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THE TOPOS OF CATEGORY THEORY AND REALITY 

The rational clarity that comes with a formal approach has greatly advanced physics and technology 

in first order applications. A scientific approach to human activities from biology and medicine 

across to language, the arts, law, religion and philosophy, etc, on the other hand has in the past been 

limited to classificatory procedures. Higher order formalism is now available for all disciplines with 

categories beyond set theory. By the representation of process with the ‘arrow’ of category theory it 

is possible to develop by natural reasoning the notion of the world as a closed Cartesian category 

with a structure of adjointness between universal limits. This is a tutorial on fundamental concepts of 

category theory for those in any discipline and requiring no prior expertise in classical mathematics. 
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1. Process 

Although its roots go back a further twenty years, the 

Alternative Natural Philosophy Association (ANPA) has 

from its first meeting in 1979 given preference to rigorous 

formal argument. ‘Disciplined thought’ is essential with al-

ternative methods. Without pre-existing agreed defined 

terms, ANPA would otherwise have no modus operandi. 

For there has to be some common ground of reasoning. 

Process seems to arise naturally as both a consequence and 

a catalyst in the ANPA context. A continuing example is 

the process basis for the fine structure constant [5]. 

A fundamental structural significance in the world is 

the way the local connects into the global such as in the 

McLuhan Global Village where everything is connected 

[20]. The temporal analysis is the distinction between sta-

tionary and the non-stationary. Philosophically this global/ 

local distinction is not at all new. It is at the root of Zeno’s 

paradox of the arrow’s dynamic flight consisting only of 

static positions. 

The noun ‘process’ or the participle ‘processing’ com-

monly describe an act of transforming an existing object by 

some procedure to another form as in a manufacturing or 

business administration procedure. Wikipedia deals with its 

entry for PROCESS in up to 40 different fields of knowl-

edge, including philosophy, science, engineering, comput-

ing, chemistry, biology, law, business and even the ‘proc-

ess haircut’ [32]. There are variations in the meaning of the 

word depending on context. For instance in business, proc-

ess describes activities or tasks that produce a specific ser-

vice or product for customers. Interestingly Wikipedia does 

not include physics in its lists of fields for process. 

The whole subject of cybernetics can be viewed as a 

process operating in nature as in Wiener’s definition [30] 

involving comparison of communication in the animal and 

the machine [24]. Process describes the way that both ani-

mals (biological systems) and machines (non-biological or 

“artificial” systems) can operate according to cybernetic 

principles. This was an explicit recognition that both living 

and non-living systems can have purpose. Wiener consid-

ered that systems theory seeks to deal with the local/global 

divide [24], treating systems as equivalent to process but 

the latter is the higher form. The early specification of the 

working of the brain in cybernetics by Ashby [2] amounts 

to the concept of process but it was von Bertalanffy of the 

early founders of cybernetics that explicitly related the lat-

ter to process [6, 7]. 

Most writers trace process to the ‘all is flux’ of Hera-

clites in contrast to Parmenides, who is more usually asso-

ciated with a static view. However, process is more than 

flux and also subsumes permanence. It is rather the Hera-

clites’ logos which was taken up by the Greeks of Alexan-

dria and the Judeo-Christian tradition to identify logos with 

God and the second person in the Trinity. The whole theory 

of evolution is process too but one where the origin of spe-

cies does not unfold in a linear fashion. Evolution appears a 

foundational natural process encompassing both emergence 

and change. Ordering is adjointness and includes both sta-

tic and dynamic aspects. It is a paradox that process in-

cludes invariance
1
 which describes no change under a 

transformation. Indeed scale invariance turns out to be an 

important phenomenon of process and a relevant aspect to 

ANPA because of the interest in dimensionless universal 

constants such as the scale invariant fine structure constant. 

Fractal patterns arising from scale invariant physics are 

studied piecemeal with use of special sets like the Mandel-

brot, Julia etc. However general methods are restricted be-

cause a set cannot be a member of itself in the way that a 

reflective subcategory can have itself as an object. Infor-

mation systems like the web also exhibit properties of scale 

invariance but we do not have space here to pursue this as-

pect of process which arises in exponential categories. 

There is always the problem of where to begin. That 

statement may be formally expressed as a pre-order of 

categories or just as well as a category of preorders for 

both lack beginning and ending. However within process 

we can but focus on the category of reality in the sense of 

                                                           
1 The subject of invariance was mainly developed in the 19th cen-

tury by Arthur Cayley. Saunders Mac Lane [21] traces the early 

origins of category theory to Cayley. 
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the category where objects and relationships between ob-

jects exist to make up the physical world. This is meta-

physical process and the Universe is an instantiation of 

process but the World is even greater than the physical 

Universe consisting of all the relations between physical 

entities and all the relations between those relations. Physi-

cal relations connect directly from higher-order relations. 

This is treated bottom-up but because of the holistic nature 

of process it is driven top-down. A topical example is the 

recent realisation of how subjective human behaviour af-

fects the objective syntax of world economies. Current 

practical examples of applied recursion across levels is de-

duplication in structured data storage [15] or functional 

DNA nanostructures that can be integrated into larger 

structures as miniature circuit boards in bioengineering 

[26]. 

In this sense the World is greater than the physical Uni-

verse of cosmology. There is a unique arrow from the 

source of the World to every object in it and a unique re-

sultant arrow between any pair of objects as in Figure 1. 

