineering: The processing system paradigm,

in Proc. of the 11th Annual International Symposium of The
International Council on Systems Engineering (INCOSE
2001); Melbourne, Australia, 2001.

52. T. Muth, Functional Structures in Networks: AMLn—A Lan-
guage for Model Driven Development of Telecom Systems,
Berlin: Springer, 2005.

53. D. Harel, Statecharts: A visual formalism for complex systems,
Sci. Comp. Prog., pages 231–274, 1987.

DOMINIKUS HERZBERG,
TIM REICHERT

Department of Software
Engineering, Heilbronn
University, Germany

SOFTWARE ENGINEERING FOR TELECOMMUNICATIONS SYSTEMS 11

Towards Modeling Language Interoperability:
Getting Meta-Level Architectures right

Dominikus Herzberg and Tim Reichert
Department of Software Engineering

Heilbronn University
74081 Heilbronn, Germany

herzberg|reichert@hs-heilbronn.de

Nick Rossiter
School of Computing, Engineering & Information Sciences

Northumbria University
Newcastle Upon Tyne, United Kingdom

nick.rossiter@unn.ac.uk

Abstract: The growing interest in Domain Specific Modeling (DSM) languages and
the increasing demand for model driven approaches (like OMG’s vision of a Model
Driven Architecture, MDA) suggest that modeling languages should strive towards
interoperability. In short, modelers could benefit from a symbiotic coexistence of DSM
and GPM (General Purpose Modeling) languages, like the UML. Key to modeling
language interoperability is the underlying meta-level architecture, which we studied
exemplarily on UML. First, we unveil a design flaw in the presentation of UML’s meta-
level architecture. Second, formal considerations show that the meta-level architecture
is limited to closed interoperability, which is a constraint from which approaches such
as MDA suffer.

1 Introduction

There are two main approaches to modeling in software engineering: one either makes sys-
tematic use of a General Purpose Modeling (GPM) language or one chooses to use a Do-
main Specific Modeling (DSM) language. Today, the Unified Modeling Language (UML)
[OMG06b, OMG06c] is the most prominent GPM language used in software development
favoring an object-oriented modeling paradigm. The UML is standardized by the Object
Management Group (OMG), has become widely spread in academia and industry and is
regarded as the lingua franca among software engineers. On the opposite, there are many
different DSM languages, each language addressing a specific field or domain. By nature,
these languages usually resist standardization because of their specialization and limited
scope of use. Standardization is replaced by advocacy for DSM and tool sets to ease the
creation of new DSM languages. Among others, Microsoft is a strong advocate of DSM1.

1http://msdn.microsoft.com/vstudio/DSLTools

The appearance of commercial and open source DSM environments (such as MetaEdit+
from MetaCase2 and the Eclipse Modeling Project3 from the Eclipse Foundation) show
that DSM and DSM languages are becoming more and more popular and maturing.

Domain Specific Languages (DSLs), be they classified as modeling languages or not, have
always played an important role in the toolbox of software developers and engineers. In
programming, some DSLs are or are almost de facto standards available in many pro-
gramming languages. Take, for example, SQL (Structured Query Language) and Regular
Expressions. Both languages cover highly specialized domains: SQL is for data manipu-
lation, retrieval and creation in relational database systems, Regular Expressions are for
text pattern matching. Such DSLs are often either accessible via libraries or are directly
embedded in a host language. Perl and Tcl, for instance, have the syntax for Regular Ex-
pressions built into their language. Simply speaking, in programming, general purpose and
domain specific languages live a symbiotic coexistence.

In modeling, the situation is similar but has not evolved to the same level of maturity.
The motivation to invent or choose a DSM language is a modeler’s experienced lack of
“purposefulness” of a GPM language in terms of preciseness and expressiveness. A DSM
language serves the purpose to have a precise (or at least a better) means of communication
about models within a specialized field or domain with its own conceptions and relation-
ships. Using a GPM language would be of no benefit, since it would neither support the
notation nor the language semantics required to call for a valid and meaningful model.
A DSM language incorporates domain and methodological knowledge about a subject or
field, whereas a GPM language does not [Her03]. Examples of DSM languages are ERD
(Entity Relationship Diagrams) [Che76] for conceptual data modeling, ROOM (Real-Time
Object-Oriented Modeling) [SGW94] for architecture and real-time systems modeling and
AMLn for modeling telecommunication systems [Mut05].

