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Abstract Anticipation is a property of any system and resides in its semantics as
a duality of the system itself. The relationship is an adjointness between levels,
requiring contravariancy. The intension/extension levels are impredicative in na-
ture but this recursive characteristic can be represented formally in category theory.
This paper focuses on the vital role of contravariancy in adjointness, permitting a
structured re-ordering of the categories involved. A worked example of a three-level
architecture for an information system is provided, illustrating the alternation of in-
tension/extension pairs, the adjointness of two-way functors between each level, the
(bi)functors for linking intension to extension and the locally cartesian closed struc-
ture of the underlying categories. The dynamic anticipatory aspect of contravariant
mapping, relative to static covariant mapping, is highlighted, reinforcing the view
that contravariancy underpins anticipation.

Keywords: contravariance, duality, composition, adjointness, intension.

1 Nature of Anticipation

Anticipation is usually described in predicative terms, that is a semantic descrip-
tion forming part of the properties of the system. The focus of attention is often
predictive but prediction is only one aspect of predication [12]. Anticipation is clas-
sified as of two main types, weak and strong [6]. The weak form occurs where the
anticipation is achieved through a model of the system. The strong form occurs
where the anticipation resides in the anticipatory system itself. For the strong form
anticipation is therefore of the nature of the system and forms part of the Universe,
residing in natural processes and relationships [11]. This implies impredication with
recursion from higher levels. Likewise from no more than its definition, the Universe
consists of entities related one to the other. Thus each entity affects every other. To
represent such multi-body interdependence, first-order formalisms are inadequate
and a higher order formalism such as category theory is required and at a higher
level to investigate the property of existence. A cartesian closure of category theory
provides for the relationship between any pair of entities including every possible
path between them. This cartesian closure is found in the highest structure possible
in category theory: the identity natural transformation designated as the topos of
Figure 1. This highest level arrow composes structures of categories and functors
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and constitutes the full cartesian closed category of a topos. However, the natural
arrow is double-headed as a composition of the adjoint functors but with a nat-
urally built-in parity. Although as just explained it may be easier to understand
the structure in Figure 1 bottom-up in the way that models are usually built-up,
nevertheless process can only exist as a whole from top-down and the full diagram
represents a natural occasion or “actual event” as first introduced in the metaphysics
of Whitehead [33].

Fig. 1: Natural Transformations of Composing Functors themselves compose in the
highest possible category, a Topos

Metaphysics provides access to everything below. Furthermore there may not be
a bottom to begin with for the topos does not come naturally equipped with an ini-
tial object but one may be selected1. This structure implies closure only at the top.
If the Universe is a topos with a cartesian closed structure and anticipatory systems
are featured as part of the Universe then an anticipatory system is locally cartesian
closed. This enables us to explore the characteristics of anticipatory systems and
we find that because of this structure any system has anticipation. Local carte-
sian closure is demanded from contravariancy. Anticipatory systems are therefore
contravariant. It is this contravariancy that is explored in this paper.

2 Duality and Variance

If every entity is related to every other it follows that the relationship is both ways
but not just a simple inverse relationship. This is apparent from the laws of physics

1This selection is an exercise of the axiom of choice in set theory which as shown by Diaconescu
is equivalent to a Boolean world [5] but this introduces a closed-world assumption that reduces an
internal Heyting logic to a Boolean one.
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Fig. 2: a) Category C and its opposite Cop; b) Covariant functor F : C −→ D; c)
Covariant functor F : Cop −→ D; d) Contravariant functor F̄ : C −→ D

but Newton’s third law with its ”equal and opposite” represents only the first order
view of classical physics. Indeed to examine the inverse relationship in more detail
we need to consider a number of concepts, including duality and variance together
with the latter’s two alternatives of covariance and contravariance. In category
theory duality is concerned with the reversal of the direction of arrows within a
category. A category C of objects and arrows between the objects will have a dual
Cop with arrows reversed. Figure 2(a) shows an example of an opposite (dual)
category Cop for C where the arrow f : a −→ b has been reversed to f op : b −→ a.
The whole structure of the Universe of these both-ways relationships is then the limit
obtained by considering the total going one way with the total going the opposite
way, represented by the product Cop×C, which gives rise to the principle of duality
throughout the Universe. The fundamental nature of duality is emphasised in Figure
3. Figure 3(a) shows a category with a terminal object, which has a unique arrow
on to it from every object in the category. The opposite of this category, in Figure
3(b), shows a typing arrow from the terminal object to every object in the category.
This is the simplest example of typing as contravariant. For the terminal object is
the identity functor defining the category.