 

Fig. 1: A Schematic World-Universe Relationship. The lowest ho-

rizontal arrow is a category consisting of a row of notional ele-

mentary objects connected by a row of vertical arrows which are 

themselves connected by a higher row which are in turn connect-

ed by a yet higher row 

For we are concerned with the higher order of relations 

between physical objects and the relations between those 

relations which together with the physical objects of the 

Universe make up the World. This then embraces the who-

le of human affairs and activity including the arbitrary dis-

ciplines of philosophy and theology. Existence in catego-

ries is identifiable with the object which as we shall see is 

the condition known categorically as Cartesian. Ordering is 

adjointness and includes both static and dynamic aspects. 

This empirical knowledge that every entity that exists is 

related to every other object that exists is no more than a 

definition of the Universe to include everything naturally 

accessible. This provides a unique direct arrow between 

any pair of objects that is the composition of all possible 

arrows between them. This is the structure given the label 

preorder. Figure 3 presents a two-dimensional representa-

tion for the context of the objects C and A of a preorder. 

There is but one unique arrow between any pair of objects 

in a preorder and that arrow as the figure shows is the limit 

of all other possible arrows whether directly between the 

pair or indirectly via any other pair in the preorder. We 

cannot assume any orientation for it or even presume the 

concept of a dimension. It is possibly easier to imagine 

than to draw, although our common perception wants us to 

imagine it in three dimensions or possibly in higher order 

algebraic or geometric dimensions but lies easily in higher-

order geometric dimensions. A process preorder does not 

exist in any space whether algebraic or geometric. Rather it 

should be space free. This is the quantum world. However 

the effect between entities is mutual and the arrow is there-

fore two-way but not symmetrical because the opposing di-

rections give rise to a natural parity in their mutuality. This 

is the ultimate reality of the quantum world. Whether it is 

the quantum or the physical world that is true reality seems 

just a matter of personal preference. 

 

Fig. 2: Terminal Object. A category with a terminal object has an 

arrow from every object to it. In preorders this arrow is unique as 

in Figure 3 

 

Fig. 3: The unique arrow from C to A as a limit of other arrows in 

a unidirectional Preorder. The co-limit sums over all others 

Newtonian physics treated the universe as some con-

tainer either rectilinear or spherical but embedded in time. 

Such a structure is representable, for example by Yoneda 

or Curry techniques
2
, to first-order as a number. This is the 

classical model which can be verified by measurement in 

first-order predicate logic because as Gödel has shown 

first-order predicate logic is complete for a closed world. 

However Gödel has also shown that such a logic is not 

complete for an open world and any model based on num-

ber and relying on axioms is not complete whether open or 

closed [10]. This effectively sets a limit to Wigner’s ‘un-

reasonable effectiveness of mathematics in the natural sci-

ences’ [31]. 

 

2. Metaphysics 

If we want to identify a category with reality, existence 

requires designation of one object as the terminal object, as 

shown in Figure 2. This is the condition known as ‘Carte-

sian’. It is also possible to designate another as the source 

of the process as initial object. This is the condition known 

as ‘co-Cartesian’ but is not a necessary and sufficient con-

dition and may therefore result in over-specification and a 

too constrained system. There is a free functor mapping 

from the preorder on to any of its partial orders. It is natural 

to identify the terminal object with the covariant identity 

functor. If the initial object exists it would exist as the con-

travariant identity functor of the category. Nevertheless al-

                                                           
2 See [3] at pages 118 and 190 respectively. 
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though these are arbitrary terms the use of the labels ‘ter-

minal’ and ‘initial’ imports an interpretation and requires 

the existence of some axiom of choice, which is an 

axiom/assumption of set theory. The ANPA Statement of 

Purpose
3
 Clause 1 states that ‘The primary purpose of the 

Association is to consider coherent models based on a 

minimal number of assumptions. Here we are raising the 

stakes from models to metaphysics but nevertheless at-

tempting to keep to a minimum of assumptions
4
. The State-

ment might be better expressed as ‘a minimum of assump-

tion’. Here we try to make no assumption at all beyond that 

the World exists. We try to keep open issues about terms 

such as ‘terminal’ and ‘initial’ because they may be related 

to what cosmologists currently tell us about the fabric of 

the physical Universe consisting mainly of dark matter and 

dark energy with only 4% in familiar forms. 

ANPA is mainly concerned with fundamentals at the 

frontiers rather than incremental advances within existing 

knowledge. But how do the general and the particular re-

late within the structure of the world? Any formal descrip-

tion needs to be able to combine both the global and the lo-

cal. This is possible with natural categories by substituting 

metaphysical process in the interpretation of Whitehead’s 

later Process and Reality [28] for that in his earlier Prin-

cipia [27], which was the starting point for the traditional 

finitary category theory of Eilenberg and Mac Lane [21]. It 

is the difference between a metaphysics and modelling 

which are separated by two levels as in Figure 4 (diagram 

16 in [25]). Metaphysics is one level up from reality in hu-

man perception while models are one level down. The limi-

tations of modelling reality can be seen in information sys-

tems where there is a need to represent the world on com-

puters. Problems are evident in database methods like 

ACID [11, 23] and in Codd’s pure relational model [8]. In 

database design, data normalisation is used to attempt to 

match the logical data structures to the physical world. This 

method of design has a number of unsatisfactory features. 