Like in programming, a GPM language can host a DSM language – and vice versa. Be-
cause of the level of abstraction provided by some DSM languages, it might make sense
to use a DSM language, say, for high-level architecture modeling (ROOM could be taken
as an example) and embed a GPM language like the UML for class modeling within the
architectural units of composition of the DSM language. Similarly, a GPM language such
as the UML can be used for structural modeling embedding Petri Nets, to give one exam-
ple, in form of a DSM language for behavior modeling. In short, a modeler could benefit
from a symbiotic coexistence of modeling languages.

The state of affairs is that modeling language interoperability is of much practical use but
not common practice, mostly due to a lack of research and tool support. This comes to
some surprise, because the UML is designed with a lot of foresight in this respect. The de-
signers of the UML structured the language into several layers of design, each upper layer
being a sort of tool set for the lower layer directly underneath. This design constitutes a n
layered meta-model architecture, with n = 4 in the case of UML. Language extensions, so
called profiles, can be plugged into the language at defined points in the meta-architecture
of the UML, thereby providing maximum flexibility for language integration. For that pur-
pose, the OMG has even created a framework for meta-data management, the Meta Object

2http://www.metacase.com
3http://www.eclipse.org/modeling

Facility (MOF) [OMG06a].

In our research, we strive for modeling language interoperability, which includes language
integration – a goal of much practical value. We want to achieve two main goals: First,
we would like to create an infrastructure, wherein a modeling language designer can de-
fine modeling languages and their interoperation. We aim for a formally sound approach
based on a meta-layer architecture and will use Category Theory for that. Consequently,
we do not rely on concrete frameworks like MOF. Second, with the help of such an in-
frastructure, we want to improve a modelers capabilities to reuse existing languages for
certain challenges providing a seamless way of interoperation of syntax and semantics
of concrete modeling languages. As an example, such features are required for a sound
realization of OMG’s vision of Model Driven Architecture (MDA) [OMG03]. We see
these features as a crucial prerequisite for the model and meta-model transformations as
sketched in [OMG03]. The novelty of our approach lies in the strict and systematic use of
meta-modeling for language interoperability.

In our current state of the project, we learned that the meta-model architecture is broadly
misunderstood. This misunderstanding hinders formal considerations and tool implemen-
tations. It is partly also responsible for the lack of automated tool support for UML ex-
tensions. So, first, we want to get this part right in this paper, which we value as our main
contribution. Subsequently, in section 2, we will first introduce the common understanding
and presentation of the meta-level architecture. After that, in section 3, we will present a
more detailed and more complete view on an informal level. In section 4, we will com-
plement our discussion by a formal view in categorical terms. Section 5 discusses related
research. Finally, section 6 provides our conclusions and an outlook on further research
issues.

2 Common Presentations of the Meta-Level Architecture

As if it were a confirmation of the emerging trend to take care of the design of modeling
languages, some new textbooks are around, which discuss the overall architecture of the
UML. Quite often, these books present the meta-level architecture (also called meta-model
or meta-data architecture) more or less detailed in the spirit of Figure 1a); as an example,
take the UML book by Chris Rupp et al. [JQZ+05]. There are four layers, usually labeled
M0 to M3 from bottom to top, each lower layer being an instance of its direct upper layer.
Figure 1a) is also the viewpoint of the current and previous versions of the UML standard,
see e.g. chap. 7.10 in [OMG06b].

In 1999, one of the authors (Herzberg) had seen another depiction of the meta-level archi-
tecture, see Figure 1b) [HvW99], which left him in irritation: Why is there an “instanceOf”-
arrow pointing from M0 to M2? There was no reason to identify, why this “extra” arrow
was needed.

Today, some years later, it is clear, why Figure 1a) is incomplete. The additional arrow in
Figure 1b) is not superfluous. On the opposite, it is needed to get the meta-level architec-
ture right.