It is to be noted that the arrow in category theory can be usefully interpreted as
typing. The objects of Figure 3 could just as well themselves be categories in some
higher category or even more powerfully as functors in a yet higher category. The
typing arrow may be a natural transformation crossing more than one level. The
direction of typing in a set theory approach to typing is usually the other way round
with the arrow drawn in the opposite direction. This arises because set theory does
not have an inherent concept of covariancy-contravariancy.

Duality is a common enough concept in mathematics, philosophy and most of
the sciences with some renowned examples like the mind-body dualities [4] and, in
anticipatory systems, the duality of incursion [1]. It also appears in other versions
of contrast as between the dynamic and the static and between global and local.
To capture the full effect and subtleties of opposing views and relationships a single
view of duality is needed from variance as process [32, 23]. In our work particular
interest is taken in the dual relationship between Intension INT, the specification
of the type of an entity, and Extension EXT, the instances that conform to the
type specification. Figure 4 shows the adjointness between the categories INT and
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Fig. 3: (a) A Category with a Terminal Object; (b) The Opposite Category with
Typing Arrows

EXT. Each arrow has a dual role. F is the contingent arrow of intension and the
determinant arrow of extension while G is the contingent arrow of extension and
the determinant arrow of intension. T the composition GF is the global ontological
and S the composition FG is the local ontology. Each of these compositions may
be compared in Figure 5, at the next level up with the contribution they make
to their respective identity functors by means of the creative unit of adjunction
η : 1F −→ GF ; and the qualitative co-unit of adjunction ε : FG −→ 1G (from the
interpretation in earlier work [13]).
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Fig. 4: Adjointness F a G for Functors between Categories INT for intension and
EXT for extension

Fig. 5: Adjointness expressed with Natural Transformations η and ε

Duality is not a closed Boolean view. Rather it encapsulates opposite orderings
within a single (functorial) concept of variancy. These may be conveniently labelled
covariant and contravariant but only relative one to the other and not as absolute
descriptions. With a covariant functor the arrows are mapped from the source
category onto the target category without any reversal of the direction of the arrows.
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As shown in Figure 2(b), the covariant functor F takes category C to D by mapping
the arrow f : a −→ b in C to Ff : Fa −→ Fb in D. A further example in Figure
2(c) shows the covariant functor F taking an opposite category Cop to a category
D by mapping the arrow f op : b −→ a in Cop to Ff op : Fb −→ Fa in D. Although
a dual category is involved, the functor is covariant as the order of the arrows is
not reversed by the functor. With a contravariant functor the arrows in the source
category are reversed in direction before being mapped onto the target category.
Figure 2(d) shows a contravariant2 functor F̄ taking category C to category D by
mapping f : a −→ b in C on to F̄ f : F̄ b −→ F̄ a in D. Without a reversal there
may be a technical problem, particularly in typing, in performing the mapping of
source a on to target F̄ b and source b on to target F̄ a.

In terms of levels, positive and negative at the lowest level of basic set opera-
tions correspond to covariant and contravariant respectively at the functorial level
and comonad and monad respectively at the top level. At the lowest level paradoxes
occur, such as in set theory; these can be avoided by moving to higher levels, includ-
ing the intension-extension relationship [29]. Also at the lowest level, commutativity,
which is assured at higher levels, may not hold. In mathematics, anticommutativity
is the property of an operation, such as subtraction, in which swapping the position
of any two arguments negates the result. In physics anticommutative operations
are commonly used and termed antisymmetric. Cross-product is often described
as anticommutative but this holds only in the extension. So for sets of values:
A×B 6∼= B ×A. If the labels, that is the intension, of the components of the prod-
uct are included in the operation as well, then it is commutative with A×B ∼= B×A
as the meaning of A and B on each side is retained.

Systems theory is a case in point where these different views need to be dis-
tinguishably integrated [22]. Thus for anticipatory systems, anticipation is an in-
stantaneous, local static instantiation of a dynamic global feature that looks either
forward or back3. The natural categories of process as advanced by Whitehead en-
compass this contravariancy found in reality for which he uses the term ‘dipolar’.
Thus the process of becoming is dipolar. He refers to the two poles as formal and
mental or conceptual ([33] at p.45, [32] at p.74). Whitehead also uses alternative
terms ‘bipolar, physical and mental’ ([33] at p.108, [32] at p.165). Whitehead’s term
prehension (category XII of Explanation), meaning capture, is equivalent to adjoint-
ness with the counit ε as positive prehension and the unit η as negative prehension

2We use a bar over a functor name to indicate that it is contravariant, following early standard
expositions such as Mac Lane [17]