Firstly it is difficult to enforce the laws of the physical 

world in the operational database and secondly the theo-

retical underpinning, based on set theory, is not natural be-

cause of the problem of representing arrows across multi-

ple levels as functions. 

 

3. Finitary categories model natural (metaphysical) 

categories 

Whitehead developed his theory Process and Reality in 

what he terms speculative metaphysical categories. These 

are in great contrast to the formal principles he enunciated 

with Bertrand Russell in Principia Mathematica and 

Whitehead devotes Chapter 1 of his later work ([28] pp.4-

26; [29] pp.3-17) to explaining in a general philosophical 

context why they had to be speculative. For the second half 

of the last century has seen substantial advances in the de-

velopment within finitary mathematics of formal categories 

based on the concept of the arrow and initiated by Eilen-

berg and Mac Lane [21]. The phrase ‘finitary mathematics’ 

                                                           
3 as regularly published in its Proceedings including in these pro-

ceedings for ANPA 31. 
4 There is some philosophical difficulty here with ANPA’s ‘mini-

mal number of assumptions’ when dealing with supposition be-

cause the number is not necessarily a measure of quantity or qual-

ity. 

is a term first coined by the mathematician David Hilbert
5
 

and effectively describes the whole mainstream of twenti-

eth century mathematics built up on a system of proofs in 

set theory and number from incompletely specified axioms. 

The adjective finitary is itself a little misleading as finitary 

mathematics includes topics like infinity and transfinite 

numbers as these are modelled on the finite concept of 

number. 

Nevertheless it is possible to ascend the staircase in 

Figure 4 from categories as mathematical models to meta-

physical categories and extend that ladder to categories that 

are no longer speculative but which can now be made for-

mal thanks to the work of Eilenberg, Mac Lane and a large 

number of pure mathematicians world-wide who have re-

fined and extended their original interpretation of the hum-

ble arrow based only on the four properties: 

1. a morphism from domain to co-domain 

2. identity from an indistinguishable domain and co-

domain 

3. associativity 

4. composition. 

There are two distinctions important for process that we 

need to draw. One is between metaphysical categories and 

finitary categories in respect of the use of number in phys-

ics; the other is between sets and either types of categories 

in respect of the representation of intension and extension. 

We will first consider the natural numbers then look at in-

tension and extension as an intrinsic property of parity to 

be found in adjointness. 

 

4. The finitary category of the natural number 

Because it relies heavily on experiment, physics as a 

discipline has become identified with measurement and 

number as its prime conceptual tool. Consequently it has 

become very bound up with sets which equate to number. 

However it is an assumption that qualities and quantities 

are representable as number. The physics and the mathe-

matics have become merged so that space is a complex 

number whether it is Newton’s Universe as a container or 

the infinite Hilbert space of quantum mechanics. These it 

should not be forgotten are just numbers. This is fine to the 

extent of first order models for which Gödel (as mentioned 

above) has shown to be consistent but it is not sufficient for 

open or other higher order systems for Gödel has shown 

these to be neither consistent nor decidable when relying 

on axioms of sets or number. This applies as much to the 

use of statistical methods as the interpretation of measure-

ment. It may be possible to reduce any problem to first or-

der but any conclusions will then be subject to the assump-

tions in the reduction. This is particularly insidious in treat-

ing open systems as closed. However openness is not just 

bound up with the concept of order for it contains a deeper 

logical strand of constructivism as associated with the intu-

itionism of Brouwer. Boolean logic suffices for a closed 

system but an open system requires the logic of Heyting 

(See Figure 9 below). 

Metaphysical categories have therefore no natural con-

cept of number. Finitary categories as a model relying on 

the concept of sets has consequently to introduce the con-

                                                           
5 According to Feferman [10] Hilbert never defined finitary math-

ematics and it collapsed at its foundations under the weight of 

Gödel for the reasons mentioned above. 
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cept of number
6
. This is achieved by postulating a Natural 

Number Object with a recursive definition on arrows com-

parable to recursive functions generating the set of natural 

numbers. This requires importing some undefined succes-

sor function. While this may be natural in mathematics it is 

not natural in physics where systems are open either exter-

nally or internally. An obvious example is radioactivity 

where atoms decay according to some preorder and it is not 

therefore possible to identify a successor before the event 

of decay. Of course it was to explain such events that the 

notion of randomness was invented but this is normally 

dealt with by some theory of statistical probability which 

leads back to the concept of number and does not provide 

an exact solution. This lack of a predefined successor is a 

feature of all open systems and a chief cause of problems 

of interoperability in global systems. 

Open physics lacks a concept of number and this ques-

tions the use of finitary models in physics. The existence of 

multiverses must surely be the largest incarnation of the 

number concept. The Panel 1 lists nine current possible 

theories recently identified by Greene [12]. These can also 

be compared with Barrow's views of multiverses [4].  

Panel 1: MULTIVERSES - Current Possible Multiverses recently 

identified by Greene [12] 

1. Infinite space may contain a number (possibly an infinity) of uni-
verses that may lie beyond our sight. 

2. Uncountable other universes with different characteristics may have 

been created with ours during a fleeting period of superfast accelerat-
ing expansion. 

3. String theory suggests our universe is one of many 4-dimensional 

‘brane worlds’ floating in a higher-dimensional space-time. 
4. A simple cycle of universes with variations in physical laws as pos-

sible in string theory. 