M3

M0

M2

M1

«instanceOf»

«instanceOf»

«instanceOf»

«instanceOf»

M3

M0

M2

M1

«instanceOf»

«instanceOf»

«instanceOf»

a) b)

Figure 1: Two competing presentations of the 4-level meta-data architecture

3 An Informal View on the 4-Level Meta-Architecture

Let us have a closer look at the architecture of meta-levels on an informal level first. We
will start at the top left, see Figure 2. To make the discussion concrete, we refer to con-
ceptions as you know them from modeling with classes and objects. The abbreviation CD
stands for Class Diagram. A class diagram consists of classes, associations, inheritance
and so on. These conceptions, the conceptions you are allowed to use for a CD are defined
by CM, the Class Model, as we call it. The CM is a specification of conceptions, of which
a concrete CD is an instance of. That’s why there is an arrow labeled with “instanceOf”
between CD and CM. The Class Meta-Model (CMM) specifies the language constructs
available for use on CM. In other words, the CM is one concrete specification of a model-
ing language, whose specification concepts are defined by CMM. In that sense, CM is an
instance of CMM. All this is pretty straight forward and not in conflict with the common
understanding of meta-level architectures.

However, and this is often overlooked, the same argumentation holds on the row below.
An Object Diagram (OD) consists of objects, values, references etc. These conceptions
are defined by the Object Model (OM). The Object Meta-Model (OMM) specifies the
language constructs available for use on OM. Again, this is pretty straight and clear. Now
comes the interesting part.

Of course, the world of classes and the world of objects are somehow interconnected. This
interconnection is defined through a relationship between the Class Model (CM) and the
Object Model (OM). This relationship determines how OD and CD are related. Objects are
instances of classes, meaning that a certain class is the input to a factory, which “produces”
an object, whose type property is a pointer to the class and whose values are data stores

CD
«instanceOf»

CM CMM
«instanceOf»

OD
«instanceOf»

OM OMM
«instanceOf»

«instanceOf»
is defined by is defined by

M1

M0

M2 M3

Figure 2: A detailed, but informal view on the meta-level architecture

including pointers to the class attributes. That is what we call an “instanceOf” relationship.
This relationship is defined by the OM/CM arrow.

The means to describe an interconnection between OM and CM is defined by the arrow
between OMM and CMM. Otherwise, one could only describe self-contained models of
OM and CM, but not interrelate these models, which – in turn – would prevent to specify
the “instanceOf” relationship between OD and CD. As one can observe, the reasoning is
absolutely “symmetric”.

Now, let’s do some grouping. Let us refer to OD as meta-level zero (M0) and to CD as
meta-level one (M1). CM and OM together constitute meta-level two (M2), CMM and
OMM constitute meta-level three (M3).

We are done and have come up with a completely coherent description of the meta-level ar-
chitecture, which – in principle – could be extended by further, higher levels. As you might
have noticed, Figure 1b) is a condensed form of Figure 2: The arrow pointing from M2 to
M3 in Figure 1b) actually comprises two arrows. Obviously, Figure 1a) is incomplete.

One might ask, why we have not grouped OD and CD in the very same way, as we have
done it for OM and CM and for OMM and CMM, respectively. Such an argument would
call for a three-level meta-architecture instead of a four-level meta-architecture. However,
there is finer point in here. Of all arrows labeled with “instanceOf”, there is only one
arrow, whose semantics can be arbitrarily defined in the meta-level architecture: it is the
arrow between OD and OD, which is in fact defined on M2. In that sense, the “instanceOf”
arrow between OD and CD is of a different kind than that all the other “instanceOf” arrows.
Seen from this point of insight, even Figure 1b) is not 100% precise. It should point out
the different quality of the “instanceOf” relation between M0 and M1.

By the way, could there be reasons to introduce higher levels in the meta-level architec-
ture, like M4, M5 etc? Yes, there could. The arrow between OMM and CMM on M3 is a

necessity in order to have means to define the relationship between CM and OM in M2. If
you want to define the relationship between OMM and CMM yourself, you need a higher
level, which provides the infrastructure to do so. The four-level meta-architecture is the
smallest number of levels needed by a modeling language designer in order to have means
to specify M0, M1 and their interrelationship of instantiation. In practice, higher levels are
possible but rarely needed.

We have a hypothesis, why Figure 1a) is such a widely spread viewpoint on the meta-level
architecture of the UML and on meta-level architectures in general. M2 also covers the
execution semantics of M0 (we refer now to Figure 2) including the interplay with M1
for e.g. instantiation processes. The execution semantics are a weak point of the UML and
have always been a target of criticism. We speculate that because of this weakness people
have become unaware of the relation between M0 and M2. Still, it is a bit worrying that
experienced language designers have overseen this flaw for many years in the UML and
MOF specification. Without this complete understanding, the basis for modeling language
interoperability is weak as well.