3That is forward and back in an ordering that may be some kind of time. Which is covariant,
which is contravariant may be arbitrary but the underlying ordering is paritous, that is the abstract
property of parity and does not therefore imply is necessarily reversible as asserted from time to
time in classical mathematics [10]. This may be the rationale behind the second law of thermo-
dynamics that may only be relied on to first order as the laws of thermodynamics are statistical
in nature and not categorically exact. For a study of process in the thermodynamic context see
[3, 18].
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([33] at pp.23-24, [32] at p.35). Negative prehension corresponds to contravariance
in adjointness. Whitehead’s term concresence, corresponding to the operation of a
free functor ‘snapping’, is also relevant to adjointness as it indicates the simultaneity
with which the unique adjoint solution is sought. Mac Lane’s ‘insertion of genera-
tors’ ([17] p.87), used later in Figure 14, describes the action of the free functor and
may be identifiable with Whitehead’s concresence.

Contravariancy has long been needed in physics, for example in stress-strain
relationships. It was brought to the fore in category theory by Lawvere in 1969
as he contended it to be the basic property of proof theory4. Lawvere tentatively
extended his ideas by examining the duality between Conceptual and Formal as
shown in the Appendix (section 1). However, Lawvere does not seem to be aware
of Whitehead’s earlier work cited above on formal/physical and mental/conceptual
aspects in 1929. Lawvere in developing the idea of a hyperdoctrine, later in his paper,
indicates that the mapping between the categories Formal and Conceptual is by
adjoint contravariant functors with the arrows in Formal reversed as in the opposite
category Formalop before being mapped on to the Conceptual category as shown
in the Appendix (section 2).

Ultimate contravariancy is a three-level structure of arrows that is sufficient to
provide complete closure with internal contravariant logic providing a generalisation
of negation. Further levels are redundant as at the top level an arrow from one
natural transformation to another gives a composition of the natural transforma-
tions, not a new level [21]. Contravariancy across levels provides more sophisticated
reversals such as to be found in the intricacies of reverse engineering. The structure
of a cartesian closed category is entirely given by adjointness. Indeed Lawvere’s
structure of a hyperdoctrine is an adjointness between cartesian closed categories,
including quantification and logic. Such ultimate contravariancy is to be found in the
universal adjointness between any pair of functors contravariant one to the other to
provide both the quantitative and qualitative semantics of intension-extension logic
as shown in Figure 6 with the adjunctions ∃ a ∆ and ∆ a ∀, that is ∆ the diagonal
functor is right adjoint to ∃ and left adjoint to ∀.

INT EXT∆

∃

∀

�
-

-

Fig. 6: Adjointness ∃ a ∆ a ∀ for Functors between Categories INT for intension
and EXT for extension

For application it is necessary to relate Lawvere’s terminology to Whitehead’s
metaphysics and to look in more detail at the arrows in the underlying categories.

4His 1969 paper [14] was republished in 2006 [15] with a commentary.
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As the Formal is the definition of the Conceptual, his terms Formal and Conceptual
appear to correspond to Intension and Extension respectively in metaphysics as
used in our work [24]5. Mac Lane [17] provides the classical set theoretic treatment
for contravariancy as shown in the extracts also in the Appendix (section 3). The
inversion of the order of composition is a key property for metaphysics, which needs
to be considered in more detail with an example. Mac Lane’s contravariant functor
(see Appendix, section 3) labelled S̄ inverts the arrow in the target category and
maps the result onto the source category. For general purposes Mac Lane indicates
([17] p.34) that it is much more convenient to represent a contravariant functor S̄
on C to B as a covariant functor S : Cop −→ B. This notation of Mac Lane is used
throughout this paper for the convenience of comparison with standard texts 6.

In ontologies for information systems the terms Formal and Descriptive have
been used for intension and extension respectively as by Poli [19] who stated: ”de-
scriptive ontology concerns the collection of ... prima facie information either in
some specific domain of analysis or in general. Formal ontology distils, filters, cod-
ifies and organizes the results of descriptive ontology (in either its local or global
setting)”.

3 Composition in the Intension-Extension Relationship

In any universe of discourse the intension-extension relationship governs entities and
their instances or values in the context of name and type. In an extension category
EXT the relationship between value and name is of the form7:

e : value −→ name
The dual e−1 : name −→ value does not exist as an arrow with a unique solution
(a function in set theory) as there are potentially many values associated with a
name. e is therefore not monic, that is not left-cancellable. e also may not be epic,
that is right-cancellable, as every name may not be assigned a value. e cannot be
isomorphic as it is neither monic nor epic.

In an intension category INT the relationship between name and type is of the
form:

i : name −→ type
as it is N:1, with each name having an associated single type. The dual i−1 : type −→
name does not exist as an arrow with a unique solution as there are potentially many
names associated with a type. i is therefore not monic and also may not be epic as
every type may not be assigned a name. i cannot therefore be isomorphic.