5. More complex versions of cyclic universes. 
6. Quantum mechanics allows/requires many worlds to exist in paral-

lel formed by a branching of the wave function. 

7. The universe is a holographic projection. 

8. We are just one of a set of artificial universes created in simulation 

on a superadvanced computer. 

9. The philosophical necessity that every possible universe must be re-
alised somewhere. 

It is instructive to review Greene’s list from the process 

perspective. The list does not claim to be exhaustive and is 

an example of undecidability demonstrating how the use of 

number leads to degeneracy with many possible forms. 

This degeneracy is well borne out in the thorough exami-

nation of n-categories carried out by Leinster [19]. It may 

well be a comparable defect in string theory that allows 

variations in physical laws. In process categories physical 

laws arise from properties of adjointness whose bonum 

esse is uniqueness. Furthermore about half the items in the 

list depend on some idea of infinity. But infinity belongs to 

mathematics, not to physics. It was David Hilbert the pro-

ponent of finitary mathematics who with the paradox of his 

Hotel Infinity recognised that infinity is always beyond 

reach and therefore cannot plausibly exist in physical real-

ity. Infinity in finitary mathematics seems no more than a 

model of repleteness
7
 under the free functor in process ca-

tegories. The last item that postulates every possible uni-

verse is also derived from probability theory applied to in-

                                                           
6 First carried out by Lawvere [17] and now to be found in stand-

ard category theory texts, such as [3] at p 177. 
7 Johnstone ([16] at p.3) defines the condition of repleteness as 

“that any object of the ambient category isomorphic to one in the 

subcategory is itself in the subcategory”. 

finity. That too fails at the Gödel hurdle of ‘number’. 

As anthropocentric variants on our universe with com-

plicated theories reminiscent of epicycles, multiverses bear 

an almost Ptolemaic resemblance. The super-advanced 

computer is a science-fiction vision of current commercial 

computers. They have not been thought through with re-

spect to quantum computation nor any general attention 

paid to boundary conditions nor to the relativistic nature of 

time which Whitehead would carefully respect [28]. 

 

5. Logical structure of World representation as ad-

jointness 

In terms of natural categories, process is adjointness. 

This is the formal metaphysics of real existence such that 

every physical entity in the Universe affects every other. 

There is at the most a single pair of arrows in opposite di-

rections between any pair of objects. These are limits of all 

the possible paths around the Universe between any given 

pair. This limit reduces to a single function as an abstrac-

tion in lambda calculus or as a resultant in vector analysis 

(for first order models lose the resolution of the contravari-

ant pair). There are four levels involving three interfaces. 

The uppermost level is the intension and the lowest is the 

extension corresponding respectively to the global and the 

local. The intermediate interface connects intension and ex-

tension, that is snaps the local into the global for all time 

and space. Any set-theoretic approach finds this latter me-

chanism, which is essential to all studies of globalisation 

and interoperability, very difficult if not impossible as rec-

ognised by Russell’s paradox. 

Nevertheless in finitary categories the mathematics of 

adjointness has been developed in this concept termed a 

Cartesian closed category, derived as an abstraction of the 

Cartesian product but this description from historic origins 

may by its simplicity mislead as to its great power and con-

tent. The finitary approach is to distinguish the two proper-

ties of Cartesian closed and locally Cartesian closed but in 

process categories it is that natural distinction between in-

tension and extension. This paper provides an in-

troduction to that formal description of the mathemati-

cal structure of the World as found in nature. 

To the global/local distinction must be added the statio-

nary against the non-stationary. Both the static and the dy-

namic are formally representable and accessible in the logic 

of natural categories. Process relates not just to the non-

stationary but subsumes both the static and the dynamic. 

One is contained in the other but which way round? Such 

problems, like Zeno’s paradox of the arrow’s dynamic 

flight, consisting of only static positions are avoided in the 

17th century French logic school of the Port Royal [1] 

(harking back to Aristotle’s first and second intentions) by 

distinguishing the intension from the extension. Aristotle 

referred to them as first and second intentions. Because of 

their extended meaning these terms were recognised in the 

subject of logic by retaining the older spelling with an “s” 

rather than a “t”. When the old subject of logic was super-

seded around 1900 by symbolic logic based on set theory, 

the intension/extension relationship became rather lost until 

the development of computer programming revived it with 

the need for rigorous typing. 

The intension-extension relationship is recursive; thus 

in the diagram of Figure 4 metaphysics is the intension for 

reality as its extension and reality itself becomes the inten-
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sion for models as possible extensions. In the natural cate-

gories of metaphysics process is adjointness. This is no 

more than the formal metaphysics of real existence that 

every physical entity in the Universe affects every other. 

There is at the most a single pair of arrows in opposite di-

rections between any pair of objects. These are limits of all 

the possible paths around the Universe between any given 

pair. This limit is that of the preorder in Figure 3. Mathe-

matical categories other than the Cartesian closed are pos-

sible but process categories being derived from physics 

only recognise the existence of Cartesian closed categories 

which has the property of adjointness. Every object is the 

domain of a covariant arrow and the co-domain of a con-

travariant arrow. This recursive structure of intension/ex-

tension applies at any level but is best studied between a 

pair of categories (identity functors 1F and 1G) where ad-

jointness of the pair of arrows (F and G, contravariant to 

one another) induce a monad consisting of a triple < T, η, μ 

> and a co-monad consisting of the co-triple < S, ε, δ >. 