4 A Formal, Categorical View on the 4-Level Meta-Architecture

Category theory [ML98] offers many facilities for representing information systems. It
has been extensively applied to problems in Computer Science [BW99] and Software En-
gineering [Fia04]. The basic constructions of category, functor and natural transformation
enable mappings to be represented between objects, categories and functors respectively.
Cartesian categories enable products and exponentials (connectivity) to be represented,
within the limits of initial and terminal objects. In commuting diagrams, different paths
between the same two objects must yield the same result, enabling equations to be derived
for equality for the composition of the arrows in each path.

For interoperability previous work has shown that the property of adjointness is particu-
larly valuable for modelling situations where there is a relationship between levels but such
relationship is not as simple as equivalence or isomorphism [RHN06]. An adjoint relation-
ship is represented by a 4-tuple < F, G, η, ε > where F,G are functors F : A −→ B
and G : B −→ A, A and B are categories, η is the unit of adjunction and ε is the counit
of adjunction. In an equivalence relationship, η is 0 and ε is 1, indicating respectively that
GF (A) = 1A and 1B = FG(B), where A is an object in A and B is an object in B. Thus
with equivalence the application of the pair of functors to an object returns the starting
object.

In a more general relationship, there may be a change in state through the application of
the pair of functors. This change is represented by the following two mappings:

η : 1A −→ GF (A)

ε : FG(B) −→ 1B

If two functors, say F and G, are adjoint, they are written as F a G. In such a case
the application of the functors provides a unique solution for the relationship between
them. Neighbouring adjoints can be composed in a natural manner. So for the functors
F : A −→ B, H : B −→ C, G : B −→ A and I : C −→ B, we can write the 4-tuple as
< HF,GI, η, ε > if there is adjointness F a G and H a I . The values for η and ε in such
a case are a composite of those for each single adjunction [RHN06].

In previous work [RHN06], a four-level architecture has been developed to handle inter-
operability. This has assumed a relatively simple structure as shown in Figure 3 with four
levels of categories connected by three levels of mappings (functors) with the relation-
ship of adjointness holding for each pair of two-way functors and every composed pair of
two-way functors.

Concepts
Policy a MetaMeta

Constructs
Org a Meta

Schema

Data

Instance a Classify

Instance

mission

management

enterprise

information
execution
application

?6MetaMeta Policy

?6
Meta Org

?6Classify
?

6

Sys Platform

Figure 3: Interpretation of levels as natural schema in general terms

With UML the simplest categorical diagram, corresponding to Figure 1a), is shown in
Figure 4a). This shows that at level M0 we have the Object Diagram (OD), at level M1
we have the Class Diagram (CD), at level M2 we have the Conceptual Model (CM) and at
level M3 we have the Class Meta-Model (CMM). There is some apparent difference in the
naming of the levels. OD in UML corresponds to Data in the four-levels and CD to Schema
but CM does not match Constructs and CMM does not match Concepts. However, CM
describes the concepts available to make an OD and on this basis seems close in purpose to
Constructs, which describes the data structuring facilities available to a database designer,
such as Table and Primary Key in a relational system. The content of CMM is clearly
critical. If it refers to object-oriented abstractions such as inheritance, then it is similar to
Concepts in the sense of Figure 3. Otherwise there is a difference here in the definition of
the levels.

The functors connecting the levels in Figure 1a), IN01 : M0 −→ M1, IN12 : M1 −→
M2 and IN23 : M2 −→ M3, correspond to Instance of relationships in Figure 1a) and to
Classify, Meta and MetaMeta respectively in Figure 3. Categorically, Figure 1a) is not very
interesting, lacking the arrows Policy, Organisation and Instance where Instance refers
to Instantiation, the opposite of Instance of. The absence of two-way arrows means that
adjointness cannot be tested in Figure 4a), which means that it is a much less constrained

M3 (CMM)

M0 (OD)

M2 (CM)

M1 (CD)

IN23

IN12

IN01

a) b)

M3C (CMM)

M0O (OD)

M2C (CM)

M1C (CD)

INM23

IN12

IN01

M3O (OMM)

M2O (OM)

INO23

IN02

IN22

IN33

Figure 4: a) simple diagram relating OD to CMM, b) more complex diagram relating OD to CMM,
with addition of OM and OMM

structure than that envisaged in Figure 3. It is though possible to compose the functors:

Sys = IN23 ◦ IN12 ◦ IN01

so that Sys represents the overall mapping from the object diagram to the class meta
model.