5In earlier years we used syntax, semantics and pragmatics as our three levels. Syntax, giving
the rules and principles may be considered as intension; semantics, expressing the meaning within
the rules, can be regarded as extension; and pragmatics [28], representing the use of language in a
context, often social using semiotics, as a further extension [20].

6Pure category theory gives a simpler representation by the operation of Occam’s razor.
7For example student id −→ student name is N:1 (many to 1) with each student id being asso-

ciated with a single student name but each student name may be associated with many student id.
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We have therefore two categories INT and EXT holding the respective arrows
i : name −→ type, e : value −→ name

It is worth first considering the composition of these arrows over the common object
name. If the arrows were within a single category it would then be possible to
compose i with e conventionally, giving

i ◦ e : value −→ name −→ type
However, if the arrows are in different categories this composition is not available
and we rely on a functor to perform the composition. This composition relies on
mapping one arrow in the source category onto another compatible arrow in the
target category. A covariant functorial mapping H : INT −→ EXT would map
H(name) onto value in the extension and H(type) onto name in the extension. This
mapping fails to match name in EXT with that in INT as the common attribute
name is codomain in the extension and domain in the intension.

Concepts

Constructs

Schema

Data

Instantiate

mission

management

enterprise

application

?6MetaMeta Policy

?6Meta Organise

?6Classify

Fig. 7: An Informal Three-level Architecture for an Information System

A contravariant mapping H̄ : INT −→ EXT overcomes this problem. H̄ re-
verses the direction of arrows in the intension, taking H̄(type) onto value in the
extension and H̄(name) onto name in the extension. So value is related to type
in the context of a common name. It is noteworthy that contravariant functorial
mapping facilitates composition through functors that would be natural were all the
arrows to be held within a single category. That is the composition across categories
in a contravariant manner corresponds to conventional composition within a cate-
gory. Both forms of composition are horizontal, that is pointwise composition within
a category and from category to category. An alternative form of composition, ver-
tical, of natural transformations is performed by juxtaposition using the rules of the
functorial calculus of Godement [9]. Both types of composition produce equivalent
results and both are involved in the three-level architecture described later.

4 Worked Example of Three-level Architecture

As an example of a three-level architecture with alternating intension-extension
pairs, we first consider the informal diagram in Figure 7 showing the concepts,
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constructs, schema and data, making up a complete information system such as the
universe.

CPT
P a P ′

CST
O a O′

SCH

DAT

I a I ′I

?6P ′ P

?6O′ O

?6I ′?

6

U DD a U

Fig. 8: A Categorial Three-level Architecture for an Information System

Level Left Adjoint
Functor

Right Adjoint
Functor

Source Cate-
gory

Target Cate-
gory

P a P ′ P Policy P ′ MetaMeta CPT Con-
cepts

CST Con-
structs

O a O′ O Organise O′ Meta CST Con-
structs

SCH Schema

I a I ′ I Instantiate I ′ Classify SCH Schema DAT Data

Fig. 9: Adjoint Functors: The Three Levels

The diagram comprises four data structures, in top-down order of Concepts,
Constructs, Schema and Data, from the broadest data abstractions [2], through
constructions used in design and available schema types down to the actual data
values themselves [7]. Between each data structure there is a two-way mapping,
which can be readily identified in terms of information system processes. For in-
stance Instantiate connects a typed name with a named data value and its dual
Classify connects a named data value with a typed name; Organise connects an
available construction with a typed name and its dual Meta connects a typed name
with an available construction; Policy connects a data abstraction with an available
construction and its dual MetaMeta connects an available construction to a data
abstraction. The data structures might be described as mission, management, en-
terprise and application respectively from the top but this is an over-simplified view
as the structures have no meaning on their own: it is the two-way mappings which
facilitate the functionality. Indeed this is why the whole is regarded as a three-level
architecture as there are three levels of mapping.
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Level Right
Adjoint
Functor
(con-
travari-
ant)

Target
Category
(source
at bot-
tom)

Target Arrow
(source at
bottom)

Relational
Database
Property

Relational
Database
Aggregation

P a P ′ CPT name→ type attr→ prop tab→ aggr
P ′ ↗↖ ↗ ↖ ↗ ↖

O a O′ CST value→ name reg no→ attr birth t→ tab
O′ ↗↖ ↗ ↖ ↗ ↖

I a I ′ SCH name→ type car reg→ reg no birth r→ birth t
I ′ ↗↖ ↗ ↖ ↗ ↖

DAT value→ name ‘x123y’ → car reg <‘Smith’, 25 Mar
1980, ‘Torquay’>
→ birth r

Fig. 10: Examples of Contravariant Mapping in the Upwards Direction in the
Three-Level Architecture.
The arrows for each functor indicate the contravariant mapping with the domain
and codomain of each source category arrow mapped onto the codomain and domain
respectively of each target category arrow.
Abbreviations: attr = attribute, prop = property, aggr = aggregation, tab = table,
birth r = birth record, birth t = birth type.