Figure 5 shows the adjointness between the categories, in-

tension and extension.  

          

Fig. 4: The Staircase of the World from Metaphysics to Models 

 

Fig. 5: Adjointness F ┤G 

Each arrow has a dual role. F is the contingent arrow of 

intension and the determinant arrow of extension while G 

is the contingent arrow of extension and the determinant ar-

row of intension. T is just the composition GF and S the 

composition FG. Each of these compositions may be com-

pared in Figure 6 at the next level up with the contribution 

they make to their respective identity functors by means of 

the creative unit of adjunction η : 1F  GF; and the quali-

tative co-unit of adjunction ε : FG  1G. Comparison at the 

even higher level of order is provided by the unit of poten-

tiality μ : T
2
  T; and its co-unit δ : S  S

2
. There are spe-

cial cases of the latter two which may be interpreted [25] as 

in the ‘dimension of time’ with the unit of anticipation 

where potentiality is by hindsight and the co-unit of antici-

pation by foresight. Although there are never more than 

two basic adjoint functors F ┤G, the combined composi-

tion of their two compositions T and S may be resolved into 

the three basic functors of Figure 7 to be found in standard 

category theory texts, where Σ is the existential qualifier, Π 

the universal quantifier and Δ the stability diagonal pull-

back functor. The interplay of left and right adjointness 

with left and right exactness is a little subtle [13] and can 

be better understood in the exploded diagram of Figure 8 

which is repeated in Figure 9 to show an exploded view of 

the natural intuisionistic logical structure of the Cartesian 

closed category. 

 
Fig. 6: Adjointness expressed with natural transformations η and ε 

 
Fig. 7: Adjointness Σ ┤ Δ ┤ Π 

 
Fig. 8: Explosion Σ ┤ Δ ┤ Π of the Arrow Functors of Adjoint-

ness F ┤G 

 
Fig 9: Intuisionistic structure of the Cartesian closed category: 

Exploded view of Heyting logic 

6. The natural World structure as a Cartesian closed 

category 

Relationships in nature are therefore all explicable in 

process categories with this single concept of adjointness 

[18] that consists only of a pair of contravariant arrows in-

ducing a monad. In finitary categories the mathematics of 

adjointness has been developed in what is termed a Carte-

sian closed category, derived as an abstraction of the Carte-

sian product but this description from historic origins may 

by its simplicity mislead as to its great power and content. 

The finitary approach is to distinguish the two properties of 

Cartesian closed and locally Cartesian closed but in process 

categories it is that natural distinction between intension 

and extension that provides a formal description of the 

mathematical structure of the World as found in nature. It 

is the simple principle that everything in the world is re-

lated to everything else in the world that provides the for-

mal structure of the relationship relevant to any scientific 

study or technological application requiring an under-

standing of these relationships. 
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An early example is the representation of information in 

computers that needed some implementable model of real-

world relationships. Some variation of the hierarchical was 

possibly the most common structure attempted in different 

knowledge systems. But the most successful measured by 

the volume of commercial transactions was by far the sim-

ple relational model based on lists or tables manipulated as 

sets embodying an intension/extension relationship.  

The Cartesian closed category (CCC) is a fundamental 

category of category theory. Its features and their defini-

tions are to be found in its standard textbooks but most if 

not all come from the stationary viewpoint of set theory, 

not from process. That set theory itself does not rest on un-

equivocal foundations may raise few problems in pure 

mathematics where axioms may be defined at will and may 

well be adequate too in applied mathematics to a first or-

der. However, many problems requiring mathematical so-

lutions today arise in more complex situations. Transac-

tions in information systems [22] are a case in point as of 

the nature of process. Thus a common approach in data-

bases [9] is to adopt the principles under the acronym 

ACID stating the requirements for Atomicity, Consistency, 

Isolation and Durability. The aim is to ensure that a trans-

action involving a series of operations is indivisible, en-

forces all rules, provides results only on termination and 

guarantees to hold the results under any circumstances. The 

transaction concept has been implemented efficiently on 

many database systems but in information systems as a 

whole the idea lacks the abstraction needed for successful 

business modelling. The alternative approach in natural 

philosophy is that of process as explored in the 20th cen-

tury [23]. 

While in the formal language of category theory the 

world may be described as ‘Cartesian-closed’, this term 

may give a false impression that it has a Cartesian coordi-

nate system which is unfortunate but the phrase has arisen 

historically in that context because it embodies the funda-

mental concept of the Cartesian product. In fact it is much 

more than a simple product and these terms need to be ex-

amined further. For while natural categories and meta-

physics provide us with a process structure for the world, 

we can only begin to investigate it here. Intension and ex-

tension alternate in a preorder, that is with an arbitrary be-

ginning of an intension with an extension which itself be-

comes an intension of the next extension and so on as in 

Figure 10 [14]. 