Figure 4b) is the equivalent of Figure 1b). The situation here is more complex and there
is more scope for useful categorical reasoning. In particular some commuting diagrams
can be constructed. The relationship IN22 : M20 −→ M2C between the Object Model
(OM) and the Class Model (CM) can be captured by the equation:

IN12 ◦ IN01 = IN22 ◦ IN02

The dashed line in the diagram in Figure 4b) for IN22 indicates that this arrow is not
known directly, but is inferred from the commuting requirements. The relationship IN33 :
M30 −→ M3C between the Object Meta Model (OMM) and the Class Meta Model
(CMM) can be captured by the equation:

IIN33 ◦ IN023 = INM23 ◦ IN22

where again the dashed line in the diagram in Figure 4b) for IN33 indicates that this arrow
is not known directly, but is inferred from the commuting requirements.

While the comparison of the object model with the class model in Figure 4b) does offer
valuable extra insight into the interoperability potential of UML, the lack of two-way ar-
rows (for adjointness) suggests that UML has not been designed with anything but local
interoperability in mind. The object-oriented paradigm itself does have some downward
arrows. For instance a constructor instantiates an object for a class in the same way as the
Instance arrow in Figure 3. Imported classes (as in Java utilities) might be interpreted as
constructs to be organized by the designer. At the top level, the type of object-oriented
system might be declared as a Policy mapping from information system abstractions to the
constructs to be made available.

5 Related Work

Since the late 1960s, the majority of the research on interoperability has been done in
the area of databases. Of this work, especially the approaches which deal with language
translation are relevant [CG98, ZCT91]. In comparison to our work, these approaches are
focused on database languages, where for example an object oriented general purpose lan-
guage hosts a domain specific database query language, while our focus is on modeling
languages. More recent research on interoperability has been done in the context of the
Semantic Web [BLHL01]. Here, languages that are used for modeling ontologies have to
be interoperable so that distributed knowledge described with different languages can be
utilized. [SLW+04] is an example of a formal approach to ontology language interoper-
ability based on lattice theory. Interoperability approaches based on category theory are
model management [AB01] and the approach by Goguen [Gog05] that is based on insti-
tutions [GB92]. Model management is a generic approach to schema integration that is
based on generic operators for data model translation, transformation and merging, but it
does not cover language interoperability in the sense that we described above. The work
by Goguen is important for interoperability between logical description languages, such
as F-Logic or the family of Description Logics, but less relevant for modeling languages
in general. Programming Language interoperability is a concern in approaches such as the
.NET framework by Microsoft, where interoperability is achieved by translating program
code to an intermediate language [BKR04]. A very similar approach has been taken for
modeling languages [BM05], where the intermediate language is a hypergraph to which
all schemas are translated in order to achieve interoperability. A closer investigation into
the four-level-architecture of the UML and the connections between levels and models is
given in [RFBLO01], where a UML virtual machine based on the UML’s four levels is
implemented. However, even this approach is in the realm of Figure 1a).

6 Conclusions and Future Research

In this paper, we brought forward the argument that the common understanding of meta-
level architectures is oversimplifying, thereby hindering modeling language interoperabil-

ity. We believe that modeling language interoperability between GPM and DSM languages
is crucial for the further development of software engineering and key to visions like MDA.
We presented a detailed and consistent view on the meta-level architecture, first informally
then formally. Formal considerations gave further argument that a GPM language like the
UML is prepared for internal interoperability but not for external interoperability. This
insight was deduced from a generic meta-level architecture for interoperability.

Our conclusion is that modeling languages need an extended meta-level architecture simi-
lar to the Natural Schema shown in Figure 3. Otherwise, approaches like the MDA remain
closed and limited to the use of UML and languages integrated into the UML infrastructure
only. We think that only open approaches are future-proof and stimulate further develop-
ment of DSM languages.

Currently, we are investigating a very generic approach on interoperability, which includes
modeling languages, database schemas and ontologies. It looks like that a unifying ap-
proach is feasible. It would help us transfer research results on e.g. database interoperabil-
ity to modeling language interoperability and vice versa.