The informal diagram in Figure 7 can be readily converted to the formal cat-
egorial diagram of Figure 8 by replacing each data structure with a category and
each two-way mapping with a pair of functors, one dual to the other. The two-way
mappings may be adjoint in which case we write for example P a P ′ indicating
that the free functor P is left adjoint to the underlying functor P ′ and P ′ is right
adjoint to P . The functors can be composed, both upwards with U = P ′O′I ′ and
downwards with D = IOP . U relates a data value to a data abstraction; D relates
a data abstraction to a data value. Adjoints can be composed naturally so we can
write D a U if the individual levels are adjoint. More detail on the three pairs of
adjoint functors comprising the architecture is given in Figure 9 and the question of
adjointness is further discussed later.

The nature of the two-way mapping is of particular interest. The relationship
between the categories DAT and SCH is the intension-extension mapping developed
earlier. So DAT contains arrows of the form e : value −→ name and SCH of the
form i : name −→ type. The mapping in both of the functors I and I ′ is therefore
contravariant with the arrows in the source category reversed before mapping onto
the target category. We can also see that the relationship between the two categories
higher in the architecture CST and CPT is an intension-extension mapping with
CST containing arrows of the form e : value −→ name, and CPT of the form
i : name −→ type. In CST we relate the value for a construction to the name of an
abstraction through the arrow e : value −→ name and in CPT we relate the name
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of the abstraction to a type of construction through the arrow i : name −→ type. As
with the mapping in the lower part of the architecture the mapping between CST
and CPT is through contravariant functors P and P ′.

The table in Figure 10 gives two examples of the three-level architecture, showing
the mapping for a relational database of property and of aggregation. The mapping
is in the upwards direction from DAT to CPT through the three contravariant
functors I ′, O′ and P ′, in turn. The arrows shown for the functors indicate the
contravariant nature of the mapping with domain onto codomain and codomain
onto domain. All the structures shown are target except for DAT, which is the
source at the lowest level. For a worked example, the arrow with the record (3-
tuple) as source of <‘Smith’, 25 Mar 1980, ‘Torquay’> −→ birth rec is mapped
contravariantly by the functor I′ onto birth rec→ birth type to compose the 3-tuple
with birth type; the arrow birth rec→ birth type is then mapped contravariantly by
the functor O′ onto birth type→ table to compose birth rec with table; finally the
arrow birth type→ table is mapped contravariantly by the functor P′ onto table→
aggregation to compose birth type with aggregation. Overall across the three levels
we can see that the 3-tuple is related to the data abstraction of aggregation.

I-E
CPT/CST

I-E
SCH/DAT

CPT
name −→ type

CST
value −→ name

SCH
name −→ type

DAT
value −→ name

I

?6P ′ P

?6O′ O

?6I ′

Fig. 11: Defining the Three Levels with Two Intension-Extension (I-E) Pairs and
the Covariant Functors O and O′

It is indeed possible to reduce the diagram in Figure 8 to a single outer intension-
extension relationship as shown in Figure 11. The upper level CPT/CST and the
lower level SCH/DAT both become of the form internally value −→ name −→ type
whether by contravariant composition of the functors in an upwards direction I ′

and P ′ respectively or by contravariant composition of the functors in a downwards
direction P and I respectively. This is because any other composition attempts
to construct arrows which are not functions. It is interesting that the functors
O′ and O, in this case connecting the two intension-extension pairs, are covariant,
while the functors dealing with each level at a time are contravariant. It is the
difference between the static, or precompilation, of the covariant and the dynamic
of the contravariant: anticipation requires the dynamic, contravariant approach.
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Fig. 12: Roles in Adjointness of a) η, the unit and b) ε, the counit of adjointness
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Fig. 13: Correspondence between the Arrows in Category B of Fa −→ b and in
Category A of a −→ Gb

4.1 Units and Counits of Adjunction in the Three Levels

Adjointness, in the general case8, is specified as a 4-tuple < F,G, η, ε > where F is
the free functor F : A −→ B mapping from category A to B, G, the dual of F ,
the underlying functor G : B −→ A, η the unit of adjunction η : 1a −→ GFa and
ε the counit of adjunction ε : FGb −→ 1b. η measures the difference between the
identity of a in A and the result from applying F and G in turn to a. ε measures the
difference between the result from applying G and F in turn to b and the identity
of b in B. Both η and ε are natural transformations, comparing identities with
functors.