 

7. The Topos: Archetype of Natural World 

The archetype of the natural world is the topos, in its 

early days formally defined as a Cartesian closed category 

with subobject classifiers and informally as a generalised 

set. Johnstone in his preface to [16] lists thirteen alternative 

descriptions that have been applied to the topos (pp.viii 

&sq). Many of them like for instance “A topos is a gener-

alised space” still carry hangovers from sets. We would 

recommend as an informal definition: “The category of ca-

tegories of catgories”. To some this may only confirm cate-

gories as “abstract nonsense” but it is accurate and makes 

explicit the recursion. The topos sums up all that we have 

said in this paper. It is the ultimate intension existing as an 

identity natural transformation in any extension given by 

the internal categories, subject to the locally Cartesian clos-

ed condition with the preorder structure and an intuitionis-

tic logic that is the Heyting and which is more general than 

the Boolean. There is a unique arrow from the source of the 

World to every object in it and a unique limiting arrow be-

tween any pair of objects. 

 

Fig. 10: Alternate Intension/Extension Pairs in Nature 

To satisfy its holistic nature the World must emerge 

top-down. That is to say no more than that if the Big Bang 

happened it potentially contained everything that ever ex-

isted
8
. However it is easier to explain bottom-up by treating 

the role of the arrow as a natural expression of process with 

an identity arrow as intension and a distinguishable valued 

arrow for extension. However while in natural category 

theory the simplest identity arrow may be treated as an ob-

ject, it is convenient to begin with a category of three com-

posing objects as a generalisation of any possible category. 

This is shown in Figure 11 with the next higher identity ar-

row (the functor) composing extensional arrows between 

objects.  

 

Fig. 11: A category consists of ordinary arrows composing be-

tween identity arrows as objects 

The next higher identity arrow is the locally Cartesian 

closed natural transformation composing categories with 

ordinary functors as extensional arrows between categories 

as shown in Figure 12. The highest level arrow is also a 

natural transformation which composes structures of cate-

gories and functors. It is this identity natural transformation 

that constitutes the full Cartesian closed category of a topos 

as in Figure 13. However, the natural arrow is double-head-

ed as a composition of the adjoint functors but with a parity 

as previously discussed above. Although as just explained 

it may be easier to understand these diagrams bottom-up in 

the way that models are usually built-up, nevertheless proc-

ess can only exist as a whole and the full diagram repre-

sents a natural occasion or “actual event” as first introdu-

ced by Whitehead [28]. From the long-term perspective of 

ANPA however the four-level Combinatorial Hierarchy 

based on the Frederick Construction is a binary model of 

                                                           
8 formally (; ) in the description above for the monad/comonad. 
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the four-level metaphysical preorder of Process presented 

here. 

 

Fig. 12: Functors between Categories compose to form higher-or-

der categories. A category is just an identity functor 

 

Fig. 13: Natural Transformations of Composing Functors them-

selves compose in the highest possible category, a Topos 

 

Fig. 14: A topos showing natural path from any object A to any 

object B 

 

The whole is just a recursive system with closure at 

four levels consisting of three open interfaces. Figure 13 

shows the three interfaces for composing arrows (ordinary, 

functor, natural transformation) with the four levels (iden-

tity arrow, identity functor/category, higher-order identity 

functor/category, identity natural transformation/topos). 

The diagram shows well the natural recursive nature of the 

structure. It also demonstrates connectivity from any object 

to any other object. It is possible therefore, as shown in 

Figure 14, to get from any object A to any object B directly: 

B = θA, or indirectly with possible local variations through 

any other internal path: θ″○θ′A = B. This is a natural struc-

ture because it is obtained from simple induction applied to 

the notion of process without any assumptions. As a final 

comment it is interesting to compare briefly the World as a 

topos with the long-term study by ANPA of the four-level 

Combinatorial Hierarchy based on the Frederick Construc-

tion as a binary model of the four level metaphysical pre-

order of process presented here. The subobject classifiers 

of any intension are the Boolean truth values (0,1) as the 

initial and final objects of a topos that is both Cartesian and 

co-Cartesian. The intension generates by process the possi-

ble extensions but is limited by scale invariance to four 

levels of three interfaces which the Frederick construction 

as a model predicts and correlates to a great precision with 

the fine structure constant. 

 

Appendix I: Finitary Approaches to Cartesian 

closed Categories 

The relationship between natural categories and finitary 

category theory is symbiotic as part of the general mutual 

independence on one another of pure and applied mathe-

matics. Natural categories being metaphysical are at the 

highest possible level and therefore lack a higher vantage 

point from which to view them. Finitary category theory on 

the other hand is a model relying mostly on the category of 

sets. Being finitary the subject can be advanced by a num-

ber of categorial proofs. Understanding categories on the 

other hand has only pure induction to guide by empirical 

reality through the natural metaphysics. This is an impor-

tant example of the three-tier general scheme of metaphys-

ics, physics and models of Figure 4. Because of the sym-

biosis between the pure and applied approach to formalism 

it is instructive to compare the traditional treatment of Car-

tesian closed categories in finitary category theory. Semi-

nal texts are that of Barr & Wells [3] for applications in 

computer science and Mac Lane's work in pure mathe-

matics [21]. It is to be noted that their treatment is syntacti-

cal rather than semantic and the deep applied significance 

may not be too obvious in these syntactical descriptions. 

 

Appendix I(a): Treatment by Barr and Wells 

The classical approach as followed by Barr & Wells 

([3] pp.142-160) defines a category C as Cartesian closed 

if it satisfies the three conditions reproduced from their de-

scription in Panel 2. 