References

[AB01] S. Alagic and P. A. Bernstein. A Model Theory for Generic Schema Management. In
8th International Workshop on Databases and Programming Languages, pages 228–
246, 2001.

[BKR04] Nick Benton, Andrew Kennedy, and Claudio V. Russo. Adventures in interoperability:
the SML.NET experience. In PPDP ’04: Proceedings of the 6th ACM SIGPLAN in-
ternational conference on Principles and practice of declarative programming, pages
215–226, 2004.

[BLHL01] Tim Berners-Lee, James Handler, and Ora Lassila. The Semantic Web. Scientific
American, 284:34–43, 2001.

[BM05] M. Boyd and P. McBrien. Comparing and Transforming Between Data Models via an
Intermediate Hypergraph Data Model. Journal on Data Semantics, 4:69–109, 2005.

[BW99] Michael Barr and Charles Wells. Category Theory for Computing Science. CRM, 3rd
edition, 1999.

[CG98] Bogdan Czejdo and Le Gruenwald. Schema and Language Translation. In Manage-
ment of Heterogeneous and Autonomous Database Systems, pages 157 – 174, 1998.

[Che76] Peter P. Chen. The Entity-Relationship Model – Towards a Unified View of Data. ACM
Transactions on Database Systems, 1(1):9–36, 1976.

[Fia04] José Luiz Fiadeiro. Categories for Software Engineering. Springer, 2004.

[GB92] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for specification
and programming. Journal of the ACM, 39:95–146, 1992.

[Gog05] Joseph A. Goguen. Data, Schema, Ontology and Logic Integration. Logic Journal of
the IGPL, 13:685 715, 2005.

[Her03] Dominikus Herzberg. Modeling Telecommunication Systems: From Standards to Sys-
tem Architectures. PhD thesis, Aachen University of Technology, Department of Com-
puter Science III, 2003.

[HvW99] Dominikus Herzberg and Lars von Wedel. Erweiterungsmechanismen der UML. OB-
JEKTspektrum, pages 56–59, Juli/August (4) 1999.

[JQZ+05] Mario Jeckle, Stefan Queins, Barbara Zengler, Chris Rupp, and Jürgen Hahn. UML
2 glasklar: Praxiswissen für die UML-Modellierung und -Zertifizierung. Hanser, 2nd
edition, 2005.

[ML98] Saunders Mac Lane. Categories for the Working Mathematician. Springer, New York,
2nd edition, 1998.

[Mut05] Thomas G. Muth. Functional Structures in Networks: AMLn – A Language for Model
Driven Development of Telecom Systems. Springer, 2005.

[OMG03] MDA Guide Version 1.0.1. Technical Report, Object Management Group (OMG),
June 2003.

[OMG06a] Meta Object Facility (MOF) Core Specification, Version 2.0. Technical Specification,
Object Management Group (OMG), January 2006.

[OMG06b] Unified Modeling Language: Infrastructure, Version 2.1. Technical Specification, Ob-
ject Management Group (OMG), April 2006.

[OMG06c] Unified Modeling Language: Superstructure, Version 2.1. Technical Specification, Ob-
ject Management Group (OMG), April 2006.

[RFBLO01] Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, and Nosa Omorogbe. The Archi-
tecture of a UML Virtual Machine. In Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 327–341. ACM Press, 2001.

[RHN06] Nick Rossiter, Michael Heather, and David Nelson. A Natural Basis for Interoperabil-
ity. In Proceedings of I-ESA’06, Interoperability for Enterprise Software and Applica-
tions Conference, LNCS. Springer, 2006.

[SGW94] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-Oriented Modeling.
John Wiley & Sons, Inc., New York, 1994.

[SLW+04] Baisheng Shi, Zongtian Liu, Yuqing Wang, Hong Yu, and Meili Huang. The lattice
approach to ontology language interoperability. In Computer and Information Tech-
nology, 2004. CIT ’04. The Fourth International Conference on Computer and Infor-
mation Technology, pages 265–272, 14-16 Sept. 2004.

[ZCT91] Roberto Zicari, Stefano Ceri, and Letzita Tanca. Interoperability between a rule-based
database language and an objet-oriented database language. In First International
Workshop in Multidatabase Systems, pages 125–134, April 1991.