Adjointness may not hold for every pair of dual functors. Doubt is greater
for artificial mappings, as found in pure mathematics. It could be argued that
natural physical systems will always exhibit adjointness because of their underlying
stability. Information systems are an attempt to represent natural systems but may

8We are here using the set theoretic language for category theory as used by Mac Lane, see
sections 3 and 4 in Appendix below.
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be imperfect so it cannot be assumed that all their dual mappings are adjoint. The
first condition is that it is necessary for both the diagrams in Figure 12 to commute,
that is Gg ◦ η = f and ε ◦ Ff = g. Secondly, there is a correspondence, giving a
unique solution, between the arrows in category B of Fa −→ b and in category A
of a −→ Gb, as shown in the diagram in Figure 13. The correspondence is a 1:1
mapping between hom(Fa, b) and hom(a,Gb) where hom represents a collection of
arrows between the two objects. This correspondence, termed Φ, must be a natural
isomorphism, that is a natural transformation that is invertible, between the two
functors:

hom(F , ) : Aop ×B −→ Cat; hom( , G ) : Aop ×B −→ Cat

Cat is a general category. The source of both functors9 hom(F , ) and hom( , G )
is the product of the opposite category of A, that is Aop, and the category B. The
reason why Aop is used instead of A is because hom is a bifunctor, with two cate-
gories as its argument, contravariant in A and covariant in B ([17] pp.36-39). That
one is contravariant and the other covariant is a natural consequence of the manner
in which commutative diagrams are constructed to prove that the construction is a
bifunctor. In particular, in an analogous manner to that shown earlier for composi-
tion of intension and extension, composition can only be achieved in the bifunctor
if the opposite of one category is used as an argument. So adjointness is basically
a contravariant operation in A, emphasising how contravariance underpins higher-
order relationships. Mac Lane [17] uses the bifunctor in his definition of adjointness,
as shown in the Appendix (section 4).

Figure 14 shows the details of the adjunctions, with respect to the bifunctor
and the unit and counit of adjunction, for the three levels in our architecture. The
bifunctor is the product of the two categories involved in the adjunction, a functor
from a product in the category of limits. The first argument, as in Mac Lane’s
nomenclature for a bifunctor of Xop ×A, is taken as its dual to permit contravari-
ant composition. So CPTop ×CST is the bifunctor for the first row where CPTop,
the opposite of CPT, is the first functor argument and CST the second argument.
The first three rows of the table show the basic adjoints P a P ′, O a O′ and I a I ′
as already described in Figure 9. The first argument of the bifunctor is the intension
and the second argument the extension. For multi-level purposes such as interop-
erability and enforcing security policies, it is often necessary to compose the levels.
This can be done naturally with the table also showing the horizontal composition
of the adjoints OP a P ′O′ and IO a O′I ′. The last row shows the horizontal com-
position of the adjoints across all three levels IOP a P ′O′I ′. The unit and counit of
adjunction become more complex as additional functors are composed, including the
need for some vertical composition10. The phrase ‘insertion of generators’ ([17] p.87)

9The symbol means any object.
10The symbol • indicates vertical composition as distinct from horizontal composition, indicated

by ◦, which is normally, as here, omitted altogether. The bars, as elsewhere in this paper, indicate
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is used in the sense of the free functor and is equivalent to Whitehead’s concresence,
as discussed earlier. The final row shows how contravariant composition is achieved
across all three levels. The adjointness IOP a P ′O′I ′ can be represented by the
functor category DATCPT, that is the exponential from CPT to DAT, providing
the ultimate closure in the three-level architecture.

4.2 Structure of the Categories in the Three-level Architecture

Information system structures are more complex internally than those described in
Section 3, where the properties of value, name and type are considered. For the
DAT category in particular we need to hold further details such as relationships
within a category, roles, cardinalities, virtual attributes and alternative identifiers.
Part of the work by Sisiaridis [27] addressed this problem. Earlier work in type
theory by Robert Seely [26] presented a proof that the locally cartesian closed cat-
egory (LCCC), employed as the basic higher-order category in Figure 1, and the
category ML of syntactically presented Martin-Löf type theories (with Π (∀), Σ,
and extensional identity types) are equivalent. Seely’s work was based upon earlier
work on adjointness by Lawvere [14] who developed the hyperdoctrine concept, de-
scribed earlier in section 2, which was to form the basis of LCCC. Later work in
computing science [30], such as compiler formalisation, has continued to follow that
LCCC path.