Panel 2 : Three Conditions for a Cartesian Closed Category ([3] p.143) 

CCC-1 

CCC-2  

 
CCC-3 

There is a terminal object 1  

Each pair of objects A and B of C has a product A  B 

with projections p1 : A  B  A and p2 : A  B  B 

For every pair of objects A and B, there is an object 

[A  B] and an arrow eval : [A  B]  A  B 

with the property that for any arrow f : C x A  B, 

there is a unique arrow λf : C  [A B] such that 

the composite 

  BABAAC
evalAf
 



 
is f 

Traditionally the family of arrows (historically known 

as a Hom functor) from A to B is written as [A  B] or de-

noted as B
A
 and then called the exponential object with A 

as the exponent. It is possible to add some semantic detail 

to the statements CCC-1 to CCC-3 in the panel and draw 
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formal diagrams to indicate further aspects. In basic terms 

the definition above requires a terminal object T as an up-

per limit closing the category from above. This has to be 

independently defined for the category of sets because the-

re is no syntactical connection between the extension and 

the intension of a set. It lies in the semantics unexpressed 

and the connection has to be made in the mind of the user. 

A natural category on the other hand exists as an intension 

identity arrow typing, by means of a contravariant arrow, 

every object in its possible extensions. A pair of objects has 

a product with projections where there is only one path be-

tween the product and the related object. More precisely: 

CCC-1 For any object A in the category, there is ex-

actly one arrow A  T, where T is the terminal object and 

the category is closed on top T. This is quite straight for-

ward in finitary categories where the elements of a set are 

defined as independent of one another and can only be re-

lated by functions. In natural categories there is no such in-

dependence because of the nature of process every object 

in the world is related to every other. The semantics of 

CCC1 would then express the wholeness of the category.  

CCC-2 expresses the property that any pair of objects 

may combine and any such combination may be resolved 

into one or other of its components. This appears fairly ob-

vious at the syntactical level but provides the basis of rela-

tionships at the semantic level. Any combination is de-

pendent on context which qualifies any relationship. 

The first limb of CCC-3 provides for currying to 

change a function on two variables to a function on one 

variable. For function f : C  A  B, let [A  B] be the set 

of functions from A to B. Then there is a function: λf : C  

[A  B] where λf(c) is the function whose value at an ele-

ment aA is f(c; a). This is equivalent to the typed lambda 

calculus. Typical examples of currying with integers often 

given are: 

f : multiply(, 2)  R curries to λf : double()  R 

f : exponentiate(, 2)  R curries to λf : square()  R 

The use of ‘double’ and ‘square’ are examples of se-

mantic expressions used to bridge conceptually the gap be-

tween intension and extension in set theory. This is the fini-

tary syntactical version of the property in the universe that 

there is a single direct connection between any pair of two 

entities that is the resultant of all possible connections be-

tween them as illustrated in the diagram of Figure 3. The 

language used by Barr & Wells in these definitions is not 

purely categoreal but as not uncommon in finitary category 

theory it is often necessary to resort to hybrid descriptions 

involving set theoretic concepts as with the use here of 

lambda calculus, invented by Church to express for the 

purposes of set theory the concept of typing as a limit. 

Lambda calculus was known, from early on and for similar 

reasons, to be logically inconsistent. It is subject to the 

Kleene-Rosser paradox, which is another incarnation of 

Russell’s paradox.  

In the second limb of CCC-3, for every pair of objects 

A and B, there is an object [A  B] and an arrow eval : [A 

 B]A  B with the property that for any arrow f : C  A 

 B there is a unique arrow λf : C  [A  B] such that the 

diagram in Figure 15 commutes. 

In Figure 15 C is the product object and eval is a func-

tion mapping all A objects and their associated B objects 

onto B. The semantics is very profound in that it leads to 

the Heyting logic mentioned previously which is only pos-

sible in finitary category theory by arbitrary enhancement 

but is naturally inherent in process categories where it is 

essentially the metaphysics of causation. 

 

Fig. 15: Commuting Diagram for Rule CCC-3 (second limb) for a 

Cartesian closed category 

The problems which arise from the lack of formal in-

tegrity between the intension of a set and the extension of 

its elements carry over into the concept of ‘locally Carte-

sian closed’. Natural categories have the property of being 

both Cartesian closed and locally Cartesian closed. As ar-

bitrary models finitary categories may have the former 

property without the latter. Categories with both properties 

are treated as strong and those that are not also locally Car-

tesian closed as weak. In the former products are extended 

to pullbacks and Barr & Wells rely on this distinction to 

define locally Cartesian closed ([3] at p.353). Categories 

are locally Cartesian closed when the category C has pull-

backs and either the pullback functor has a right adjoint or 

for every object A in C, the slice category C/A is Cartesian 

closed. Pullbacks express relationships over objects in a 

particular context so locally Cartesian closed categories 

provide more expressiveness for finitary categories in rep-

resenting the real world. Figure 16 compares the product 

and pullback. 

 

Fig. 16: Comparison of Constructions (a) Product C  A and (b) 

Pullback C  A in context of B 

Some greater insight on their application to the real 

world comes from the first chapter in volume I of Peter 

Johnstone’s Sketches of an Elephant [16]. A category is 

Cartesian closed if it has a terminal object, products of 

pairs of objects and equalizers of pairs of morphisms. A 

category is locally Cartesian closed if it has a terminal ob-

ject and pullbacks of pairs of morphisms ([16] A1.2 p.11). 