We analysed the alternatives and concurred with the suitability of the LCCC
approach for type systems in information systems. In particular for LCCC, in the
form of pullbacks or comma categories, we can explore the relationships in typed
systems, as representations of logical structures that handle effectively the physical
world. As an example the LCCC of Figure 15(a) is proposed as an appropriate con-
struction for the extension category EXT such as DAT. The category is basically
a pullback with N ×C V as the limit, C as the colimit and the required adjointness
as ∃ a ∆ and ∆ a ∀, where N is the name and V the value. The first adjoint
always holds but the second, which is non-trivial, must hold for the category to be
LCCC. This second adjoint requires all the possible paired values to be found in
C so is fundamental to our purpose. Typing C appropriately as below means this
adjoint should hold in an information system. The limit N ×C V enables all pairs
of <name, value> that occur in the context of C to be represented; the colimit C
holds all permissible names and values, at least conceptually, together with other
information to be held in the category as itemised above. The intension category
INT, for example SCH), shown in Figure 15(b) has T ×C′ N as the limit, C ′ as the
colimit and the required adjointness as ∃ a ∆ and ∆ a ∀, where N is the name and
T the type.

contravariant mapping as the proof involves a composite isomorphism with hom([17] pp.103-104).
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Level Bifunctor
(intensionop ×
extension)

Unit of Adjunction Counit of Adjunc-
tion

P a P ′ CPTop ×CST insertion of genera-
tors, for new con-
struct from concept
ηcpt : 1cpt → P ′P (cpt)

verifier, for
new construct
εcst : PP ′(cst) →
1cst

O a O′ CSTop × SCH insertion of genera-
tors, for new schema
type from construct
ηcst : 1cst → O′O(cst)

verifier, for new
schema type
εsch : OO′(sch) →
1sch

I a I ′ SCHop ×DAT insertion of genera-
tors, for new data item
from schema type
ηsch : 1sch → I ′I(sch)

verifier, for
new data item
εdat : II ′(dat) →
1dat

OP a P ′O′ (CPTop ×CST)×
(CSTop × SCH)→
(CPTop × SCH)

insertion of gen-
erators, for new
schema type from
concept P ′η̄cstP •ηcpt :
1cpt → P ′O′OP (cpt)

verifier, for new
schema type
ε̄sch • OεcstO

′ :
OPP ′O′(sch) →
1sch

IO a O′I ′ (CSTop × SCH)×
(SCHop ×DAT)→
(CSTop ×DAT)

insertion of genera-
tors, for new data
item from construct
O′¯̄ηschO•η̄cst : 1cst −→
O′I ′IO(cst)

verifier, for
new data item
¯̄εdat • Iε̄schI

′ :
IOO′I ′(dat) −→
1dat

IOP a
P ′O′I ′

(CPTop ×CST)×
(CSTop ×DAT)→
(CPTop ×DAT)

insertion of gen-
erators, for new
data item from con-
cept P ′O′¯̄ηschOP •
P ′η̄cstP •ηcpt : 1cpt −→
P ′O′I ′IOP (cpt)

verifier, for
new data item
¯̄εdat • Iε̄schI

′ •
IOεcstO

′I ′ :
IOPP ′O′I ′(dat) −→
1dat

Fig. 14: Details of Adjunctions, Simple and Composed, in the Three-level Archi-
tecture
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The arrowsN −→ T and V −→ N correspond respectively to name −→ type and
value −→ name, as considered earlier in Section 3. We can map category INT onto
EXT through a contravariant functor, for example I : SCH −→ DAT. Similarly
we can map category EXT onto INT through a contravariant functor, for example
P ′ : CST −→ CPT. Our whole information system will use such diagrams as
building blocks for constructing a topos as in Figure 1, employing higher-order logic
for transforming and composing the various categories into one coherent information
system.

Further Work to be reported includes the applicability of the three-level archi-
tecture to areas such as security in information systems, where anticipation is of the
essence [27]. The construction of the topos of Figure 1 in more detail, analogous to
the work in this paper on the three-level architecture, is also required.
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Fig. 15: Locally Cartesian Closed Categories: (a) INT for the Intension N −→ T ;
(b) EXT for the Extension V −→ N

5 Contravariance and Anticipation

Earlier we said that “If the Universe is a topos with a cartesian closed structure
and anticipatory systems are featured as part of the Universe then an anticipatory
system is locally cartesian closed”. We have shown that indeed the underlying cat-
egories are locally cartesian closed but in an anticipatory system all categories must
be connected either as objects in a topos or by dual functors to give two-way map-
ping. The dual functors must be adjoint to provide a structured re-ordering of the
categories involved. Such adjointness by definition requires contravariant composi-
tion across all functors. We have constructed a three-level architecture with three
pairs of adjoint functors connecting four alternate intension/extension categories.
The architecture can be used to illustrate for an information system, such as the
Universe, how contravariant mapping underpins anticipation. Contravariant map-
ping enables all traversals of the levels to be dynamic on demand, as required for
anticipation. Indeed when the mappings are made covariant through precompilation
of functors, the resulting structure is static and non-anticipatory. That anticipatory
systems are inherently contravariant is therefore our main finding.
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APPENDIX
Early Development of Semantics as Contravariancy in Category Theory