A Cartesian closed category is locally Cartesian closed if it 

has pullbacks. The property of Cartesian-ness is stable un-

der slicing ([16] A1.2.6). That is the stability functor  is in 

adjointness with the existential functor  ┤ and with the 

universal functor  ┤ for a pullback category. The ap-

proach by Barr & Wells to Cartesian closed categories can 

be adjusted to a more abstract view using adjointness. In 

the potentially adjoint relationship F ┤G, the free functor F 

creates binary products and the underlying functor G 

checks for exponentials, that is one path. The free functor 

_A takes an object C to its product with A, that is C  A. 

The underlying functor G takes a product object C  A to 

an object B. Figure 17 shows the diagrams that must both 

commute for adjointness to hold, diagram (a) for the left 
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adjoint and (b) for the right adjoint. A comparison of Fig-

ures 15 and 17(b) shows that in the former the arrows 

_A(f) and ε correspond respectively to λf  A and eval in 

the former. The counit of the adjointness is therefore the 

evaluation map. 

 

Fig. 17: Roles in Adjointness of a) η, the unit and b) ε, the counit 

of adjointness respectively. Free functor is _  A. 

Finitary Cartesian closed categories can be readily ex-

tended from binary products to finite products and this is 

demonstrated by Barr & Wells ([3] pp.191-196). For any 

objects A1, A2, ... , and A of a Cartesian closed Cartesian 

closed category, there is an object [A1  A] and an arrow: 

eval : [A1  A]  A1  A 

such that for any Af A 
2

:  there is a unique arrow: 

][: 11 2
AAAf A 

 
Finite products give construction of n-tuples which Barr 

&Wells [3] show can represent strings through construc-

tions such as the Kleene closure (p.340) and the Kleisli 

category (pp.366-367). These seem attractive but being de-

rived from sets they have to be treated with caution for use 

in information systems. For they are still models and prone 

to the same difficulties we have already discussed. For in-

stance the issue arises with the significance of order. This 

is not new. Historically there has been some debate about 

whether AB is ‘the same’ as BA. Barr & Wells for in-

stance are compelled to acknowledge the difficulty with fi-

nite products as in Panel 3. 

Panel 3 : Problems with Equivalence of Products in CCC-3 ([3] p.144) 

Condition CCC-3 appears to treat the two factors of CA asymmetri-

cally, which is misleading since of course CA ≡ AC. Even that last 

isomorphism is misleading since CA and AC could be taken to be 
the same object. Products are of indexed sets of objects, not necessar-

ily indexed by an ordered set, even though our notation appears to 

suggest otherwise. It gets even worse with n-ary products ... 

In applications such as relational databases a product is 

regarded as an associative operation so that A  (B  C) is 

regarded as equivalent to (A  B)  C, at least at the data 

level. But this is the problem: extensionally the product op-

eration is associative. However, intensionally a different 

answer is obtained depending on the order of the opera-

tions. So the product operation is not associative in Carte-

sian closed systems. 

 

Appendix I(b): Treatment by Mac Lane 

Mac Lane ([21], pp.87-88) defines Cartesian closed in 

tabular form using the diagonal functor  for product and 

the terminal object in category C in Set as reproduced here 

in Panel 4. 

Mac Lane asserts the existence of a Cartesian closed 

category as equivalence with adjointness, as in Panel 5. 

Panel 4 : Left and Right Adjoints in Cartesian Closed Category C in 

Set after ([21] pp.87-88) 

 
 

Panel 5 : Assertion of Cartesian Closed Category as Equivalence with 
Adjointness ([21] p.97) 

To assert that a category C has all finite products and coproducts is to 

assert that products, terminal, initial and coproducts exist, thus the 

functors C  1 and  : C  C  C have both left and right adjoints. 

Indeed the left adjoints give initial object and coproduct, respectively, 

while the right adjoints give terminal object and product, respectively. 

Mac Lane ([21] at pp.97-98) thus by using just adjoints 

at both the category level and the object level is able to de-

fine ‘Cartesian Closed Category’. He puts it this way: a 

category C with all finite products specifically given is 

called Cartesian closed when each of the following func-

tors in Panel 6 has a specified right adjoint (with a specified 

adjunction) in Panel 7. 

Panel 6 : Functors and Maps involved in Adjointess ([21] p.98) 

 

The first adjoint in Panel 7 specifies the terminal object 

and the second the product and its projections. The third 

specifies the evaluation map as shown in Panel 8. 

Panel 7: Right Adjoints for Cartesian Closed Category ([21] p.98) 

 
Panel 8 : Evaluation map as condition for adjointness in Cartesian 
Closed Category ([21]p.98) 

The third required adjoint specifies for each functor CCb  :   a right 

adjoint, with the corresponding bijection 

),hom(),hom( bcacba   

natural in a and in c. By the parameter theorem (to be proved in the 

next section), bccb  ,  is then (the object function of) a bifunctor 

CCCop  . Specifying the adjunction amounts to specifying for each 

c and b an arrow e  

cbce b :   

which is natural in c and universal from b    to c. We call this 

cbee , the evaluation map. 

Mac Lane’s treatment, in common with that of Barr & 

Well's, is restricted to the category of Set. From the point 

of real-world systems such as information and database 

systems, this is unsatisfactory as in the Boolean world there 

is a reliance for negation on the closed world assumption. 

What is required is an open system, through the free func-

tor F, with Heyting intuitionistic logic to give negation in 

an approach which does not violate Gödel’s principles. 
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