1. Lawvere’s Introduction to Conceptual and Formal
Lawvere introduced the principle of semantics as contravariance in classical cat-

egory theory in 1969 [14, 15] in a development from sheaf theory with the addition
of existential quantification in the following manner:

That pursuit of exact knowledge which we call mathematics seems to involve in

an essential way two dual aspects, which we may call the Formal and the Concep-

tual. For example, we manipulate algebraically a polynomial equation and visualize

geometrically the corresponding curve. Or we concentrate in one moment on the

deduction of theorems from the axioms of group theory, and in the next consider

the classes of actual groups to which the theorems refer. Thus the Conceptual is in

a certain sense the subject matter of the Formal. ([15] at p.3)

Although Lawvere seems to use ’exact knowledge’ to describe the general formal
nature of mathematics, the phrase is a technical term in this context because of the
exactness of the adjoint relationship so that early categorists (compare Freyd [8])
refer to left and right exactness for the categories here INT and EXT respectively.
Nevertheless examples given by Lawvere in his extract including polynomial equa-
tions and the axioms of group theory suggest he has only the perspective of finitary
predicative mathematics in mind.

2. Lawvere’s Relationship between the Conceptual and the Formal
However Lawvere has in mind a formal/conceptual setting “with categories of a

general sort”:

There is then a further adjoint situation

Formal ⇀↽ Theories

describing the presentation of the invariant theories by means of the formalized lan-

guages appropriate to the species. Composing these two adjoint situations, and ten-

tatively identifying the Conceptual with categories of the general sort (Cat, [SetsI ]),

we arrive at a family of adjoint situations

Formalop ⇀↽ Conceptual

(one for each species of theory) which one may reasonably hope constitute the frag-

ments of a precise description of the duality with which we began our discussion.

([15] at p.15)

This description characterises his idea of hyperdoctrine ([15] pp.10-14) but the re-
ductionism from categories of a general sort to the category of sets, viz (Cat, [SetsI ])
presupposes some theorem of representation relying on the axiom of reducibility
[25].
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3. Mac Lane’s Contravariance and Opposites
Mac Lane on the other hand in his seminal text in 1972 [16] gives a straight-

forward algebraic description of contravariancy:

Consider a functor S : Cop −→ B. By the definition of a functor, it assigns to

each object c ∈ Cop an object Sc of B and to each arrow fop : b −→ a of Cop

an arrow Sfop : Sb −→ Sa of B, with S(fopgop) = (Sfop)(Sgop) whenever fopgop

is defined. The functor S so described may be expressed directly in terms of the

original category C if we write S̄f for Sfop; then S̄ is a contravariant functor on

C to B, which assigns to each object c ∈ C an object S̄c ∈ B and to each arrow

f : a −→ b an arrow S̄f : S̄b −→ S̄a (in the opposite direction), all in such a way

that

S̄(1c) = 1S̄c, S̄(fg) = (S̄g)(S̄f)

the latter whenever the composite fg is defined in C. Note that the arrow function

S̄ of a contravariant functor inverts the order of composition. ([17] at p.33)

Note that S is an ad hoc functor not the standard composition FG as used by us
above. Mac Lane’s notation is also a little confusing as he uses b as an object of the
category A not B as in the standard convention. The use of the equality sign ‘=’
is also ambiguous in this context involving quantitative and qualitative conceptual
knowledge [31] in adjunction.

4. Mac Lane’s Adjunctions
The description of adjointness by Mac Lane is also from the perspective of finitary

mathematics:

Let A and X be categories. An adjunction from X to A is a triple < F,G, φ >:
X −→ A where F and G are functors

X ⇀↽
F

G A ,
while φ is a function which assigns to each pair of objects x ∈ X, a ∈ A a bijection
of sets

φ = φx,a : A(Fx, a) ∼= X(x,Ga)
which is natural in x and a.

Here the left hand side A(Fx, a) is the bifunctor

Xop ×A −→F op×Id Aop ×A −→hom Set

which sends each pair of objects < x, a > to the hom-set A(Fx, a), and the right

hand side is a similar bifunctor Xop ×A −→ Set. ([17] at p.80)

The set theoretic concepts like ‘=’, ‘triple’, ‘function’ and ‘bijection’ can be better
represented by higher-order arrows in pure category theory.
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